Feasibility of Utilizing Social Media to Promote HPV Self-Collected Sampling among Medically Underserved Women in a Rural Southern City in the United States (U.S.)
Abstract
:1. Introduction
Mobile Technology
2. Materials and Methods
2.1. Study Design and Setting
2.2. Sample Size Determination
2.3. Recruitment Method
2.4. Measures
2.4.1. Dependent Variable
2.4.2. Independent Variables
2.4.3. Covariates
2.5. Statistical Analyses
3. Results
3.1. Demographics
3.2. Subgroup Analysis
3.3. Social Media Facilitators and Barriers
3.4. Predictors of Social Media Participation
3.5. Predictors of HPV Self-Testing
4. Discussion
4.1. Self-Screening
4.2. Social Media Usage
4.3. Barriers and Facilitators
4.4. Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rerucha, C.M.; Caro, R.J.; Wheeler, V. Cervical cancer screening. Am. Fam. Physician 2018, 97, 441–448. [Google Scholar] [PubMed]
- US Preventive Services Task Force. Final Recommendation Statement. Cervical Cancer: Screening. 2018. Available online: https://www.uspreventiveservicestaskforce.org/Page/Document/RecommendationStatementFinal/cervical-cancer-screening2 (accessed on 31 July 2021).
- Marquardt, K.; Büttner, H.H.; Broschewitz, U.; Barten, M.; Schneider, V. Persistent carcinoma in cervical cancer screening: Non-Participation is the most significant cause. Acta Cytol. 2011, 55, 433–437. [Google Scholar] [CrossRef]
- Chao, Y.-S.; Clark, M.; Carson, E.; Weeks, L.; Moulton, K.; Mcfaul, S.; McLauchlin, C.; Tsoi, B.; Majid, U.; Kandasamy, S.; et al. HPV Testing for Primary Cervical Cancer Screening: A Health Technology Assessment; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2019. [Google Scholar]
- Arbyn, M.; Smith, S.B.; Temin, S.; Sultana, F.; Castle, P. Detecting cervical precancer and reaching underscreened women by using HPV testing on self samples: Updated meta-analyses. BMJ 2018, 363, k4823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bos, A.B.; Rebolj, M.; Habbema, J.D.F.; van Ballegooijen, M. Nonattendance is still the main limitation for the effectiveness of screening for cervical cancer in the Netherlands. Int. J. Cancer. 2006, 119, 2372–2375. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.; Benard, V.; King, J.; Crawford, A.; Saraiya, M. National assessment of HPV and Pap tests: Changes in cervical cancer screening, National Health Interview Survey. Prev. Med. 2017, 100, 243–247. [Google Scholar] [CrossRef]
- Sabatino, S.A.; White, M.C.; Thompson, T.D.; Klabunde, C.N. Cancer Screening Test Use—United States, 2015. MMWR. Morb. Mortal. Wkly. Rep. 2015, 64, 464–468. [Google Scholar]
- National Cancer Institute Cancer Trends Progress Report. Online Summary of Trends in US Cancer Control Measure. Cervical Cancer Screening. 2019. Available online: https://progressreport.cancer.gov/detection/cervical_cancer (accessed on 31 July 2021).
