Effects of E-Cigarette Flavoring Chemicals on Human Macrophages and Bronchial Epithelial Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. E-Liquid Flavoring Chemical Selection
2.3. Preparation of E-Liquid Solutions
2.4. Test for Interference
2.5. Endotoxin
2.6. Cellular Viability
2.7. Lactate Dehydrogenase
2.8. Intracellular ROS
2.9. Cytokines
2.10. Statistics
2.11. Supplemental Analysis
3. Results
3.1. Endotoxin Analysis
3.2. Cell Viability
3.3. Lactate Dehydrogenase
3.4. Intracellular ROS
3.5. Cytokines
3.5.1. IL-1β
3.5.2. IL-6
3.5.3. IL-8
3.5.4. TNF-α
3.6. Modeling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hammond, D.; Rynard, V.L.; Reid, J.L. Changes in Prevalence of Vaping among Youths in the United States, Canada, and England from 2017 to 2019. JAMA Pediatr. 2020, 174, 797–800. [Google Scholar] [CrossRef] [PubMed]
- California Department of Public Health (CDPH). Vaping Devices, Electronic Cigarettes: POD Based Devices. Tobacco Control Branch Fact Sheet. 2019. Available online: https://www.cdph.ca.gov/Programs/CCDPHP/DCDIC/CTCB/CDPH%20Document%20Library/Community/EducationalMaterials/Pod-Based%20Vaping%20Devices.pdf (accessed on 20 September 2020).
- Wang, T.; Neff, L.; Park-Lee, E.; Ren, C.; Cullen, K.; King, B. E-cigarette use among middle and high school students–United States, 2020. MMWR 2020, 69, 1310–1312. [Google Scholar] [CrossRef]
- Zhong, J.; Cao, S.; Gong, W.; Fei, F.; Wang, M. Electronic Cigarettes Use and Intention to Cigarette Smoking among Never-Smoking Adolescents and Young Adults: A Meta-Analysis. Int. J. Environ. Res. Public Health 2016, 13, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- California Department of Public Health (CDPH). State Health Officer’s Report on E-cigarettes: A Community Health Threat. 2015. Available online: https://www.cdph.ca.gov/Programs/CCDPHP/DCDIC/CTCB/CDPH%20Document%20Library/Policy/ElectronicSmokingDevices/StateHealthEcigReport.pdf (accessed on 20 September 2020).
- Traboulsi, H.; Cherian, M.; Rjeili, M.A.; Preteroti, M.; Bourbeau, J.; Smith, B.M.; Eidelman, D.H.; Baglole, C.J. Inhalation Toxicology of Vaping Products and Implications for Pulmonary Health. Int. J. Mol. Sci. 2020, 21, 3495. [Google Scholar] [CrossRef] [PubMed]
- Eaton, D.L.; Kwan, L.Y.; Stratton, K. Public Health Consequences of E-Cigarettes; National Academies Press (US): Washington, WA, USA, 2018. [Google Scholar]
- Omaiye, E.E.; McWhirter, K.J.; Luo, W.; Tierney, P.A.; Pankow, J.F.; Talbot, P. High concentrations of flavor chemicals are present in electronic cigarette refill fluids. Sci. Rep. 2019, 9, 2468. [Google Scholar] [CrossRef] [Green Version]
- The Food and Extract Manufacturers Association of the United States. FEMA GRAS. 2020. Available online: https://www.femaflavor.org/fema-gras (accessed on 13 August 2021).
- World Health Organization. WHO Technical Report Series No. 909. Evaluation of Certain Food Additives and Contaminants. 2002. Available online: https://apps.who.int/iris/bitstream/handle/10665/42578/WHO_TRS_909.pdf;jsessionid=133FBDE1235C70F68F742DD0CE106E51?sequence=1 (accessed on 13 August 2021).
