Can Resistance Exercise Be a Tool for Healthy Aging in Post-Menopausal Women with Type 1 Diabetes?
Abstract
:1. Introduction
2. Menopause and its Impact on Women’s Physical Well-Being
3. Role of Exercise in the Management of Menopausal Symptoms
3.1. Musculoskeletal Effects of Exercise
3.2. Metabolic and Cardiovascular Effects of Exercise
3.3. Effects of Exercise on the Quality of Life
4. Type 1 Diabetes
4.1. Menopause in Women with T1D
4.2. Exercise and T1D
4.2.1. Sex-Related Differences in Response to Exercise
4.2.2. Age-Related Differences in Response to Exercise
5. Exercise in Post-Menopausal Women with T1D
Can Resistance Exercise Be the Answer to Healthy Aging in Post-Menopausal Women with T1D?
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sternfeld, B.; Dugan, S. Physical activity and health during the menopausal transition. Obstet. Gynecol. Clin. N. Am. 2011, 38, 537–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettee Gabriel, K.; Mason, J.M.; Sternfeld, B. Recent evidence exploring the associations between physical activity and menopausal symptoms in midlife women: Perceived risks and possible health benefits. Womens Midlife Health 2015, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Asikainen, T.M.; Kukkonen-Harjula, K.; Miilunpalo, S. Exercise for health for early postmenopausal women: A systematic review of randomised controlled trials. Sport. Med. 2004, 34, 753–778. [Google Scholar] [CrossRef]
- Furtado, H.L.; Sousa, N.; Simão, R.; Pereira, F.D.; Vilaça-Alves, J. Physical exercise and functional fitness in independently living vs. institutionalized elderly women: A comparison of 60- to 79-year-old city dwellers. Clin. Interv. Aging 2015, 10, 795–801. [Google Scholar]
- Mansikkamäki, K.; Raitanen, J.; Nygård, C.H.; Tomás, E.; Rutanen, R.; Luoto, R. Long-term effect of physical activity on health-related quality of life among menopausal women: A 4-year follow-up study to a randomised controlled trial. BMJ Open 2015, 5, e008232. [Google Scholar] [CrossRef]
- Keshawarz, A.; Pyle, L.; Alman, A.; Sassano, C.; Westfeldt, E.; Sippl, R.; Snell-Bergeon, J. Type 1 diabetes accelerates progression of coronary artery calcium over the menopausal transition: The cacti study. Diabetes Care 2019, 42, 2315–2321. [Google Scholar] [CrossRef] [Green Version]
- Larkin, M.E.; Barnie, A.; Braffett, B.H.; Cleary, P.A.; Diminick, L.; Harth, J.; Gatcomb, P.; Golden, E.; Lipps, J.; Lorenzi, G.; et al. Musculoskeletal complications in type 1 diabetes. Diabetes Care 2014, 37, 1863–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khadilkar, S.S. Musculoskeletal disorders and menopause. J. Obstet. Gynaecol. India 2019, 69, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Brazeau, A.S.; Rabasa-Lhoret, R.; Strychar, I.; Mircescu, H. Barriers to physical activity among patients with type 1 diabetes. Diabetes Care 2008, 31, 2108–2109. [Google Scholar] [CrossRef] [Green Version]
- Hong, A.R.; Kim, S.W. Effects of Resistance Exercise on Bone Health. Endocrinol. Metab. 2018, 33, 435–444. [Google Scholar] [CrossRef]
- de Mello, R.G.B.; Dalla Corte, R.R.; Gioscia, J.; Moriguchi, E.H. Effects of physical exercise programs on sarcopenia management, dynapenia, and physical performance in the elderly: A systematic review of randomized clinical trials. J. Aging Res. 2019, 2019, 1959486. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, Y.; Kuk, J.L. What Is the Role of Resistance Exercise in Improving the Cardiometabolic Health of Adolescents with Obesity? J. Obes. Metab. Syndr. 2019, 28, 76–91. [Google Scholar] [CrossRef]
- Drenowatz, C.; Sui, X.; Fritz, S.; Lavie, C.J.; Beattie, P.F.; Church, T.S.; Blair, S.N. The association between resistance exercise and cardiovascular disease risk in women. J. Sci. Med. Sport 2015, 18, 632–636. [Google Scholar] [CrossRef] [Green Version]