- Coronado, G.D.; Thompson, B.; Koepsell, T.D.; Schwartz, S.M.; McLerran, D. Use of Pap test among Hispanics and non-Hispanic whites in a rural setting. Prev. Med. 2004, 38, 713–722. [Google Scholar] [CrossRef]
- Del Carmen, M.G.; Findley, M.; Muzikansky, A.; Roche, M.; Verrill, C.L.; Horowitz, N.; Seiden, M.V. Demographic, risk factor, and knowledge differences between Latinas and non-Latinas referred to colposcopy. Gynecol. Oncol. 2007, 104, 70–76. [Google Scholar] [CrossRef]
- Lindau, S.T.; Tomori, C.; Lyons, T.; Langseth, L.; Bennett, C.L.; Garcia, P. The association of health literacy with cervical cancer prevention knowledge and health behaviors in a multiethnic cohort of women. Am. J. Obstet. Gynecol. 2002, 186, 938–943. [Google Scholar] [CrossRef]
- Stark, A.; Gregoire, L.; Pilarski, R.; Zarbo, A.; Gaba, A.; Lancaster, W.D. Human papillomavirus, cervical cancer and women’s knowledge. Cancer Detect. Prev. 2008, 32, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Watts, L.; Joseph, N.; Velazquez, A.; Gonzalez, M.; Munro, E.; Muzikansky, A.; Rauh-Hain, J.A.; del Carmen, M.G. Understanding barriers to cervical cancer screening among Hispanic women. Am. J. Obstet. Gynecol. 2009, 201, 199.e1–199.e8. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Kessler, C.L.; Mori, N.; Chauhan, S.P. Cervical cancer screening in the United States, 1993–2010: Characteristics of women who are never screened. J. Women’s Health 2012, 21, 1132–1138. [Google Scholar] [CrossRef]
- Akinlotan, M.; Bolin, J.; Helduser, J.; Ojinnaka, C.; Lichorad, A.; McClellan, D. Cervical cancer screening barriers and risk factor knowledge among uninsured women. J. Community Health 2017, 42, 770–778. [Google Scholar] [CrossRef] [Green Version]
- Mangold, B.R. Self-collected samples in cervical cancer screening: Results of HPV and pap self-collected samples compared to physician-obtained specimens. Acta Cytol. 2019, 63, 379–384. [Google Scholar] [CrossRef]
- Zhao, F.-H.; Lewkowitz, A.K.; Chen, F.; Lin, M.J.; Hu, S.-Y.; Zhang, X.; Pan, Q.-J.; Ma, J.-F.; Niyazi, M.; Li, C.-Q.; et al. Pooled Analysis of a Self-Sampling HPV DNA test as a cervical cancer primary screening method. J. Natl. Cancer Inst. 2012, 104, 178–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petignat, P.; Vassilakos, P. Is it time to introduce HPV self-sampling for primary cervical cancer screening? J. Natl. Cancer Inst. 2012, 104, 166–167. [Google Scholar] [CrossRef] [Green Version]
- Lazcano-Ponce, E.; Lorincz, A.T.; Cruz-Valdez, A.; Salmerón, J.; Uribe, P.; Velasco-Mondragón, E.; Nevarez, P.H.; Acosta, R.D.; Hernández-Avila, M. Self-collection of vaginal specimens for human papillomavirus testing in cervical cancer prevention (MARCH): A community-based randomised controlled trial. Lancet 2011, 378, 1868–1873. [Google Scholar] [CrossRef]
- Cardoș, R.A.; Șoflău, R.; Gherman, A.; Sucală, M.; Chiorean, A. A mobile intervention for core needle biopsy related pain and anxiety: A usability study. J. Evid.-Based Psychother. 2017, 17, 21–30. [Google Scholar] [CrossRef]
- Ginsburg, O.M.; Chowdhury, M.; Wu, W.; Chowdhury, T.I.; Pal, B.C.; Hasan, R.; Khan, Z.H.; Dutta, D.; Abu Saeem, A.; Al-Mansur, R.; et al. An mHealth model to increase clinic attendance for breast symptoms in rural Bangladesh: Can bridging the digital divide help close the cancer divide? Oncology 2014, 19, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Ghebre, R.; Le, C.; Jang, Y.J.; Sharratt, M.; Yee, D. Mobile phone multilevel and multimedia messaging intervention for breast cancer screening: Pilot randomized controlled trial. JMIR mHealth uHealth 2017, 5, e154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Academy of Engineering (US); Institute of Medicine (US) Committee on Engineering and the Health Care System. Building a Better Delivery System: A New Engineering/Health Care Partnership; Reid, P.P., Compton, W.D., Grossman, J.H., Eds.; National Academies Press: Washington, DC, USA, 2005; Information and Communications Systems: The Backbone of the Health Care Delivery System. Available online: https://www.ncbi.nlm.nih.gov/books/NBK22862/ (accessed on 11 June 2021).
- Alotaibi, Y.K.; Federico, F. The impact of health information technology on patient safety. Saudi Med. J. 2017, 38, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Pew Research Center Internet and Technology: Mobile Fact Sheet. Available online: https://www.pewresearch.org/internet/fact-sheet/mobile/ (accessed on 30 March 2021).
