Extreme Ultra-Trail Race Induces Muscular Damage, Risk for Acute Kidney Injury and Hyponatremia: A Case Report
Abstract
:1. Introduction
2. Case Report
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scheer, V. Participation Trends of Ultra Endurance Events. Sports Med. Arthrosc. 2019, 27, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Runsignup. Annual Industry Report [Internet]. Volume 9, Annual Trend Race Report. 2020. Available online: extension://bfdogplmndidlpjfhoijckpakkdjkkil/pdf/viewer.html?file=https%3A%2F%2Fd368g9lw5ileu7.cloudfront.net%2Fdocuments%2FraceTrends2020_v20210128.pdf (accessed on 18 October 2021).
- Hoppel, F.; Calabria, E.; Pesta, D.; Kantner-Rumplmair, W.; Gnaiger, E.; Burtscher, M. Physiological and pathophysiological responses to ultramarathon running in non-elite runners. Front Physiol. 2019, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Scheer, V.; Basset, P.; Giovanelli, N.; Vernillo, G.; Millet, G.P.; Costa, R.J.S. Defining Off-road Running: A Position Statement from the Ultra Sports Science Foundation. Int. J. Sports Med. 2020, 41, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Scheer, B.V.; Murray, A. Al Andalus Ultra Trail: An observation of medical interventions during a 219-km, 5-day ultramarathon stage race. Clin. J. Sport Med. 2011, 21, 444–446. [Google Scholar] [CrossRef] [PubMed]
- Vernillo, G.; Savoldelli, A.; La Torre, A.; Skafidas, S.; Bortolan, L.; Schena, F. Injury and Illness Rates during Ultratrail Running. Int. J. Sports Med. 2016, 37, 565–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawadi, S.; Basyal, B.; Subedi, Y. Morbidity Among Athletes Presenting for Medical Care During 3 Iterations of an Ultratrail Race in the Himalayas. Wilderness Environ Med. 2020, 31, 437–440. [Google Scholar] [CrossRef]
- Knechtle, B.; Gnädinger, M.; Knechtle, P.; Imoberdorf, R.; Kohler, G.; Ballmer, P.; Senn, O. Prevalence of exercise-associated hyponatremia in male ultraendurance athletes. Clin. J. Sport Med. 2011, 21, 226–232. [Google Scholar] [CrossRef]
- Hodgson, L.; Walter, E.; Venn, R.M.; Galloway, R.; Pitsiladis, Y.; Sardat, F.; Forni, L.G. Acute kidney injury associated with endurance events-Is it a cause for concern? A systematic review. BMJ Open Sport Exerc. Med. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Makris, K.; Spanou, L. Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes. Clin. Biochem. Rev. 2016, 37, 85–98. Available online: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5198510 (accessed on 1 October 2021).
- Le Goff, C.; Kaux, J.-F.; Dulgheru, R.; Seidel, L.; Pincemail, J.; Cavalier, E.; Melon, P. The impact of an ultra-trail on the dynamic of cardiac, inflammatory, renal and oxidative stress biological markers correlated with electrocardiogram and echocardiogram. Acta Cardiol. 2020, 1–9. [Google Scholar] [CrossRef]
- Belli, T.; Macedo, D.; De Araújo, G.G.; Dos Reis, I.G.M.; Scariot, P.; Lazarim, F.; Nunes, L.A.S.; Brenzikofer, R.; Gobatto, C.A. Mountain ultramarathon induces early increases of muscle damage, inflammation, and risk for acute renal injury. Front Physiol. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Scotney, B.; Reid, S. Body Weight, Serum Sodium Levels, and Renal Function in an Ultra-Distance Mountain Run. Clin. J. Sport Med. 2015, 25, 341–346. [Google Scholar] [CrossRef]