- Lopez, P.; Pinto, R.S.; Radaelli, R.; Rech, A.; Grazioli, R.; Izquierdo, M.; Cadore, E.L. Benefits of resistance training in physically frail elderly: A systematic review. Aging Clin. Exp. Res. 2018, 30, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Yardley, J.E.; Kenny, G.P.; Perkins, B.A.; Riddell, M.C.; Balaa, N.; Malcolm, J.; Boulay, P.; Khandwala, F.; Sigal, R.J. Resistance versus aerobic exercise: Acute effects on glycemia in type 1 diabetes. Diabetes Care 2013, 36, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Neal-Perry, G.; Nejat, E.; Dicken, C. The neuroendocrine physiology of female reproductive aging: An update. Maturitas 2010, 67, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Monteleone, P.; Mascagni, G.; Giannini, A.; Genazzani, A.R.; Simoncini, T. Symptoms of menopause-global prevalence, physiology and implications. Nat. Rev. Endocrinol. 2018, 14, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Santoro, N.; Epperson, C.N.; Mathews, S.B. Menopausal symptoms and their management. Endocrinol. Metab. Clin. N. Am. 2015, 44, 497–515. [Google Scholar] [CrossRef] [Green Version]
- Maltais, M.L.; Desroches, J.; Dionne, I.J. Changes in muscle mass and strength after menopause. J. Musculoskelet Neuronal Interact 2009, 9, 186–197. [Google Scholar]
- Karlamangla, A.S.; Burnett-Bowie, S.M.; Crandall, C.J. Bone health during the menopause transition and beyond. Obstet. Gynecol. Clin. N. Am. 2018, 45, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, J.S.; Brockwell, S.E.; Mehta, V.; Greendale, G.A.; Sowers, M.R.; Ettinger, B.; Lo, J.C.; Johnston, J.M.; Cauley, J.A.; Danielson, M.E.; et al. Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J. Clin. Endocrinol. Metab. 2008, 93, 861–868. [Google Scholar] [CrossRef]
- Napoli, N.; Chandran, M.; Pierroz, D.D.; Abrahamsen, B.; Schwartz, A.V.; Ferrari, S.L. Mechanisms of diabetes mellitus-induced bone fragility. Nat. Rev. Endocrinol. 2017, 13, 208–219. [Google Scholar] [CrossRef]
- Carr, M.C. The emergence of the metabolic syndrome with menopause. J. Clin. Endocrinol. Metab. 2003, 88, 2404–2411. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, A.M. Metabolic syndrome and cardiovascular risk. J. Fam. Community Med. 2010, 17, 73–78. [Google Scholar] [CrossRef]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Model. Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Karvonen-Gutierrez, C.; Kim, C. Association of mid-life changes in body size, body composition and obesity status with the menopausal transition. Healthcare 2016, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Ko, S.H.; Kim, H.S. Menopause-associated lipid metabolic disorders and foods beneficial for postmenopausal women. Nutrients 2020, 12, 202. [Google Scholar] [CrossRef] [Green Version]
- Paschou, S.A.; Papanas, N. Type 2 diabetes mellitus and menopausal hormone therapy: An update. Diabetes Ther. 2019, 10, 2313–2320. [Google Scholar] [CrossRef] [Green Version]
- Lima, R.; Wofford, M.; Reckelhoff, J.F. Hypertension in postmenopausal women. Curr. Hypertens. Rep. 2012, 14, 254–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiteley, J.; DiBonaventura, M.; Wagner, J.S.; Alvir, J.; Shah, S. The impact of menopausal symptoms on quality of life, productivity, and economic outcomes. J. Womens Health 2013, 22, 983–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blumel, J.E.; Castelo-Branco, C.; Binfa, L.; Gramegna, G.; Tacla, X.; Aracena, B.; Cumsille, M.A.; Sanjuan, A. Quality of life after the menopause: A population study. Maturitas 2000, 34, 17–23. [Google Scholar] [CrossRef]
- GK, P.; Arounassalame, B. The quality of life during and after menopause among rural women. J. Clin. Diagn. Res. 2013, 7, 135–139. [Google Scholar]
- Dąbrowska-Galas, M.; Dąbrowska, J.; Ptaszkowski, K.; Plinta, R. High physical activity level may reduce menopausal symptoms. Medicina 2019, 55, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendoza, N.; De Teresa, C.; Cano, A.; Godoy, D.; Hita-Contreras, F.; Lapotka, M.; Llaneza, P.; Manonelles, P.; Martínez-Amat, A.; Ocón, O.; et al. Benefits of physical exercise in postmenopausal women. Maturitas 2016, 93, 83–88. [Google Scholar] [CrossRef]