- Chao, Y.-S.; McCormack, S. HPV Self-Sampling for Primary Cervical Cancer Screening: A Review of Diagnostic Test Accuracy and Clinical Evidence—An Update; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2019. [Google Scholar]
- Gupta, A.D.; Ghosh, S.; Bhardwaj, I. Evaluation of mobile health technology in healthcare sector. Eur. J. Mol. Clin. Med. 2021, 7, 2702–2709. [Google Scholar]
- Kumar, S.; Nilsen, W.J.; Abernethy, A.; Atienza, A.; Patrick, K.; Pavel, M.; Riley, W.T.; Shar, A.; Spring, B.; Spruijt-Metz, D.; et al. Mobile health technology evaluation: The mHealth evidence workshop. Am. J. Prev. Med. 2013, 45, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Chao, C.-M. Factors determining the behavioral intention to use mobile learning: An application and extension of the UTAUT model. Front. Psychol. 2019, 10, 1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fishman, J.; Lushin, V.; Mandell, D.S. Predicting implementation: Comparing validated measures of intention and assessing the role of motivation when designing behavioral interventions. Implement. Sci. Commun. 2020, 1, 81. [Google Scholar] [CrossRef]
- Alhamad, H.; Donyai, P. The validity of the theory of planned behaviour for understanding people’s beliefs and intentions toward reusing medicines. Pharmacy 2021, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- Godin, G.; Kok, G. The theory of planned behavior: A review of its applications to health-related behaviors. Am. J. Health Promot. 1996, 11, 87–98. [Google Scholar] [CrossRef]
- The Shepherd’s Heart. About US. Available online: https://shepherdsheartpantry.org/about/ (accessed on 20 October 2020).
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Rosen, L.; Whaling, K.; Carrier, M.; Cheever, N.; Rokkum, J.; Rosen, L.; Whaling, K.; Carrier, M.; Cheever, N.; Rokkum, J. The media and technology usage and attitudes scale: An empirical investigation. Comput. Hum. Behav. 2013, 29, 2501–2511. [Google Scholar] [CrossRef] [Green Version]
- Borghouts, J.; Eikey, E.; Mark, G.; De Leon, C.; Schueller, S.M.; Schneider, M.; Stadnick, N.; Zheng, K.; Mukamel, D.; Sorkin, D.H. Barriers to and facilitators of user engagement with digital mental health interventions: Systematic review. J. Med. Internet Res. 2021, 23, e24387. [Google Scholar] [CrossRef]
- Byambasuren, O.; Beller, E.; Hoffmann, T.; Glasziou, P. Barriers to and facilitators of the prescription of mHealth Apps in australian general practice: Qualitative study. JMIR mHealth uHealth 2020, 8, e17447. [Google Scholar] [CrossRef] [PubMed]
- Texas Cancer Registry Texas Department of State Health Services (2019). Cervical Cancer in Texas. Available online: https://www.dshs.texas.gov/tcr/data/cervical-cancer.aspx?terms=Cervical%20Cancer%20in%20Texas (accessed on 11 June 2021).
- National Cancer Institute (n.d). State Cancer Profiles. Screening and Risk Factors Table. Available online: https://statecancerprofiles.cancer.gov/risk/index.php?topic=women&risk=v17&race=00&type=risk&sortVariableName=default&sortOrder=default#results (accessed on 11 June 2021).
- Zehbe, I.; Wakewich, P.; King, A.-D.; Morrisseau, K.; Tuck, C. Self-administered versus provider-directed sampling in the Anishinaabek Cervical Cancer Screening Study (ACCSS): A qualitative investigation with Canadian First Nations women. BMJ Open 2017, 7, e017384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sultana, F.; Mullins, R.; English, D.R.; Simpson, J.A.; Drennan, K.T.; Heley, S.; Wrede, C.D.; Brotherton, J.M.L.; Saville, M.; Gertig, D.M. Women’s experience with home-based self-sampling for human papillomavirus testing. BMC Cancer 2015, 15, 849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, E.J.; Maynard, B.; Loux, T.; Fatla, J.; Gordon, R.; Arnold, L.D. The acceptability of self-sampled screening for HPV DNA: A systematic review and meta-analysis. Sex. Transm. Infect. 2016, 93, 56–61. [Google Scholar] [CrossRef]
- American Cancer Society. Cervical Cancer Prevention and Screening: Financial Issues. Available online: https://www.cancer.org/cancer/cervical-cancer/detection-diagnosis-staging/prevention-screening-financial-issues.html (accessed on 10 July 2021).