- Higham, A.; Rattray, N.; Dewhurst, J.A.; Trivedi, D.; Fowler, S.; Goodacre, R.; Singh, D. Electronic cigarette exposure triggers neutrophil inflammatory responses. Respir. Res. 2016, 17, 56. [Google Scholar] [CrossRef] [Green Version]
- Scheffler, S.; Dieken, H.; Krischenowski, O.; Förster, C.; Branscheid, D.; Aufderheide, M. Evaluation of E-Cigarette Liquid Vapor and Mainstream Cigarette Smoke after Direct Exposure of Primary Human Bronchial Epithelial Cells. Int. J. Environ. Res. Public Health 2015, 12, 3915–3925. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.; Lugg, S.T.; Aldridge, K.; E Lewis, K.; Bowden, A.; Mahida, R.; Grudzinska, F.; Dosanjh, D.; Parekh, D.; Foronjy, R.; et al. Pro-inflammatory effects of e-cigarette vapour condensate on human alveolar macrophages. Thorax 2018, 73, 1161–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ween, M.P.; Whittall, J.J.; Hamon, R.; Reynolds, P.N.; Hodge, S.J. Phagocytosis and Inflammation: Exploring the effects of the components of E-cigarette vapor on macrophages. Physiol. Rep. 2017, 5, e13370. [Google Scholar] [CrossRef]
- Gonzalez-Suarez, I.; Marescotti, D.; Martin, F.; Scotti, E.; Guedj, E.; Acali, S.; Dulize, R.; Baumer, K.; Peric, D.; Frentzel, S.; et al. In Vitro Systems Toxicology Assessment of Nonflavored e-Cigarette Liquids in Primary Lung Epithelial Cells. Appl. Vitr. Toxicol. 2017, 3, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Lerner, C.A.; Sundar, I.K.; Yao, H.; Gerloff, J.; Ossip, D.J.; McIntosh, S.; Robinson, R.; Rahman, I. Vapors Produced by Electronic Cigarettes and E-Juices with Flavorings Induce Toxicity, Oxidative Stress, and Inflammatory Response in Lung Epithelial Cells and in Mouse Lung. PLOS ONE 2015, 10, e0116732. [Google Scholar] [CrossRef]
- Stefaniak, A.B.; LeBouf, R.F.; Ranpara, A.C.; Leonard, S.S. Toxicology of flavoring- and cannabis-containing e-liquids used in electronic delivery systems. Pharmacol. Ther. 2021, 224, 107838. [Google Scholar] [CrossRef] [PubMed]
- Hubbs, A.F.; Goldsmith, W.T.; Kashon, M.L.; Frazer, D.; Mercer, R.R.; Battelli, L.A.; Kullman, G.J.; Schwegler-Berry, D.; Friend, S.; Castranova, V. Respiratory Toxicologic Pathology of Inhaled Diacetyl in Sprague-Dawley Rats. Toxicol. Pathol. 2008, 36, 330–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerloff, J.; Sundar, I.; Freter, R.; Sekera, E.; Friedman, A.; Robinson, R.; Pagano, T.; Rahman, I. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette flavoring chemicals Identified by Gas Chromatography-Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts. Appl. Vitr. Toxicol. 2017, 13, 28–40. [Google Scholar] [CrossRef]
- Muthumalage, T.; Prinz, M.; Ansah, K.; Gerloff, J.; Sundar, I.; Rahman, I. Inflammatory and Oxidative Responses Induced by Exposure to Commonly Used e-Cigarette flavoring chemicals and Flavored e-Liquids without Nicotine. Front. Physiol. 2018, 8, 1130. [Google Scholar] [CrossRef] [Green Version]
- Bitzer, Z.; Goel, R.; Reilly, S.M.; Elias, R.; Silakov, A.; Foulds, J.; Muscat, J.; Richie, J.P. Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols. Free Radic. Biol. Med. 2018, 120, 72–79. [Google Scholar] [CrossRef] [PubMed]
- A Tierney, P.; Karpinski, C.D.; E Brown, J.; Luo, W.; Pankow, J.F. Flavour chemicals in electronic cigarette fluids. Tob. Control. 2015, 25, e10–e15. [Google Scholar] [CrossRef] [Green Version]
- Hickman, E.; Herrera, C.A.; Jaspers, I. Common e-cigarette flavoring chemicals impair neutrophil phagocytosis and oxidative burst. Chem Res. Toxicol. 2019, 32, 982–985. [Google Scholar] [CrossRef]
- Yu, J.; Moldoveanu, B.; Otmishi, P.; Jani, P.; Walker, J.; Sarmiento, X.; Guardiola, J.; Saad, M. Inflammatory mechanisms in the lung. J. Inflamm. Res. 2009, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Krüsemann, E.J.; Pennings, J.L.; Cremers, J.W.; Bakker, F.; Boesveldt, S.; Talhout, R. GC–MS analysis of e-cigarette refill solutions: A comparison of flavoring composition between flavor categories. J. Pharm. Biomed. Anal. 2020, 188, 113364. [Google Scholar] [CrossRef]