- Bracher, A.; Knechtle, B.; Gnädinger, M.; Bürge, J.; Rüst, C.A.; Knechtle, P.; Rosemann, T. Fluid intake and changes in limb volumes in male ultra-marathoners: Does fluid overload lead to peripheral oedema? Eur. J. Appl. Physiol. 2012, 112, 991–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipman, G.S.; Krabak, B.J.; Rundell, S.D.; Shea, K.M.; Badowski, N.; Little, C. Incidence and Prevalence of Acute Kidney Injury during Multistage Ultramarathons. Clin. J. Sport Med. 2016, 26, 314–319. [Google Scholar] [CrossRef]
- Seijas, M.; Baccino, C.; Nin, N.; Lorente, J.A. Definition and biomarkers of acute renal damage: New perspectives. Med. Intensiva 2014, 38, 376–385. [Google Scholar] [CrossRef]
- Poussel, M.; Touzé, C.; Allado, E.; Frimat, L.; Hily, O.; Thilly, N.; Rousseau, H.; Vauthier, J.C.; Chenuel, B. Ultramarathon and Renal Function: Does Exercise-Induced Acute Kidney Injury Really Exist in Common Conditions? Front. Sports Act. Living 2020, 1, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheer, V. Severe Kidney Injury After a 110-km Trail Race. Cureus 2020, 12, 12–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, M.D.; Stellingwerff, T.; Costa, R.J.S. Considerations for ultra-endurance activities: Part 2–hydration. Res. Sports Med. 2019, 27, 182–194. [Google Scholar] [CrossRef]
- Hoffman, M.D.; Hew-Butler, T.; Stuempfle, K.J. Exercise-associated hyponatremia and hydration status in 161-km ultramarathoners. Med. Sci. Sports Exerc. 2013, 45, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Hew-Butler, T.; Rosner, M.H.; Fowkes-Godek, S.; Dugas, J.P.; Hoffman, M.; Lewis, D.P.; Maughan, R.J.; Miller, K.C.; Montain, S.J.; Rehrer, N.J.; et al. Statement of the 3rd international exercise-associated hyponatremia consensus development conference, Carlsbad, California, 2015. Br. J. Sports Med. 2015, 49, 1432–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar]
- Hoffman, M.D.; Goulet, E.D.B.; Maughan, R.J. Considerations in the Use of Body Mass Change to Estimate Change in Hydration Status During a 161-Kilometer Ultramarathon Running Competition. Sport Med. 2018, 48, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Nance, J.R.; Mammen, A.L. Diagnostic Evaluation of Rhabdomyolysis. Muscle Nerve 2015, 176, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Valverde, D.; Sánchez-Ureña, B.; Crowe, J.; Timón, R.; Olcina, G.J. Exertional rhabdomyolysis and acute kidney injury in endurance sports: A systematic review. Eur. J. Sport Sci. 2020, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Skenderi, K.P.; Kavouras, S.A.; Anastasiou, C.A.; Yiannakouris, N.; Matalas, A.L. Exertional rhabdomyolysis during a 246-km continuous running race. Med. Sci. Sports Exerc. 2006, 38, 1054–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kłapcińska, B.; Waåkiewicz, Z.; Chrapusta, S.J.; Sadowska-Krępa, E.; Czuba, M.; Langfort, J. Metabolic responses to a 48-h ultra-marathon run in middle-aged male amateur runners. Eur. J. Appl. Physiol. 2013, 113, 2781–2793. [Google Scholar] [CrossRef] [Green Version]
- Cleary, M.A. Creatine kinase, exertional rhabdomyolysis, and exercise-associated hyponatremia in ultra-endurance athletes: A critically appraised paper. Int. J. Athl. Ther. Train. 2016, 21, 13–15. [Google Scholar] [CrossRef]