- Katz, V.; Gonzalez, C. Community variations in low-income latino families’ technology adoption and integration. Am. Behav. Sci. 2015, 60, 59–80. [Google Scholar] [CrossRef]
- Katz, V.S.; Gonzalez, C. Toward meaningful connectivity: Using multilevel communication research to reframe digital inequality. J. Commun. 2016, 66, 236–249. [Google Scholar] [CrossRef]
- Hruska, J.; Maresova, P. Use of social media platforms among adults in the United States—Behavior on social media. Societies 2020, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M. Racial and ethnic differences in how people use mobile technology. Pew Res. Cent. 2015, 30. [Google Scholar]
- Quintiliani, L.M.; Reddy, S.; Goodman, R.; Bowen, D.J. Information and communication technology use by female residents of public housing. mHealth 2016, 2, 39. [Google Scholar] [CrossRef]
- Bally, E.L.S.; Cesuroglu, T. Toward integration of mHealth in primary care in The Netherlands: A qualitative analysis of stakeholder perspectives. Front. Public Health 2020, 7, 407. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.; Kanthawala, S.; Yuan, S.; Hussain, S.A. A qualitative study of user perceptions of mobile health apps. BMC Public Health 2016, 16, 1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennison, L.; Morrison, L.; Conway, G.; Yardley, L. Opportunities and challenges for smartphone applications in supporting health behavior change: Qualitative study. J. Med Internet Res. 2013, 15, e86. [Google Scholar] [CrossRef]
- Lup, K.; Trub, L.; Rosenthal, L. Instagram #Instasad? Exploring associations among Instagram use, depressive symptoms, negative social comparison, and strangers followed. Cyberpsychol. Behav. Soc. Netw. 2015, 18, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Reber, B.H.; Chon, M.-G. Tweeting as health communication: Health organizations’ use of twitter for health promotion and public engagement. J. Health Commun. 2016, 21, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Borgmann, H.; Loeb, S.; Salem, J.; Thomas, C.; Haferkamp, A.; Murphy, D.G.; Tsaur, I. Activity, content, contributors, and influencers of the twitter discussion on urologic oncology. Urol. Oncol. Semin. Orig. Investig. 2016, 34, 377–383. [Google Scholar] [CrossRef]
- Hayes, R.A.; Carr, C.; Wohn, D.Y. It’s the audience: Differences in social support across social media. Soc. Media Soc. 2016, 2, 2056305116678894. [Google Scholar] [CrossRef] [Green Version]
- Swire-Thompson, B.; Lazer, D. Public health and online misinformation: Challenges and recommendations. Annu. Rev. Public Health 2020, 41, 433–451. [Google Scholar] [CrossRef] [Green Version]
- The United States Census Bureau. Quick Facts. McLennan County, Texas. Available online: https://www.census.gov/quickfacts/mclennancountytexas (accessed on 31 July 2021).
Frequency | Percent | |
---|---|---|
Age | ||
30–49 | 123 | 48.43 |
50–65 | 131 | 51.57 |
Marital Status | ||
Married | 99 | 38.98 |
Living as married | 14 | 5.51 |
Divorced | 48 | 18.90 |
Widowed | 34 | 13.39 |
Separated | 24 | 9.45 |
Single, never been married | 35 | 13.78 |
Race/Ethnicity | ||
White | 102 | 40.16 |
Black | 69 | 27.17 |
Hispanic | 73 | 28.74 |
Other (Native American, Asian) | 10 | 3.94 |
Income Level | ||
$0–$9999 | 140 | 55.12 |
$10,000–$19,999 | 72 | 28.35 |
$20,000 and above | 42 | 16.54 |
Employment | ||
No | 204 | 80.31 |
Yes | 50 | 19.69 |
Pap-test/HPV Test | ||