- Juppi, H.K.; Sipilä, S.; Cronin, N.J.; Karvinen, S.; Karppinen, J.E.; Tammelin, T.H.; Aukee, P.; Kovanen, V.; Kujala, U.M.; Laakkonen, E.K. Role of menopausal transition and physical activity in loss of lean and muscle mass: A follow-up study in middle-aged Finnish women. J. Clin. Med. 2020, 9, 1588. [Google Scholar] [CrossRef]
- Mazurek, K.; Żmijewski, P.; Kozdroń, E.; Fojt, A.; Czajkowska, A.; Szczypiorski, P.; Mazurek, T. Cardiovascular risk reduction in sedentary postmenopausal women during organised physical activity. Kardiol. Pol. 2017, 75, 476–485. [Google Scholar] [CrossRef]
- Hagner, W.; Hagner-Derengowska, M.; Wiacek, M.; Zubrzycki, I.Z. Changes in level of VO2max, blood lipids, and waist circumference in the response to moderate endurance training as a function of ovarian aging. Menopause 2009, 16, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Mason, C.; Xiao, L.; Imayama, I.; Duggan, C.R.; Foster-Schubert, K.E.; Kong, A.; Campbell, K.L.; Wang, C.Y.; Villasenor, A.; Neuhouser, M.L.; et al. Influence of diet, exercise, and serum vitamin d on sarcopenia in postmenopausal women. Med. Sci. Sport. Exerc. 2013, 45, 607–614. [Google Scholar] [CrossRef] [Green Version]
- Friedenreich, C.M.; Woolcott, C.G.; McTiernan, A.; Terry, T.; Brant, R.; Ballard-Barbash, R.; Irwin, M.L.; Jones, C.A.; Boyd, N.F.; Yaffe, M.J.; et al. Adiposity changes after a 1-year aerobic exercise intervention among postmenopausal women: A randomized controlled trial. Int. J. Obes. 2011, 35, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Gonzalo-Encabo, P.; McNeil, J.; Boyne, D.J.; Courneya, K.S.; Friedenreich, C.M. Dose-response effects of exercise on bone mineral density and content in post-menopausal women. Scand. J. Med. Sci. Sp. 2019, 29, 1121–1129. [Google Scholar] [CrossRef]
- Teoman, N.; Özcan, A.; Acar, B. The effect of exercise on physical fitness and quality of life in postmenopausal women. Maturitas 2004, 47, 71–77. [Google Scholar] [CrossRef]
- Villaverde-Gutiérrez, C.; Araújo, E.; Cruz, F.; Roa, J.M.; Barbosa, W.; Ruíz-Villaverde, G. Quality of life of rural menopausal women in response to a customized exercise programme. J. Adv. Nurs. 2006, 54, 11–19. [Google Scholar] [CrossRef]
- Figueroa, A.; Going, S.B.; Milliken, L.A.; Blew, R.M.; Sharp, S.; Teixeira, P.J.; Lohman, T.G. Effects of exercise training and hormone replacement therapy on lean and fat mass in postmenopausal women. J. Gerontol. A Biol. Sci. Med. Sci. 2003, 58, 266–270. [Google Scholar] [CrossRef]
- Wooten, J.S.; Phillips, M.D.; Mitchell, J.B.; Patrizi, R.; Pleasant, R.N.; Hein, R.M.; Menzies, R.D.; Barbee, J.J. Resistance exercise and lipoproteins in postmenopausal women. Int. J. Sport. Med. 2011, 32, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Ogwumike, O.O.; Arowojolu, A.O.; Sanya, A.O. Effects of a12-week endurance exercise program on adiposity and flexibility of Nigerian perimenopausal and postmenopausal women. Niger. J. Physiol. Sci. 2011, 26, 199–206. [Google Scholar]
- Conceição, M.S.; Bonganha, V.; Vechin, F.C.; Berton, R.P.; Lixandrão, M.E.; Nogueira, F.R.; de Souza, G.V.; Chacon-Mikahil, M.P.; Libardi, C.A. Sixteen weeks of resistance training can decrease the risk of metabolic syndrome in healthy postmenopausal women. Clin. Interv. Aging 2013, 8, 1221–1228. [Google Scholar] [CrossRef] [Green Version]
- Watson, S.L.; Weeks, B.K.; Weis, L.J.; Harding, A.T.; Horan, S.A.; Beck, B.R. High-Intensity Resistance and Impact Training Improves Bone Mineral Density and Physical Function in Postmenopausal Women With Osteopenia and Osteoporosis: The LIFTMOR Randomized Controlled Trial. J. Bone Mineral Res. 2018, 33, 211–220. [Google Scholar] [CrossRef]
- Gómez-Tomás, C.; Chulvi-Medrano, I.; Carrasco, J.J.; Alakhdar, Y. Effect of a 1-year elastic band resistance exercise program on cardiovascular risk profile in postmenopausal women. Menopause 2018, 25, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Bea, J.W.; Cussler, E.C.; Going, S.B.; Blew, R.M.; Metcalfe, L.L.; Lohman, T.G. Resistance training predicts 6-yr body composition change in postmenopausal women. Med. Sci. Sport. Exerc. 2010, 42, 1286–1295. [Google Scholar] [CrossRef] [Green Version]