- Garcia-Canton, C.; Minet, E.; Anadon, A.; Meredith, C. Metabolic characterization of cell systems used in in vitro toxicology testing: Lung cell system BEAS-2B as a working example. Toxicol. Vitr. 2013, 27, 1719–1727. [Google Scholar] [CrossRef] [Green Version]
- Kletting, S.; Barthold, S.; Repnik, U.; Griffiths, G.; Loretz, B.; Schneider-Daum, N.; de Souza Carvalho-Wodarz, C.; Lehr, C.M. Co-culture of human alveolar epithelial (hAELVi) and macrophage (THP-1) cell lines. ALTEX 2017, 35, 211–222. [Google Scholar] [CrossRef]
- Lanone, S.; Rogerieux, F.; Geys, J.; Dupont, A.; Maillot-Marechal, E.; Boczkowski, J.; Lacroix, G.; Hoet, P. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part. Fibre Toxicol. 2009, 6, 14. [Google Scholar] [CrossRef]
- Xia, T.; Hamilton, R.F.; Bonner, J.C.; Crandall, E.D.; Elder, A.; Fazlollahi, F.; Holian, A. Interlaboratory evaluation of in vitro cytotoxicity and inflammatory responses to engineered nanomaterials: The NIEHS Nano GO Consortium. Environ. Health Persp. 2013, 121, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Hutzler, C.; Paschke, M.; Kruschinski, S.; Henkler, F.; Hahn, J.; Luch, A. Chemical hazards present in liquids and vapors of electronic cigarettes. Arch. Toxicol. 2014, 88, 1295–1308. [Google Scholar] [CrossRef]
- LeBouf, R.F.; Burns, D.; Ranpara, A.; Attfield, K.; Zwack, L.; Stefaniak, A.B. Headspace analysis for screening of volatile organic compound profiles of electronic juice bulk material. Anal. Bioanal. Chem. 2018, 410, 5951–5960. [Google Scholar] [CrossRef]
- The Food and Extract Manufacturers Association. (FEMA) of the United States. Respiratory Health and Safety in the Flavoring Manufacturing Workplace. Washington, WA, USA. 2012. Available online: https://www.femaflavor.org/sites/default/files/2018-06/FEMA%202012%20Respiratory%20Health%20and%20Safety%20in%20Workplace.pdf (accessed on 20 October 2021).
- Morgan, D.L.; Jokinen, M.P.; Johnson, C.L.; Price, H.C.; Gwinn, W.M.; Bousquet, R.W.; Flake, G.P. Chemical Reactivity and Respiratory Toxicity of the α-Diketone Flavoring Agents. Toxicol. Pathol. 2016, 44, 763–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by random Forest. R News 2002, 2, 18–22. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2019. Available online: https://www.R-project.org/ (accessed on 20 September 2020).
- Sundar, I.K.; Yao, H.; Rahman, I. Oxidative Stress and Chromatin Remodeling in Chronic Obstructive Pulmonary Disease and Smoking-Related Diseases. Antioxidants Redox Signal. 2013, 18, 1956–1971. [Google Scholar] [CrossRef] [PubMed]
- Bonekamp, N.A.; Völkl, A.; Fahimi, H.D.; Schrader, M. Reactive oxygen species and peroxisomes: Struggling for balance. BioFactors 2009, 35, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.; Shibamoto, T. Antioxidant/Lipoxygenase Inhibitory Activities and Chemical Compositions of Selected Essential Oils. J. Agric. Food Chem. 2010, 58, 7218–7225. [Google Scholar] [CrossRef]
- de Lavor, É.M.; Fernandes, A.W.C.; de Andrade Teles, R.B.; Leal, A.E.B.P.; de Oliveira Júnior, R.G.; Gama e Silva, M.; de Oliveira, A.P.; Silva, J.C.; de Moura Fontes Araújo, M.T.; Coutinho, H.D.M.; et al. Essential Oils and Their Major Compounds in the Treatment of Chronic Inflammation: A Review of Antioxidant Potential in Preclinical Studies and Molecular Mechanisms. Oxidative Med. Cell. Longev. 2018, 2018, 6468593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.S.; Lee, H.J.; Jeon, Y.D.; Han, Y.H.; Kee, J.Y.; Kim, H.J.; Shin, H.J.; Kang, J.; Lee, B.S.; Kim, S.H.; et al. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am. J. Chin. Med. 2015, 43, 731–742. [Google Scholar] [CrossRef]