- Chlíbková, D.; Knechtle, B.; Rosemann, T.; Tomášková, I.; Novotný, J.; Žákovská, A.; Uher, T. Rhabdomyolysis and exercise-associated hyponatremia in ultra-bikers and ultra-runners. J. Int. Soc. Sports Nutr. 2015, 12, 1–12. [Google Scholar]
- Hinks, A.; Hess, A.; Debenham, M.I.; Chen, J.; Mazara, N.; Inkol, K.A.; Cervone, D.T.; Spriet, L.L.; Dalton, B.H.; Power, G.A. The torque-frequency relationship is impaired similarly following two bouts of eccentric exercise: No evidence of a protective repeated bout effect. J. Biomech. 2021, 122, 110448. [Google Scholar]
- Malm, C.; Sjödin, T.L.B.; Sjöberg, B.; Lenkei, R.; Renström, P.; Lundberg, I.E.; Ekblom, B. Leukocytes, cytokines, growth factors and hormones in human skeletal muscle and blood after uphill or downhill running. J. Physiol. 2004, 556, 983–1000. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Neubauer, O.; Gatta, P.A.D.; Nosaka, K. Muscle damage and inflammation during recovery from exercise. J. Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef]
- Scheer, V.; Krabak, B.J. Musculoskeletal Injuries in Ultra-Endurance Running: A Scoping Review. Front. Physiol. 2021, 12. [Google Scholar] [CrossRef]
- Millet, G.Y.; Tomazin, K.; Verges, S.; Vincent, C.; Bonnefoy, R.; Boisson, R.-C.; Gergelé, L.; Féasson, L.; Martin, V. Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS ONE. 2011, 6, e17059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kainulainen, H.; Kyr, H. Corrected whole blood biomarkers–The equation of Dill and Costill revisited. Physiol. Rep. 2018, 6, e13749. [Google Scholar]
- Sanchis-Gomar, F.; Alis, R.; Rodríguez-Vicente, G.; Lucia, A.; Casajús, J.A.; Garatachea, N. Blood and urinary abnormalities induced during and after 24-hour continuous running: A case report. Clin. J. Sport Med. 2016, 26, e100–e102. [Google Scholar] [CrossRef] [PubMed]
- Jouffroy, R.; Lebreton, X.; Mansencal, N.; Anglicheau, D. Acute kidney injury during an ultra-distance race. PLoS ONE 2019, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cuthill, J.A.; Ellis, C.; Inglis, A. Hazards of ultra-marathon running in the Scottish highlands: Exercise-associated hyponatraemia. Emerg. Med. J. 2009, 26, 906–907. [Google Scholar] [CrossRef]
- Besson, T.; Rossi, J.; Mallouf, T.L.R.; Marechal, M.; Doutreleau, S.; Verges, S.; Millet, G.Y. Fatigue and Recovery after Single-Stage versus Multistage Ultramarathon Running. Med. Sci. Sports Exerc. 2020, 52, 1691–1698. [Google Scholar] [CrossRef]
- Lipman, G.S.; Krabak, B.J.; Waite, B.L.; Logan, S.B.; Menon, A.; Chan, G.K. A prospective cohort study of acute kidney injury in multi-stage ultramarathon runners: The biochemistry in endurance runner study (BIERS). Res. Sport Med. 2014, 22, 185–192. [Google Scholar] [CrossRef]
- Lipman, G.S.; Hew-Butler, T.; Phillips, C.; Krabak, B.; Burns, P. Prospective Observational Study of Weight-based Assessment of Sodium Supplements on Ultramarathon Performance (WASSUP). Sport Med.-Open 2021, 7, 1–10. [Google Scholar]
- Cairns, R.S.; Hew-Butler, T. Proof of concept: Hypovolemic hyponatremia may precede and augment creatine kinase elevations during an ultramarathon. Eur. J. Appl. Physiol. 2016, 116, 647–655. [Google Scholar] [CrossRef]