- Bao, W.; Sun, Y.; Zhang, T.; Zou, L.; Wu, X.; Wang, D.; Chen, Z. Exercise programs for muscle mass, muscle strength and physical performance in older adults with sarcopenia: A systematic review and meta-analysis. Aging Dis. 2020, 11, 863–873. [Google Scholar] [CrossRef]
- Cartee, G.D.; Hepple, R.T.; Bamman, M.M.; Zierath, J.R. Exercise promotes healthy aging of skeletal muscle. Cell Metab. 2016, 23, 1034–1047. [Google Scholar] [CrossRef] [Green Version]
- Alswat, K.A. Gender disparities in osteoporosis. J. Clin. Med. Res. 2017, 9, 382–387. [Google Scholar] [CrossRef] [Green Version]
- Howe, T.E.; Shea, B.; Dawson, L.J.; Downie, F.; Murray, A.; Ross, C.; Harbour, R.T.; Caldwell, L.M.; Creed, G. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst. Rev. 2011. [Google Scholar] [CrossRef]
- Daly, R.M.; Dalla Via, J.; Duckham, R.L.; Fraser, S.F.; Helge, E.W. Exercise for the prevention of osteoporosis in postmenopausal women: An evidence-based guide to the optimal prescription. Braz. J. Phys. Ther. 2019, 23, 170–180. [Google Scholar] [CrossRef]
- Cheng, S.; Sipilä, S.; Taaffe, D.R.; Puolakka, J.; Suominen, H. Change in bone mass distribution induced by hormone replacement therapy and high-impact physical exercise in post-menopausal women. Bone 2002, 31, 126–135. [Google Scholar] [CrossRef]
- Uusi-Rasi, K.; Patil, R.; Karinkanta, S.; Kannus, P.; Tokola, K.; Lamberg-Allardt, C.; Sievänen, H. Exercise and vitamin D in fall prevention among older women: A randomized clinical trial. JAMA Intern. Med. 2015, 175, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Gurka, M.J.; Lilly, C.L.; Oliver, M.N.; DeBoer, M.D. An examination of sex and racial/ethnic differences in the metabolic syndrome among adults: A confirmatory factor analysis and a resulting continuous severity score. Metabolism 2014, 63, 218–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsia, J.; Wu, L.; Allen, C.; Oberman, A.; Lawson, W.E.; Torréns, J.; Safford, M.; Limacher, M.C.; Howard, B.V. Physical activity and diabetes risk in postmenopausal women. Am. J. Prev. Med. 2005, 28, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Folsom, A.R.; Kushi, L.H.; Hong, C.P. Physical activity and incident diabetes mellitus in postmenopausal women. Am. J. Public Health 2000, 90, 134–138. [Google Scholar]
- Colpani, V.; Oppermann, K.; Spritzer, P.M. Association between habitual physical activity and lower cardiovascular risk in premenopausal, perimenopausal, and postmenopausal women: A population-based study. Menopause 2013, 20, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Strasser, B.; Siebert, U.; Schobersberger, W. Resistance training in the treatment of the metabolic syndrome: A systematic review and meta-analysis of the effect of resistance training on metabolic clustering in patients with abnormal glucose metabolism. Sport. Med. 2010, 40, 397–415. [Google Scholar] [CrossRef]
- Costa, R.R.; Buttelli, A.C.K.; Vieira, A.F.; Coconcelli, L.; Magalhães, R.L.; Delevatti, R.S.; Kruel, L.F.M. Effect of Strength Training on Lipid and Inflammatory Outcomes: Systematic Review With Meta-Analysis and Meta-Regression. J. Phys. Act. Health 2019, 16, 477–491. [Google Scholar] [CrossRef]
- Daley, A.; MacArthur, C.; Stokes-Lampard, H.; McManus, R.; Wilson, S.; Mutrie, N. Exercise participation, body mass index, and health-related quality of life in women of menopausal age. Br. J. General Pract. 2007, 57, 130–135. [Google Scholar]
- Leite, R.D.; Prestes, J.; Pereira, G.B.; Shiguemoto, G.E.; Perez, S.E. Menopause: Highlighting the effects of resistance training. Int. J. Sport. Med. 2010, 31, 761–767. [Google Scholar] [CrossRef]
- Punthakee, Z.; Goldenberg, R.; Katz, P. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can. J. Diabetes 2018, 42 (Suppl. 1), S10–S15. [Google Scholar] [CrossRef] [Green Version]
- Chimen, M.; Kennedy, A.; Nirantharakumar, K.; Pang, T.T.; Andrews, R.; Narendran, P. What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia 2012, 55, 542–551. [Google Scholar] [CrossRef] [Green Version]
- Deltsidou, A. Age at menarche and menstrual irregularities of adolescents with type 1 diabetes. J. Pediatr. Adolesc. Gynecol. 2010, 23, 162–167. [Google Scholar] [CrossRef]