- Behar, R.Z.; Luo, W.; Lin, S.C.; Wang, Y.; Valle, J.; Pankow, J.F.; Talbot, P. Distribution, quantification and toxicity of cinnamaldehyde in electronic cigarette refill fluids and aerosols. Tob. Control. 2016, 25, ii94–ii102. [Google Scholar] [CrossRef]
- Clapp, P.W.; Pawlak, E.A.; Lackey, J.T.; Keating, J.E.; Reeber, S.L.; Glish, G.L.; Jaspers, I. Flavored e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function. Am. J. Physiol. Cell. Mol. Physiol. 2017, 313, L278–L292. [Google Scholar] [CrossRef]
- Behar, R.Z.; Luo, W.; McWhirter, K.J.; Pankow, J.F.; Talbot, P. Analytical and toxicological evaluation of flavor chemicals in electronic cigarette refill fluids. Sci. Rep. 2018, 8, 8288. [Google Scholar] [CrossRef] [Green Version]
- Rickard, B.P.; Ho, H.; Tiley, J.B.; Jaspers, I.; Brouwer, K.L.R. E-Cigarette Flavoring Chemicals Induce Cytotoxicity in HepG2 Cells. ACS Omega 2021, 6, 6708–6713. [Google Scholar] [CrossRef]
- Durrani, K.; Alam El Din, S.-M.; Sun, Y.; Rule, A.M.; Bressler, J. Ethyl maltol enhances copper mediated cytotoxicity in lung epithelial cells. Toxicol. Appl. Pharmacol. 2020, 410, 115354. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Jarrell, Z.R.; Orr, M.; Liu, K.H.; Go, Y.-M.; Jones, D.P. Metabolome-wide association study of flavorant vanillin exposure in bronchial epithelial cells reveals disease-related perturbations in metabolism. Environ. Int. 2020, 147, 106323. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, D.; Soares, A.K.N.; de Sousa, D. Overview of the Role of Vanillin on Redox Status and Cancer Development. Oxidative Med. Cell. Longev. 2016, 2016, 9734816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayat, M.; Kalantar, K.; Amirghofran, Z. Inhibition of interferon-γ production and T-bet expression by menthol treatment of human peripheral blood mononuclear cells. Immunopharmacol. Immunotoxicol. 2019, 41, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Thimraj, T.A.; Sompa, S.I.; Ganguly, K.; Ernstagard, L.; Johanson, G.; Palmberg, L.; Upadhyay, S. Evaluation of diacetyl mediated pulmonary effects in physiologically relevant air-liquid interface models of human primary bronchial epithelial cells. Toxicol. Vitr. 2019, 61, 104617. [Google Scholar] [CrossRef] [PubMed]
- Vas, C.A.; Porter, A.; McAdam, K. Acetoin is a precursor to diacetyl in e-cigarette liquids. Food Chem. Toxicol. 2019, 133, 110727. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Jan, Y.-H.; Mishin, V.; Heck, D.E.; Laskin, D.L.; Laskin, J.D. Diacetyl/l-Xylulose Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells. Chem. Res. Toxicol. 2017, 30, 1406–1418. [Google Scholar] [CrossRef] [PubMed]
- American Lung Association (ALA). E-Cigarette or Vaping Use Associated Lung Injury (EVALI). 2020. Available online: https://www.lung.org/lung-health-diseases/lung-disease-lookup/evali (accessed on 11 June 2020).
- Attfield, K.R.; Chen, W.; Cummings, K.J.; Jacob, P., 3rd; O’Shea, D.F.; Wagner, J.; Wang, P.; Fowles, J. Potential of Ethenone (Ketene) to Contribute to Electronic Cigarette, or Vaping, Product Use-associated Lung Injury. Am. J. Respir Crit. Care Med. 2020, 202, 1187–1189. [Google Scholar] [CrossRef]
- Bhatta, D.N.; Glantz, S.A. Association of E-Cigarette Use with Respiratory Disease Among Adults: A Longitudinal Analysis. Am. J. Prev. Med. 2019, 58, 182–190. [Google Scholar] [CrossRef]
- Lee, A.; Chakladar, J.; Li, W.; Chen, C.; Chang, E.; Wang-Rodriguez, J.; Ongkeko, W. Tobacco, but Not Nicotine and Flavor-Less Electronic Cigarettes, Induces ACE2 and Immune Dysregulation. Int. J. Mol. Sci. 2020, 21, 5513. [Google Scholar] [CrossRef]
- On Using Class-Labels in Evaluation of Clusterings. Available online: https://www.researchgate.net/publication/228374158_On_using_class-labels_in_evaluation_of_clusterings (accessed on 21 September 2020).