- Martínez-Navarro, I.; Sanchez-Gómez, J.M.; Aparicio, I.; Priego-Quesada, J.I.; Pérez-Soriano, P.; Collado, E.; Hernando, B.; Hernando, C. Effect of mountain ultramarathon distance competition on biochemical variables, respiratory and lower-limb fatigue. PLoS ONE 2020, 15, e0238846. [Google Scholar] [CrossRef]
- Knechtle, B.; Knechtle, P.; Wirth, A.; Alexander Rüst, C.; Rosemann, T. A faster running speed is associated with a greater body weight loss in 100-km ultra-marathoners. J. Sports Sci. 2012, 30, 1131–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoppel, F.; Calabria, E.; Pesta, D.; Kantner-Rumplmair, W.; Gnaiger, E.; Burtscher, M. Does acute kidney injury from an ultramarathon increase the risk for greater subsequent injury? Clin. J. Sport Med. 2014, 26, 1–12. [Google Scholar]
- Pesic, D.; Srejovic, I.; Stefanovic, D.; Djordjevic, D.; Cubrilo, D.; Zivkovic, V. Ten marathons in ten days: Effects on biochemical parameters and redox balance-case report. Serb. J. Exp. Clin. Res. 2019, 20, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, B.; Knechtle, P.; Rosemann, T.; Senn, O. No dehydration in mountain bike ultra-marathoners. Clin. J. Sport Med. 2009, 19, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Kerschan-Schindl, K.; Thalmann, M.; Sodeck, G.H.; Skenderi, K.; Matalas, A.L.; Grampp, S.; Ebner, C.; Pietschmann, P. A 246-km continuous running race causes significant changes in bone metabolism. Bone 2009, 45, 1079–1083. [Google Scholar] [CrossRef] [PubMed]
Parameter Blood | Before-Race | Post-Race | ||
---|---|---|---|---|
Pre (Baseline) Value | Post (Post-Exercise) Value (% Difference) | Day 2 (rec2) Value (% Difference) | Day 9 (rec9) Value (% Difference) | |
Hemoglobin (g/dL) | 144 | 131 (−9.03) | 132 (−8.33) | 146 (+1.58) |
Hematocrit (%) | 42% | 39% (−7.14) | 39% (−7.14) | 43% (+2.38) |
RBC (106/mL) | 4.42 | 4.06 (−8.14) | 4.05 (−8.37) | 4.49 (+1.58) |
MCV (fL) | 95.6 | 95.4 (−0.21) | 95.6 (0.0) | 96.7 (+1.15) |
MCH (pg) | 32.6 | 32.4 (−0.61) | 32(−1.84) | 32.5 (−0.31) |
MCHC (g/dL) | 341 | 340 (−0.29) | 340 (−0.29) | 336 (−1.47) |
RDW (%) | 12.8 | 13.5 (+5.47) | 13.7 (+7.03) | 13.8 (+7.81) |
Platelet count (106/mL) | 242 | 315 (+30.17) | 309 (+27.69) | 391 (+61.57) |
Platelet volume (fL) | 8.1 | 7.6 (−6.17) | 7.7 (−4.94) | 7.3 (−9.88) |
Leukocytes (10³/mL) | 3 | 9.4 (+213.33) | 6 (+100.00) | 6.8 (+126.00) |
Neutrophils (10³/mL) | 3 | 6.5 (+116.67) | 3.6 (+20.00) | 3.7 (+23.33) |
Neutrophils (%) | 52.2 | 68.7 (+31.61) | 60.9 (+16.67) | 53.7 (+2.87) |
Lymphocytes (10³/mL) | 2.1 | 1.7 (−19.05) | 1.4 (−33.33) | 2.3 (+9.52) |
Lymphocytes (%) | 35.3 | 17.8 (−49.58) | 23.5 (−33.43) | 34.5 (−2.27) |
Monocytes (10³/mL) | 0.6 | 1 (+66.67) | 0.5 (+16.67) | 0.6 (0.00) |
Monocytes (%) | 10 | 10.4 (+4.0) | 9 (−10.00) | 8.6 (−14.00) |
Eosinophils (10³/mL) | 1.8 | 0.2 (−89.89) | 0.3 (−83.34) | 0.1 (−94.44) |
Eosinophils (%) | 1.8 | 2.4 (+33.33) | 5.3 (+194.44) | 2.1 (+16.67) |
Basophils (10³/mL) | 0.0 | 0 (+0.10) | 0 (+0.10) | 0 (+0.10) |
Basophils (%) | 0.7 | 0.7 (0.00) | 1.3 (+85.71) | 1.1 (+57.14) |
Erythroblasts (10³/mL) | 0.0 | 0 (0.00) | 0 (0.00) | 0 (0.00) |
Erythroblasts (%) | 0.0 | 0 (0.00) | 0 (0.00) | 0 (0.00) |
SCR (mg/dl) | 0.88 | 1.13 (+28.41) | 0.98 (+11.36) | 0.84 (−4.55) |
AST (UI/L) | 21 | 66 (+214.29) | 45 (+114.29) | 86 (+309.52) |
ALT (UI/L) | 14 | 39 (+178.57) | 33 (+135.71) | 99 (+607.14) |
Lipase (UI/L) | 13 | 18 (+38.46) | 27 (+107.69) | 13 (0.0) |
