Effect of Treating Acid Sulfate Soils with Phosphate Solubilizing Bacteria on Germination and Growth of Tomato (Lycopersicon esculentum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Characterization of PSBs
2.2. Soil and Organic Materials Properties
2.3. Plant Growth Experiments
2.4. Analytical Methods
3. Results and Discussion
3.1. Characterization of Isolated PSB Strains
3.2. Physicochemical Changes of Soils during the Plant Growth Experiments
3.3. ATP-Based Assay of Total Bacterial Activity
3.4. Germination and Leaf Growth
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bush, R.T.; Fyfe, D.; Sullivan, L.A. Occurrence and abundance of monosulfidic black ooze in coastal acid sulfate soil landscapes. Aus. J. Soil Res. 2004, 42, 609–616. [Google Scholar] [CrossRef]
- Karimian, N.; Johnston, S.G.; Burton, E.D. Iron and sulfur cycling in acid sulfate soil wetlands under dynamic redox conditions: A review. Chemosphere 2020, 197, 803–816. [Google Scholar] [CrossRef] [PubMed]
- Ljung, K.; Maley, F.; Cook, A.; Weinstein, P. Acid sulfate soils and human health-A millennium ecosystem assessment. Environ. Int. 2009, 35, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Dent, D.L.; Pons, L.J. A world perspective on acid sulphate soils. Geoderma 1995, 67, 263–276. [Google Scholar] [CrossRef]
- Fanning, D.S.; Rabenhorst, M.C.; Burch, S.N.; Islam, K.R.; Tangren, S.A. Sulfides and sulfates. In Soil Mineralogy with Environmental Applications; Soil Science Society of America, Inc.: Madison, WI, USA, 2002; pp. 229–260. [Google Scholar]
- Marschner, H. Mechanisms of adaptation of plants to acid soils. Plant. Soil 1991, 134, 1–20. [Google Scholar] [CrossRef]
- Shamshuddin, J.; Elisa, A.A.; Shazana, M.A.R.S.; Che Fauziah, I. Rice defense mechanisms against the presence of excess amount of Al3+ and Fe2+ in the water. Aust. J. Crop. Sci. 2013, 7, 314–320. [Google Scholar]
- Shamshuddin, J.; Che Fauziah, I. Alleviating acid soil infertility constraints using basalt, ground magnesium limestone and gypsum in a tropical environment. Malaysian J. Soil Sci. 2010, 14, 1–13. [Google Scholar]
- Sammut, J.; White, I.; Melville, M.D. Acidification of an estuarine tributary in eastern Australia due to drainage of acid sulfate soils. Mar. Freshw. Res. 1996, 47, 669–684. [Google Scholar] [CrossRef]
- Panhwar, Q.A.; Radziah, O.; Zaharah, A.R.; Sariah, M.; Mohd Razi, I. Isolation and characterization of phosphorus solubilizing bacteria from aerobic rice. Afr. J. Biotech. 2012, 11, 2711–2719. [Google Scholar]
- Shazana, M.A.R.S.; Shamshuddin, J.; Fauziah, C.I.; Syed Omar, S.R. Alleviating the infertility of an acid sulphate soil by using ground basalt with or without lime and organic fertilizer under submerged conditions. Land Degrad. Dev. 2013, 24, 129–140. [Google Scholar] [CrossRef]
- Matlock, M.M.; Howerton, B.S.; Atwood, D.A. Covalent coating of coal refuse to inhibit leaching. Adv. Environ. Res. 2003, 7, 495–501. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, S. Identification and characterization of the phosphate-solubilizing bacterium Pantoea sp. S32 in reclamation soil in Shanxi, China. Front. Microbiol. 2019, 10, 2171. [Google Scholar] [CrossRef] [Green Version]
- Khiangte, L.; Lalfakzuala, R. Effects of heavy metals on phosphatase enzyme activity and Indole-3-Acetic Acid (IAA) production of phosphate solubilizing bacteria. Geomicrobiol J. 2021, 38, 494–503. [Google Scholar]
- Wu, S.C.; Cao, Z.H.; Li, Z.G.; Cheung, K.C.; Wong, M.H. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 2005, 125, 155–166. [Google Scholar] [CrossRef]