- Gaete, X.; Vivanco, M.; Eyzaguirre, F.C.; López, P.; Rhumie, H.K.; Unanue, N.; Codner, E. Menstrual cycle irregularities and their relationship with HbA1c and insulin dose in adolescents with type 1 diabetes mellitus. Fertil. Steril. 2010, 94, 1822–1826. [Google Scholar] [CrossRef]
- Strotmeyer, E.S.; Steenkiste, A.R.; Foley, T.P., Jr.; Berga, S.L.; Dorman, J.S. Menstrual cycle differences between women with type 1 diabetes and women without diabetes. Diabetes Care 2003, 26, 1016–1021. [Google Scholar] [CrossRef] [Green Version]
- Snell-Bergeon, J.K.; Dabelea, D.; Ogden, L.G.; Hokanson, J.E.; Kinney, G.L.; Ehrlich, J.; Rewers, M. Reproductive history and hormonal birth control use are associated with coronary calcium progression in women with type 1 diabetes mellitus. J. Clin. Endocrinol. Metab. 2008, 93, 2142–2148. [Google Scholar] [CrossRef] [Green Version]
- Solomon, C.G.; Hu, F.B.; Dunaif, A.; Rich-Edwards, J.E.; Stampfer, M.J.; Willett, W.C.; Speizer, F.E.; Manson, J.E. Menstrual cycle irregularity and risk for future cardiovascular disease. J. Clin. Endocrinol. Metab. 2002, 87, 2013–2017. [Google Scholar] [CrossRef] [PubMed]
- Sjöberg, L.; Pitkäniemi, J.; Harjutsalo, V.; Haapala, L.; Tiitinen, A.; Tuomilehto, J.; Kaaja, R. Menopause in women with type 1 diabetes. Menopause 2011, 18, 158–163. [Google Scholar] [CrossRef]
- Yarde, F.; van der Schouw, Y.T.; de Valk, H.W.; Franx, A.; Eijkemans, M.J.; Spiering, W.; Broekmans, F.J. Age at menopause in women with type 1 diabetes mellitus: The OVADIA study. Hum. Reprod. 2015, 30, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Melendez-Ramirez, L.Y.; Richards, R.J.; Cefalu, W.T. Complications of type 1 diabetes. Endocrinol. Metab. Clin. N. Am. 2010, 39, 625–640. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; El Khoudary, S.R.; Buchanich, J.M.; Miller, R.G.; Rubinstein, D.; Orchard, T.J.; Costacou, T. Association of age at diabetes complication diagnosis with age at natural menopause in women with type 1 diabetes: The Pittsburgh Epidemiology of Diabetes Complications (EDC) Study. J. Diabetes Complicat. 2021, 35, 107832. [Google Scholar] [CrossRef]
- Ossewaarde, M.E.; Bots, M.L.; Verbeek, A.L.; Peeters, P.H.; van der Graaf, Y.; Grobbee, D.E.; van der Schouw, Y.T. Age at menopause, cause-specific mortality and total life expectancy. Epidemiology 2005, 16, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Chung, H.F.; Dobson, A.J.; Pandeya, N.; Giles, G.G.; Bruinsma, F.; Brunner, E.J.; Kuh, D.; Hardy, R.; Avis, N.E.; et al. Age at natural menopause and risk of incident cardiovascular disease: A pooled analysis of individual patient data. Lancet Public Health 2019, 4, e553–e564. [Google Scholar] [CrossRef] [Green Version]
- Huxley, R.R.; Peters, S.A.; Mishra, G.D.; Woodward, M. Risk of all-cause mortality and vascular events in women versus men with type 1 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015, 3, 198–206. [Google Scholar] [CrossRef]
- Millstein, R.J.; Pyle, L.L.; Bergman, B.C.; Eckel, R.H.; Maahs, D.M.; Rewers, M.J.; Schauer, I.E.; Snell-Bergeon, J.K. Sex-specific differences in insulin resistance in type 1 diabetes: The CACTI cohort. J. Diabetes Complicat. 2018, 32, 418–423. [Google Scholar] [CrossRef]
- Dabelea, D.; Kinney, G.; Snell-Bergeon, J.K.; Hokanson, J.E.; Eckel, R.H.; Ehrlich, J.; Garg, S.; Hamman, R.F.; Rewers, M.; Coronary Artery Calcification in Type 1 Diabetes, S. Effect of type 1 diabetes on the gender difference in coronary artery calcification: A role for insulin resistance? The Coronary Artery Calcification in Type 1 Diabetes (CACTI) Study. Diabetes 2003, 52, 2833–2839. [Google Scholar] [CrossRef] [Green Version]
- Maahs, D.M.; Hokanson, J.E.; Wang, H.; Kinney, G.L.; Snell-Bergeon, J.K.; East, A.; Bergman, B.C.; Schauer, I.E.; Rewers, M.; Eckel, R.H. Lipoprotein subfraction cholesterol distribution is proatherogenic in women with type 1 diabetes and insulin resistance. Diabetes 2010, 59, 1771–1779. [Google Scholar] [CrossRef] [Green Version]