Urea (mg/dL) | 33 | 64 (+93.94) | 46 (+39.39) | 35 (+6.06) |
Uric Acid(mg/dL) | 5.2 | 5 (−3.85) | 4.7 (−9.62) | 5.2 (0.00) |
HDL Cholesterol (mg/dL) | 90 | 86 (−4.44) | 80 (−11.11) | 94 (+4.44) |
Total Cholesterol (mg/dL) | 233 | 193 (−17.17) | 194 (−16.74) | 292 (+25.32) |
Triglycerides (mg/dL) | 79 | 80 (+1.27) | 130 (+64.56) | 88 (+11.39) |
Na+ (mmol/L) | 136 | 139 (+2.21) | 140 (+2.94) | 137 (+0.74) |
K+ (mmol/L) | 4.5 | 5.2 (+15.56) | 5.5 (+22.22) | 4.9 (+8.89) |
Cl+ (mmol/L) | 102 | 107 (+4.90) | 106 (+3.92) | 99 (−2.94) |
Ca2+ (mg/dL) | 9.9 | 9.1 (−8.08) | 9.1 (−8.08) | 9.8 (−1.01) |
Mg2+ (mg/dL) | 2 | 2.1 (+5.00) | 2 (0.00) | 2.2 (+10.00) |
P+ (mg/dL) | 2.9 | 3.5 (+20.69) | 2.9 (0.00) | 3.4 (+17.24) |
Glucose (mg/dL) | 92 | 99 (+7.61) | 73 (−20.65) | 95 (+3.26) |
Albumin (g/dL) | 4.3 | 3.89 (9.53) | 3.64 (−14.35) | 4.29 (−0.23) |
CK (UI/L) | 94 | 1099 (+1069.15) | 478 (408.51) | 109 (+15.96) |
LDH (UI/L) | 152 | 571 (+275.66) | 422 (+177.63) | 254 (+67.11) |
Total Proteins (g/dL) | 6.8 | 6.5 (4.41) | 6.1 (−10.29) | 7 (+2.94) |
Urea (mg/dL) | 33 | 64 (+93.94) | 46 (+39.39) | 35 (+6.06) |
Parameter Urine | Before-Race | Post-Race | ||
---|---|---|---|---|
Pre (Baseline) VALUE | Post (Post-Exercise) Value (% Difference) | Day 2 (rec2) Value (% Difference) | Day 9 (rec9) Value (% Difference) | |
Proteins (mg/dL) | 0 | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) |
Density (Kg/L) | 1021 | 1021 (0.00%) | 1018 (−0.29%) | 1014 (−0.69%) |
PH | 6.5 | 6 (−7.69%) | 7 (+7.69%) | 7 (+7.69%) |
Glucose (mg/dL) | 0 | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) |
Nitrites | 0 | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) |
Ketonic Bodies (mg/dL) | 0 | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) |
Leucocytes | 0 | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) |
Erythrocytes | 0 | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) |
Microalbumin (mg/dL) | <0.19 | 36 (+18,847%) | <0.19 (0.00%) | <0.19 (0%) |
Bilirubin (mg/dL) | 0 | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) |
Urobilinogen (mg/dL) | 1 | 1 (0.00%) | 1 (0.00%) | 0.2 (−80.00%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecina, M.; López, I.; Castellar, C.; Pradas, F. Extreme Ultra-Trail Race Induces Muscular Damage, Risk for Acute Kidney Injury and Hyponatremia: A Case Report. Int. J. Environ. Res. Public Health 2021, 18, 11323. https://doi.org/10.3390/ijerph182111323
Lecina M, López I, Castellar C, Pradas F. Extreme Ultra-Trail Race Induces Muscular Damage, Risk for Acute Kidney Injury and Hyponatremia: A Case Report. International Journal of Environmental Research and Public Health. 2021; 18(21):11323. https://doi.org/10.3390/ijerph182111323
Chicago/Turabian StyleLecina, Miguel, Isaac López, Carlos Castellar, and Francisco Pradas. 2021. "Extreme Ultra-Trail Race Induces Muscular Damage, Risk for Acute Kidney Injury and Hyponatremia: A Case Report" International Journal of Environmental Research and Public Health 18, no. 21: 11323. https://doi.org/10.3390/ijerph182111323
APA StyleLecina, M., López, I., Castellar, C., & Pradas, F. (2021). Extreme Ultra-Trail Race Induces Muscular Damage, Risk for Acute Kidney Injury and Hyponatremia: A Case Report. International Journal of Environmental Research and Public Health, 18(21), 11323. https://doi.org/10.3390/ijerph182111323