- Density-Based Clustering. Available online: https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1343 (accessed on 21 September 2020).
E-liquid Flavoring Chemical | Flavor Profile | H2O Solubility (mM) * | Chemical Class | Molecular Structure |
---|---|---|---|---|
2,3,5-Trimethylpyrazine | Cocoa; Nutty | 2.6 × 102 | Methyl, pyrazine | |
2,3-Butanedione | Buttery; Sweet | 4.0 × 103 | acetyl, ketone | |
2,3-Heptanedione | Buttery; Dairy | 2.6 × 102 | acetyl, ketone | |
2,3-Hexanedione | Creamy; Fruity | 8.7 × 102 | acetyl, ketone | |
2,3-Pentanedione | Buttery; Caramel | 2.8 × 103 | acetyl, ketone | |
2-Acetylpyrazine | Bready; Nutty | 8.9 × 103 | acetyl, pyrazine | |
Acetaldehyde | Tart; Green Apple | 2.3 × 104 | acetyl, aldehyde | |
Acetoin | Creamy; Dairy | 1.1 × 104 | acetyl, hydroxyl | |
Alpha-pinene [(−)-α-pinene] | Cedarwood, Pine | 1.8 × 10−4 | isoprene, methyl | |
Benzyl Alcohol | Cherry; Almond | 2.1 × 103 | benzene, hydroxyl | |
Butyraldehyde | Cocoa; Green | 9.8 × 102 | aldehyde | |
Cinnamaldehyde | Cinnamon; Spice | 1.1 × 100 | benzene, aldehyde | |
Decanal | Citrus; Orange peel | 8.7 × 10−2 | aldehyde | |
DL-Menthol | Menthol; Minty | 2.9 × 100 | isoprene, hydroxyl | |
Ethyl Acetate | Fruity; Grape | 9.1 × 102 | ester | |
Ethyl Butyrate | Fruity; Apple | 5.3 × 101 | ester | |
Ethyl Maltol | Sweet; Sugary | 2.1 × 102 | hydroxyl, pyrone | |
Eugenol | Clove; Spice | 2.7 × 101 | hydroxyl, methoxy, benzene | |
Furfural | Bready; Nutty | 8.0 × 102 | aldehyde, furan | |
Hexanal | Fruity; Green | 5.0 × 101 | aldehyde | |
Isoamyl Acetate | Fruity; Banana | 1.4 × 101 | ester | |
Isopropyl Myristate | Cheesy; Dairy | Insoluble (5.1 × 10−5) | ester | |
L-Carvone | Spearmint; Caraway | 8.7 × 100 | isoprene, ketone | |
Limonene [(R)-(+)-Limonene] | Citrus; Orange | 1.0 × 10−1 | isoprene, methyl | |
Linalool | Lemon; Lavender | 1.0 × 101 | isoprene, hydroxyl | |
Methyl Salicylate | Wintergreen; Peppermint | 2.7 × 101 | ester, hydroxyl, benzene | |
Nonanal | Green; Lemon | 6.8 × 10−1 | aldehyde | |
Propionaldehyde | Floral; Grape | 4.5 × 103 | aldehyde | |
Trans-2-Hexen-1-al | Fruity; Green | 7.5 × 101 | aldehyde | |
Vanillin | Sweet; Vanilla | 7.2 × 101 | aldehyde, benzene, hydroxyl, methoxy |
Flavoring | 4 h | 6 h | 24 h | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chemical | Viability | LDH | IL-1β | IL-6 | IL-8 | TNF-α | ROS | Viability | LDH | IL-1β | IL-6 | IL-8 | TNF-α | ||||||||||||||||||||||||||
B | N | A | B | N | A | B | N | A | B | N | A | B | N | A | B | N | A | B | N | A | B | N | A | B | N | A | B | N | A | B | N | A | B | N | A | B | N | A | |
2,3,5-Trimethylpyrazine | |||||||||||||||||||||||||||||||||||||||
2,3-Butanedione | ↓ | 🠓 | 🠓 | ||||||||||||||||||||||||||||||||||||
2,3-Heptanedione | ↓ | ↓ | ↑ | 🠑 | 🠑 | ↓ | ↓ | ||||||||||||||||||||||||||||||||
2,3-Hexanedione | ↓ | ↓ | ↑ | ↑ | ↑ | ↓ | ↓ | ||||||||||||||||||||||||||||||||
2,3-Pentanedione | ↓ | ↓ | ↑ | ↑ | ↑ | ↓ | 🠓 | ||||||||||||||||||||||||||||||||