- Brown, T.L.; Maahs, D.M.; Bishop, F.K.; Snell-Bergeon, J.K.; Wadwa, R.P. Influences of gender on cardiovascular disease risk factors in adolescents with and without type 1 diabetes. Int. J. Pediatr. Endocrinol. 2016, 2016, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, D.R.; Haynes, K.; Leonard, M.B.; Willi, S.M.; Denburg, M.R. Type 1 diabetes is associated with an increased risk of fracture across the life span: A population-based cohort study using The Health Improvement Network (THIN). Diabetes Care 2015, 38, 1913–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicodemus, K.K.; Folsom, A.R. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 2001, 24, 1192–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thong, E.P.; Milat, F.; Enticott, J.C.; Joham, A.E.; Ebeling, P.R.; Mishra, G.D.; Teede, H.J. The diabetes-fracture association in women with type 1 and type 2 diabetes is partially mediated by falls: A 15-year longitudinal study. Osteoporos. Int. 2021, 32, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Strotmeyer, E.S.; Cauley, J.A.; Orchard, T.J.; Steenkiste, A.R.; Dorman, J.S. Middle-aged premenopausal women with type 1 diabetes have lower bone mineral density and calcaneal quantitative ultrasound than nondiabetic women. Diabetes Care 2006, 29, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Saito, M.; Kida, Y.; Kato, S.; Marumo, K. Diabetes, collagen, and bone quality. Curr. Osteoporos. Rep. 2014, 12, 181–188. [Google Scholar] [CrossRef]
- Abimanyi-Ochom, J.; Watts, J.J.; Borgström, F.; Nicholson, G.C.; Shore-Lorenti, C.; Stuart, A.L.; Zhang, Y.; Iuliano, S.; Seeman, E.; Prince, R.; et al. Changes in quality of life associated with fragility fractures: Australian arm of the International Cost and Utility Related to Osteoporotic Fractures Study (AusICUROS). Osteoporos. Int. 2015, 26, 1781–1790. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, R.; Reginster, J.Y.; Arnal, J.F.; Bautmans, I.; Beaudart, C.; Bischoff-Ferrari, H.; Biver, E.; Boonen, S.; Brandi, M.L.; Chines, A.; et al. Quality of life in sarcopenia and frailty. Calcif. Tissue Int. 2013, 93, 101–120. [Google Scholar] [CrossRef]
- Yang, Y.J. An overview of current physical activity recommendations in primary care. Korean J. Fam. Med. 2019, 40, 135–142. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sport. Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, E.C.; Franke, W.D.; Sharp, R.L.; Lee, D.C. Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: A randomized controlled trial. PLoS ONE 2019, 14, e0210292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruegsegger, G.N.; Booth, F.W. Health benefits of exercise. Cold Spring Harb. Perspect. Med. 2018, 8, a029694. [Google Scholar] [CrossRef] [Green Version]
- Zoppini, G.; Carlini, M.; Muggeo, M. Self-reported exercise and quality of life in young type 1 diabetic subjects. Diabetes Nutr. Metab. 2003, 16, 77–80. [Google Scholar]
- Ferraro, R.A.; Pallazola, V.A.; Michos, E.D. Physical activity, CVD, and older adults. Aging 2019, 11, 2545–2546. [Google Scholar] [CrossRef]
- Pescatello, L.S.; MacDonald, H.V.; Lamberti, L.; Johnson, B.T. Exercise for hypertension: A prescription update integrating existing recommendations with emerging research. Curr. Hypertens. Rep. 2015, 17, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahlskog, J.E.; Geda, Y.E.; Graff-Radford, N.R.; Petersen, R.C. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clin. Proc. 2011, 86, 876–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brach, J.S.; Simonsick, E.M.; Kritchevsky, S.; Yaffe, K.; Newman, A.B. The association between physical function and lifestyle activity and exercise in the health, aging and body composition study. J. Am. Geriatr. Soc. 2004, 52, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Moy, C.S.; Songer, T.J.; LaPorte, R.E.; Dorman, J.S.; Kriska, A.M.; Orchard, T.J.; Becker, D.J.; Drash, A.L. Insulin-dependent diabetes mellitus, physical activity, and death. Am. J. Epidemiol. 1993, 137, 74–81. [Google Scholar] [CrossRef]