- Vassilev, N.; Vassilev, M. Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Appl. Microbiol. Biotechnol. 2003, 61, 435–440. [Google Scholar] [CrossRef]
- Paul, E.A.; Clark, F.E. Soil Microbiology and Biochemistry; Academic Press: New York, NY, USA, 1989. [Google Scholar]
- Narsian, V.; Patel, H.H. Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biol. Biochem. 2000, 32, 559–565. [Google Scholar] [CrossRef]
- Rodrıguez, H.; Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999, 17, 319–339. [Google Scholar] [CrossRef]
- Soumare, A.; Boubekri, K.; Lyamlouli, K.; Hafidi, M.; Ouhdouch, Y.; Kouisni, L. From isolation of phosphate solubilizing microbes to their formulation and use as biofertilizers: Status and needs. Front. Bioeng. Biotechnol. 2020, 7, 425. [Google Scholar] [CrossRef]
- Lane, D. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Wiley: Hoboken, NJ, USA, 1991; pp. 115–175. [Google Scholar]
- Kim, J.H.; Kang, B.Y.; Ryu, J.; Nam, I.H. Effects on Pinus densiflora seedlings as affected by different container growth conditions. Int. J. Environ. Res. Public Health 2020, 17, 3565. [Google Scholar] [CrossRef] [PubMed]
- Sederholm, M.R.; Schmitz, B.W.; Barberán, A.; Pepper, I.L. Effects of metam sodium fumigation on the abundance, activity, and diversity of soil bacterial communities. Appl. Soil Ecol. 2018, 124, 27–33. [Google Scholar] [CrossRef]
- Cottin, N.; Merlin, G. Fate of chlorinated benzenes in laboratory peat and pozzolana filters. Water Air Soil Pollut. 2010, 213, 425–435. [Google Scholar] [CrossRef]
- Ryu, J.H.; Madhaiyan, M.; Poonguzhali, S.; Yim, W.J.; Indiragandhi, P.; Kim, K.A.; Anandham, R.; Yun, J.C.; Kim, K.H.; Sa, T. Plant growth substances produced by Methylobacterium spp. and their effect on tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.) growth. J. Microbiol. Biotechnol. 2006, 16, 1622–1628. [Google Scholar]
- Dobritsa, A.P.; Samadpour, M. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int. J. Syst. Evol. Microbiol. 2016, 66, 2836–2846. [Google Scholar] [CrossRef]
- Caron, M.; Patten, C.L.; Ghosh, S. Effects of plant growth promoting rhizobacteria Pseudomonas putida GR-122 on the physiology of canolla roots. In Proceedings of the Plant Growth Regulation Society of America 22nd Proceeding, Minneapolis, MN, USA, 18–20 July 1995. [Google Scholar]
- Santoyo, G.; Moreno-Hagelsieb, G.; del Carmen Orozco-Mosqueda, M.; Glick, B.R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 2016, 183, 92–99. [Google Scholar] [CrossRef]
- Dodd, I.C.; Zinovkina, N.Y.; Safronova, V.I.; Belimov, A.A. Rhizobacteria mediation of plant hormone status. Ann. Appl. Biol. 2010, 157, 361–379. [Google Scholar] [CrossRef]
- Li, D.; Oku, N.; Hasada, A.; Shimizu, M.; Igarashi, Y. Two new 2-alkylquinolones, inhibitory to the fish skin ulcer pathogen Tenacibaculum maritimum, produced by a rhizobacterium of the genus Burkholderia sp. Beilstein J. Org. Chem. 2018, 14, 1446–1451. [Google Scholar] [CrossRef]
- Estrada-de Los Santos, P.; Palmer, M.; Chávez-Ramírez, B.; Beukes, C.; Steenkamp, E.T.; Briscoe, L.; Khan, N.; Maluk, M.; Lafos, M.; Humm, E.; et al. Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae. Genes 2018, 9, 389. [Google Scholar] [CrossRef] [Green Version]
Sand | Silt | Clay | pH | EC (ds/m) | CEC (cmolc/kg) | OM | C | N | Avail. P | Exchangeable Cations (cmolc/kg) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | % | mg/kg | Ca | Mg | K | Na | Al | |||||||
52 | 18 | 30 | 3.4 | 8.97 | 7.03 | 2.68 | 4.29 | 0.39 | 38.96 | 1.63 | 0.49 | 1.37 | 0.15 | 4.25 |
Chemical Property | Value |
---|---|
Moisture content (%) | 45.93 |
pH | 7.2 |
EC (ds/m) | 0.84 |
Cation exchange capacity (cmol/kg) | 35.98 |