Yes | 172 | 67.72 |
No | 31 | 12.20 |
Not sure | 51 | 20.08 |
Status of Pap Test | ||
Current | 141 | 55.51 |
Overdue | 113 | 44.49 |
Intention for HPV Test | ||
Yes | 146 | 57.48 |
No | 108 | 42.52 |
Knowledge about HPV Self-Testing | ||
Yes | 77 | 30.31 |
No | 117 | 69.69 |
HPV Test Preference | ||
No preference | 25 | 9.84 |
Self-Testing | 109 | 42.91 |
Physician-performed Test | 120 | 47.24 |
SMU OR (95% CI) | Intention to Participate in SM Study OR (95% CI) | Intention to Participate in HPVST OR (95% CI) | |
---|---|---|---|
Age | |||
30–49 | 1.89 (0.97–3.69) | 1.81 (1.09–3.01) * | 1.02 (0.61–1.70) |
50–65 | Ref (--) | Ref (--) | Ref (--) |
Marital Status | |||
Single/Never married | 1.63 (0.56–4.73) | 0.46 (0.20–1.06) | 0.92 (0.41–2.09) |
Living as married | 2.11 (0.49–9.10) | 1.28 (0.39–4.25) | 2.22 (0.63–7.81) |
Divorced | 2.53 (0.97–6.58) | 1.09 (0.52–2.30) | 2.39 (1.08–5.31) * |
Widowed | 2.96 (1.11–7.78) * | 0.60 (0.27–1.33) | 0.44 (0.19–1.01) |
Separated | 1.63 (0.49–5.43) | 1.26 (0.49–3.28) | 1.95 (0.72–5.30) |
Married | Ref (--) | Ref (--) | Ref (--) |
Race/Ethnicity | |||
Other (Native American, Asian) | 0.48 (0.06–4.22) | 0.93 (0.24–3.58) | 2.48 (0.55–11.09) |
Black | 1.62 (0.72–3.64) | 1.10 (0.58–2.10) | 1.34 (0.69–2.62) |
Hispanic | 1.53 (0.66–3.57) | 0.77 (0.40–1.48) | 1.13 (0.58–2.20) |
White | Ref (--) | Ref (--) | Ref (--) |
Income Level | |||
$0–$9999 | 0.51 (0.16–1.62) | 1.59 (0.76–3.33) | 1.15 (0.54–2.42) |
$10,000–$19,999 | 1.09 (0.52–2.25) | 0.97 (0.44–2.15) | 1.00 (0.44–2.24) |
$20,000 and above | Ref (--) | Ref (--) | Ref (--) |
Employment | |||
No | 4.51 (1.33–5.23) | 0.86 (0.46–1.62) | 1.26 (0.67–2.38) |
Yes | Ref (--) | Ref (--) | Ref (--) |
Insurance | |||
No | 0.75 (0.38–1.49) | 1.05 (0.62 –1.76) | 1.05 (0.62–1.76) |
Yes | Ref (--) | Ref (--) | Ref (--) |
Frequency (%) | ||
---|---|---|
Past Social Media Usage | ||
None | 46 (18.11) | |
Facebook only | 141 (55.51) | |
Two Social Media * | 38 (14.96) | |
Three Social Media ** | 17 (6.69) | |
WhatsApp (text messaging) | 10 (3.94) | |
Other (Twitter, Instagram) | 2 (0.78) | |
Social Media most likely to be used | ||
None | 55 (21.65) | |
Facebook only | 157 (61.81) | |
Two or more social media | 42 (16.14) | |
Likelihood of participating in social media study | ||
Yes | 133 (52.36) | |
No | 71 (27.95). | |
Not sure | 50 (19.69) | |
Comfortable participating in social media study | ||
Yes | 140 (55.12) | |
No | 114 (44.88) | |
Participate in Social Media | ||
Yes | 123 (48.43) | |
No | 131 (51.57) | |
Yes n (%) | No n (%) | |
Facilitators of Social Media Usage | ||
social media provides privacy | 129 (50.79) | 125 (49.21) |
social media provides social support | 139 (54.72) | 115 (45.28) |
social media is less costly | 143 (56.30) | 111 (43.70) |
social media is convenient | 148 (58.27) | 106 (41.73) |
Barriers to Social Media Usage | ||
misinformation on social media | 84 (33.07) | 170 (66.93) |
social media is time consuming or distracting | 79 (31.10) | 175 (68.90) |
social media provides insufficient information | 89 (35.04) | 165 (64.96) |
confidentiality concerns about social media | 135 (53.15) | 119 (46.85) |
B | Std. Error | Wald | AdjOR (95% CI) | p-Value | |
Predictors of social media study participation | |||||
Age | 0.30 | 0.25 | 1.44 | 1.34 (0.83–2.17) | 0.23 |
Race | 0.14 | 0.16 | 0.85 | 1.16 (0.85–1.57) | 0.36 |
Employment | 0.06 | 0.36 | 0.02 | 1.06 (0.52–2.57) | 0.88 |