- Wagenmakers, A.J.M. The clinical and metabolic benefits of exercise for people with type 1 diabetes. Exp. Physiol. 2020, 105, 562–564. [Google Scholar] [CrossRef] [PubMed]
- Balducci, S.; Iacobellis, G.; Parisi, L.; Di Biase, N.; Calandriello, E.; Leonetti, F.; Fallucca, F. Exercise training can modify the natural history of diabetic peripheral neuropathy. J. Diabetes Complicat. 2006, 20, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Waden, J.; Tikkanen, H.K.; Forsblom, C.; Harjutsalo, V.; Thorn, L.M.; Saraheimo, M.; Tolonen, N.; Rosengard-Barlund, M.; Gordin, D.; Tikkanen, H.O.; et al. Leisure-time physical activity and development and progression of diabetic nephropathy in type 1 diabetes: The FinnDiane Study. Diabetologia 2015, 58, 929–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tikkanen-Dolenc, H.; Waden, J.; Forsblom, C.; Harjutsalo, V.; Thorn, L.M.; Saraheimo, M.; Elonen, N.; Hietala, K.; Summanen, P.; Tikkanen, H.O.; et al. Frequent physical activity is associated with reduced risk of severe diabetic retinopathy in type 1 diabetes. Acta Diabetol. 2020, 57, 527–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tielemans, S.M.; Soedamah-Muthu, S.S.; De Neve, M.; Toeller, M.; Chaturvedi, N.; Fuller, J.H.; Stamatakis, E. Association of physical activity with all-cause mortality and incident and prevalent cardiovascular disease among patients with type 1 diabetes: The EURODIAB Prospective Complications Study. Diabetologia 2013, 56, 82–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tikkanen-Dolenc, H.; Wadén, J.; Forsblom, C.; Harjutsalo, V.; Thorn, L.M.; Saraheimo, M.; Elonen, N.; Tikkanen, H.O.; Groop, P.H. Physical activity reduces risk of premature mortality in patients with type 1 diabetes with and without kidney disease. Diabetes Care 2017, 40, 1727–1732. [Google Scholar] [CrossRef] [Green Version]
- Mason, N.J.; Jenkins, A.J.; Best, J.D.; Rowley, K.G. Exercise frequency and arterial compliance in non-diabetic and type 1 diabetic individuals. Eur. J. Cardiovasc. Prev. Rehabil. 2006, 13, 598–603. [Google Scholar] [CrossRef]
- Bohn, B.; Herbst, A.; Pfeifer, M.; Krakow, D.; Zimny, S.; Kopp, F.; Melmer, A.; Steinacker, J.M.; Holl, R.W. Impact of physical activity on glycemic control and prevalence of cardiovascular risk factors in adults with type 1 diabetes: A cross-sectional multicenter study of 18,028 patients. Diabetes Care 2015, 38, 1536–1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadén, J.; Forsblom, C.; Thorn, L.M.; Saraheimo, M.; Rosengård-Bärlund, M.; Heikkilä, O.; Lakka, T.A.; Tikkanen, H.; Groop, P.H. Physical activity and diabetes complications in patients with type 1 diabetes: The Finnish Diabetic Nephropathy (FinnDiane) Study. Diabetes Care 2008, 31, 230–232. [Google Scholar] [CrossRef] [Green Version]
- Brazeau, A.S.; Leroux, C.; Mircescu, H.; Rabasa-Lhoret, R. Physical activity level and body composition among adults with type 1 diabetes. Diabet. Med. 2012, 29, e402–e408. [Google Scholar] [CrossRef]
- Elhabashy, S.A.; Said, O.M.; Agaiby, M.H.; Abdelrazek, A.A.; Abdelhamid, S. Effect of physical exercise on bone density and remodeling in egyptian type 1 diabetic osteopenic adolescents. Diabetol. Metab. Syndr. 2011, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Trefts, E.; Williams, A.S.; Wasserman, D.H. Exercise and the regulation of hepatic metabolism. Prog. Mol. Biol. Transl. Sci. 2015, 135, 203–225. [Google Scholar]
- Mallad, A.; Hinshaw, L.; Schiavon, M.; Dalla Man, C.; Dadlani, V.; Basu, R.; Lingineni, R.; Cobelli, C.; Johnson, M.L.; Carter, R.; et al. Exercise effects on postprandial glucose metabolism in type 1 diabetes: A triple-tracer approach. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E1106–E1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, R.; Johnson, M.L.; Kudva, Y.C.; Basu, A. Exercise, hypoglycemia, and type 1 diabetes. Diabetes Technol. Ther. 2014, 16, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A.; Fahey, T.D.; Baldwin, K.M. Exercise Physiology: Human Bioenergetics and Its Applications, 4th ed.; McGraw Hill: New York, NY, USA, 2005. [Google Scholar]