Nitrogen (%) | 0.68 |
OM (%) | 26.83 |
Physiological Property | Caballeronia sp. EK | Methylobacterium sp. PS |
---|---|---|
NO3 | + | + |
Tryptophane | - | - |
Glucose fermentation | - | - |
L-argnine (ADH) | - | - |
Urea (URE) | - | - |
Esculine | + | + |
Gelatine | + | + |
4-nitrophenyl-D-galatctopyranoside | - | - |
D-glucose (GLU) | + | + |
L-arabinose | + | + |
D-mannose | + | + |
D-mannitol | + | + |
N-acetyl-glucosamine | + | + |
D-maltose | - | + |
Potassium gluconate | + | + |
Capric acid | + | - |
Adipic acid | + | - |
Malic acid | + | + |
Trisodium citrate | + | - |
Phenylacetic acid | + | - |
Alkaline phosphatase | + | - |
Esterase (C4) | + | + |
Esterase Lipase (C8) | + | - |
Lipase (C14) | - | - |
Leucine arylamidase | + | - |
Valine arylamidase | + | + |
Crystine arylamidase | - | - |
Trypsin | - | - |
α-Chymotypsin | - | - |
Acid phospatase | + | + |
Naphtol-AS-Bi-phosphohydrolase | + | + |
α-galatosidase | - | - |
β-glucuronidase | - | - |
α-glucosidase | - | - |
β-glucosidase | - | - |
N-acetyl-β-glucosaminidase | - | - |
α-mannosidase | - | - |
α-fucosidase | - | - |
Treatment | tATP, Mean ± SD (MEs/g Soil) a | |
---|---|---|
Day-1 | Day-50 | |
No bacteria #1 | 399,335 ± 656 | 466,026 ± 702 |
No bacteria #2 | 447,866 ± 702 | 498,520 ± 691 |
Methylobacterium sp. PS #1 | 675,566 ± 713 | 704,328 ± 684 |
Methylobacterium sp. PS #2 | 708,801 ± 756 | 722,502 ± 711 |
Caballeronia sp. EK #1 | 732,855 ± 639 | 883,542 ± 706 |
Caballeronia sp. EK #2 | 747,481 ± 725 | 875,652 ± 723 |
Treatment | Germinated Seeds (n/N) a | Percent Germination |
---|---|---|
No bacteria—1 | 6/40 | 15% |
No bacteria—2 | 10/40 | 25% |
Methylobacterium sp. PS—1 | 22/40 | 55% |
Methylobacterium sp. PS—2 | 24/40 | 60% |
Caballeronia sp. EK—1 | 34/40 | 85% |
Caballeronia sp. EK—2 | 30/40 | 75% |
Mean Number of Leaves on the Indicated Day * | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | Day 25 | Day 27 | Day 31 | Day 33 | Day 35 | Day 38 | Day 40 | Day 42 | Day 45 | Day 47 | Day 49 | Day 52 |
No bacteria | 8.7c | 8.7c | 8.7c | 7.7c | 7.7b | 7.7b | 5.7c | 5.7c | 5.7c | 4.7c | 4.7c | 4.7c |
Methylobacterium sp. PS | 18.3a | 17.3a | 17.3a | 17.3a | 17.3a | 17.3a | 11.3b | 11.3b | 11.3b | 11.3b | 10.0b | 10.0b |
Caballeronia sp. EK | 10.3b | 15.3b | 15.3b | 15.3b | 16.3a | 16.3a | 17.3a | 17.3a | 17.3a | 17.3a | 17.3a | 17.3a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.H.; Kim, S.-J.; Nam, I.-H. Effect of Treating Acid Sulfate Soils with Phosphate Solubilizing Bacteria on Germination and Growth of Tomato (Lycopersicon esculentum L.). Int. J. Environ. Res. Public Health 2021, 18, 8919. https://doi.org/10.3390/ijerph18178919
Kim JH, Kim S-J, Nam I-H. Effect of Treating Acid Sulfate Soils with Phosphate Solubilizing Bacteria on Germination and Growth of Tomato (Lycopersicon esculentum L.). International Journal of Environmental Research and Public Health. 2021; 18(17):8919. https://doi.org/10.3390/ijerph18178919
Chicago/Turabian StyleKim, Jae Hwan, So-Jeong Kim, and In-Hyun Nam. 2021. "Effect of Treating Acid Sulfate Soils with Phosphate Solubilizing Bacteria on Germination and Growth of Tomato (Lycopersicon esculentum L.)" International Journal of Environmental Research and Public Health 18, no. 17: 8919. https://doi.org/10.3390/ijerph18178919
APA StyleKim, J. H., Kim, S.-J., & Nam, I.-H. (2021). Effect of Treating Acid Sulfate Soils with Phosphate Solubilizing Bacteria on Germination and Growth of Tomato (Lycopersicon esculentum L.). International Journal of Environmental Research and Public Health, 18(17), 8919. https://doi.org/10.3390/ijerph18178919