Insurance | 0.03 | 0.30 | 0.01 | 1.03 (0.57–1.87) | 0.92 |
Income | 0.44 | 0.21 | 4.39 | 1.55 (1.03–2.33) | 0.04 |
Marital Status | 0.13 | 0.08 | 2.56 | 1.14 (0.97–1.33) | 0.11 |
Confidentiality (vs no confidentiality) | 1.83 | 0.29 | 40.91 | 6.23(3.56–10.92) | 0.00 |
Social support (vs. no social support) | 1.97 | 0.30 | 44.61 | 7.18(4.03–12.80) | 0.00 |
Less costly (vs costly) | 1.90 | 0.29 | 42.99 | 6.71(3.80–11.85) | 0.00 |
Convenience (vs. less convenience) | 1.82 | 0.29 | 39.12 | 6.17(3.49–10.92) | 0.00 |
Misinformation (vs. less misinformation) | 0.53 | 0.27 | 3.70 | 1.70 (0.99–2.91) | 0.05 |
Time-consuming (vs. less time consuming) | 0.13 | 0.28 | 0.23 | 1.14 (0.66–0.63) | 0.63 |
Inefficient (vs. efficient) | 0.20 | 0.27 | 0.54 | 1.22 (0.72–2.07) | 0.46 |
Privacy concerns (vs no priv. concerns) | −0.15 | 0.29 | 0.29 | 0.86 (0.49–1.50) | 0.59 |
Predictors for Intention to conduct HPV self-screening | |||||
Age | −0.16 | 0.24 | 0.44 | 085 (0.54–1.36) | 0.85 |
Race | 0.03 | 0.15 | 0.03 | 1.03 (0.76–1.38) | 1.03 |
Employment | −0.34 | 0.36 | 0.91 | 0.71 (0.35–1.43) | 0.71 |
Insurance | −0.17 | 0.29 | 0.34 | 0.84 (0.47–1.50) | 0.84 |
Income | 0.34 | 0.20 | 2.91 | 1.40 (0.95–2.07) | 1.40 |
Marital Status | 0.01 | 0.08 | 0.01 | 1.01 (0.87–1.17) | 1.01 |
Privacy (vs no privacy) | 0.98 | 0.26 | 13.76 | 2.67 (1.59–4.48) | 0.00 |
Social support (vs. no social support) | 0.95 | 0.27 | 12.80 | 2.58 (1.53–4.33) | 0.00 |
Less costly (vs costly) | 1.30 | 0.27 | 22.82 | 3.67 (2.15–6.26) | 0.00 |
Convenience (vs. less convenience) | 1.43 | 0.28 | 26.48 | 4.17 (2.42–7.17) | 0.00 |
Misinformation (vs. less misinformation) | −0.31 | 0.27 | 1.33 | 0.73 (0.43–1.24) | 0.25 |
Time consuming (less time consuming | −0.33 | 0.28 | 1.42 | 0.72 (0.42–4.24) | 0.23 |
Inefficient (vs. efficient) | −0.43 | 0.27 | 2.53 | 0.65 (0.39–1.10) | 0.11 |
Confidentiality (vs no Confidentiality) | 0.45 | 0.26 | 3.07 | 1.58 (0.95–2.62) | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asare, M.; Lanning, B.A.; Isada, S.; Rose, T.; Mamudu, H.M. Feasibility of Utilizing Social Media to Promote HPV Self-Collected Sampling among Medically Underserved Women in a Rural Southern City in the United States (U.S.). Int. J. Environ. Res. Public Health 2021, 18, 10820. https://doi.org/10.3390/ijerph182010820
Asare M, Lanning BA, Isada S, Rose T, Mamudu HM. Feasibility of Utilizing Social Media to Promote HPV Self-Collected Sampling among Medically Underserved Women in a Rural Southern City in the United States (U.S.). International Journal of Environmental Research and Public Health. 2021; 18(20):10820. https://doi.org/10.3390/ijerph182010820
Chicago/Turabian StyleAsare, Matthew, Beth A. Lanning, Sher Isada, Tiffany Rose, and Hadii M. Mamudu. 2021. "Feasibility of Utilizing Social Media to Promote HPV Self-Collected Sampling among Medically Underserved Women in a Rural Southern City in the United States (U.S.)" International Journal of Environmental Research and Public Health 18, no. 20: 10820. https://doi.org/10.3390/ijerph182010820
APA StyleAsare, M., Lanning, B. A., Isada, S., Rose, T., & Mamudu, H. M. (2021). Feasibility of Utilizing Social Media to Promote HPV Self-Collected Sampling among Medically Underserved Women in a Rural Southern City in the United States (U.S.). International Journal of Environmental Research and Public Health, 18(20), 10820. https://doi.org/10.3390/ijerph182010820