2-Acetylpyrazine | |||||||||||||||||||||||||||||||||||||||
Acetaldehyde | |||||||||||||||||||||||||||||||||||||||
Acetoin | 🠓 | ||||||||||||||||||||||||||||||||||||||
Alpha-Pinene | 🠓 | 🠓 | 🠓 | ↑ | ↑ | ↑ | 🠑 | ↑ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↑ | ↓ | ↓ | ↓ | ||||||||||||||||||||
Benzyl alcohol | |||||||||||||||||||||||||||||||||||||||
Butyraldehyde | 🠓 | 🠓 | |||||||||||||||||||||||||||||||||||||
Cinnamaldehyde | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ||||||||||||||||||||||||||||
Decanal | ↓ | ↓ | ↑ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↑ | ↓ | ↓ | ↓ | ↓ | |||||||||||||||||||||||
DL-Menthol | |||||||||||||||||||||||||||||||||||||||
Ethyl Acetate | |||||||||||||||||||||||||||||||||||||||
Ethyl Butyrate | 🠓 | ↑ | ↑ | 🠓 | |||||||||||||||||||||||||||||||||||
Ethyl Maltol | 🠑 | ↑ | 🠑 | 🠑 | 🠑 | 🠑 | 🠓 | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | |||||||||||||||||||||||||
Eugenol | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↑ | 🠑 | ↓ | ↓ | ↓ | ↓ | ||||||||||||||||||||||
Furfural | 🠑 | ||||||||||||||||||||||||||||||||||||||
Hexanal | ↑ | ↓ | ↓ | ↓ | 🠓 | ↓ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↓ | ||||||||||||||||||||||||||
Isoamyl Acetate | 🠓 | ||||||||||||||||||||||||||||||||||||||
Isopropyl Myristate | |||||||||||||||||||||||||||||||||||||||
L-Carvone | ↓ | ↓ | ↓ | ↓ | ↓ | ||||||||||||||||||||||||||||||||||
Limonene | 🠓 | ↑ | ↓ | ↓ | ↓ | ↓ | ↑ | ↓ | ↓ | ↓ | |||||||||||||||||||||||||||||
Linalool | ↓ | ↓ | ↓ | 🠓 | |||||||||||||||||||||||||||||||||||
Methyl Salicylate | |||||||||||||||||||||||||||||||||||||||
Nonanal | ↓ | ↓ | ↓ | ↑ | ↑ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↑ | ↑ | ↓ | ↓ | ↓ | ↓ | ||||||||||||||||||||
Propionaldehyde | |||||||||||||||||||||||||||||||||||||||
Trans-2-Hexen-1-al | 🠓 | 🠓 | ↓ | ↓ | ↓ | ↓ | ↓ | 🠓 | ↓ | ↓ | ↓ | ↓ | |||||||||||||||||||||||||||
Vanillin | 🠓 | ↑ | ↑ | ↑ | 🠓 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morris, A.M.; Leonard, S.S.; Fowles, J.R.; Boots, T.E.; Mnatsakanova, A.; Attfield, K.R. Effects of E-Cigarette Flavoring Chemicals on Human Macrophages and Bronchial Epithelial Cells. Int. J. Environ. Res. Public Health 2021, 18, 11107. https://doi.org/10.3390/ijerph182111107
Morris AM, Leonard SS, Fowles JR, Boots TE, Mnatsakanova A, Attfield KR. Effects of E-Cigarette Flavoring Chemicals on Human Macrophages and Bronchial Epithelial Cells. International Journal of Environmental Research and Public Health. 2021; 18(21):11107. https://doi.org/10.3390/ijerph182111107
Chicago/Turabian StyleMorris, Anna M., Stephen S. Leonard, Jefferson R. Fowles, Theresa E. Boots, Anna Mnatsakanova, and Kathleen R. Attfield. 2021. "Effects of E-Cigarette Flavoring Chemicals on Human Macrophages and Bronchial Epithelial Cells" International Journal of Environmental Research and Public Health 18, no. 21: 11107. https://doi.org/10.3390/ijerph182111107