- Mitchell, T.H.; Abraham, G.; Schiffrin, A.; Leiter, L.A.; Marliss, E.B. Hyperglycemia after intense exercise in IDDM subjects during continuous subcutaneous insulin infusion. Diabetes Care 1988, 11, 311–317. [Google Scholar] [CrossRef]
- Sigal, R.J.; Purdon, C.; Fisher, S.J.; Halter, J.B.; Vranic, M.; Marliss, E.B. Hyperinsulinemia prevents prolonged hyperglycemia after intense exercise in insulin-dependent diabetic subjects. J. Clin. Endocrinol. Metab. 1994, 79, 1049–1057. [Google Scholar]
- Sarafian, D.; Schutz, Y.; Montani, J.P.; Dulloo, A.G.; Miles-Chan, J.L. Sex difference in substrate oxidation during low-intensity isometric exercise in young adults. Appl. Physiol. Nutr. Metab. 2016, 41, 977–984. [Google Scholar] [CrossRef]
- Steffensen, C.H.; Roepstorff, C.; Madsen, M.; Kiens, B. Myocellular triacylglycerol breakdown in females but not in males during exercise. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E634–E642. [Google Scholar] [CrossRef] [Green Version]
- Venables, M.C.; Achten, J.; Jeukendrup, A.E. Determinants of fat oxidation during exercise in healthy men and women: A cross-sectional study. J. Appl. Physiol. 2005, 98, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Brockman, N.K.; Yardley, J.E. Sex-related differences in fuel utilization and hormonal response to exercise: Implications for individuals with type 1 diabetes. Appl. Physiol. Nutr. Metab. 2018, 43, 541–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, G.C.; Fattor, J.A.; Horning, M.A.; Faghihnia, N.; Johnson, M.L.; Luke-Zeitoun, M.; Brooks, G.A. Glucoregulation is more precise in women than in men during postexercise recovery. Am. J. Clin. Nutr. 2008, 87, 1686–1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brockman, N.K.; Sigal, R.J.; Kenny, G.P.; Riddell, M.C.; Perkins, B.A.; Yardley, J.E. Sex-related differences in blood glucose responses to resistance exercise in adults with type 1 diabetes: A secondary data analysis. Can. J. Diabetes 2020, 44, 267–273. [Google Scholar] [CrossRef]
- Yardley, J.E.; Brockman, N.K.; Bracken, R.M. Could age, sex and physical fitness affect blood glucose responses to exercise in type 1 diabetes? Front. Endocrinol. 2018, 9, 674. [Google Scholar] [CrossRef] [PubMed]
- JafariNasabian, P.; Inglis, J.E.; Reilly, W.; Kelly, O.J.; Ilich, J.Z. Aging human body: Changes in bone, muscle and body fat with consequent changes in nutrient intake. J. Endocrinol. 2017, 234, R37–R51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleg, J.L.; Morrell, C.H.; Bos, A.G.; Brant, L.J.; Talbot, L.A.; Wright, J.G.; Lakatta, E.G. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation 2005, 112, 674–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milanović, Z.; Pantelić, S.; Trajković, N.; Sporiš, G.; Kostić, R.; James, N. Age-related decrease in physical activity and functional fitness among elderly men and women. Clin. Interv. Aging 2013, 8, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Amati, F.; Dubé, J.J.; Coen, P.M.; Stefanovic-Racic, M.; Toledo, F.G.; Goodpaster, B.H. Physical inactivity and obesity underlie the insulin resistance of aging. Diabetes Care 2009, 32, 1547–1549. [Google Scholar] [CrossRef] [Green Version]
- Bulum, T.; Duvnjak, L. Insulin resistance in patients with type 1 diabetes: Relationship with metabolic and inflammatory parameters. Acta Clin. Croat. 2013, 52, 43–51. [Google Scholar]
- McCarthy, M.M.; Whittemore, R.; Grey, M. Physical activity in adults with type 1 diabetes. Diabetes Educ. 2016, 42, 108–115. [Google Scholar] [CrossRef]
- Imad, H.; Zelano, J.; Kumlien, E. Hypoglycemia and risk of seizures: A retrospective cross-sectional study. Seizure 2015, 25, 147–149. [Google Scholar] [PubMed] [Green Version]
- Koivikko, M.L.; Kenttä, T.; Salmela, P.I.; Huikuri, H.V.; Perkiömäki, J.S. Changes in cardiac repolarisation during spontaneous nocturnal hypoglycaemia in subjects with type 1 diabetes: A preliminary report. Acta Diabetol. 2017, 54, 251–256. [Google Scholar] [CrossRef]
- Murphy, N.P.; Ford-Adams, M.E.; Ong, K.K.; Harris, N.D.; Keane, S.M.; Davies, C.; Ireland, R.H.; MacDonald, I.A.; Knight, E.J.; Edge, J.A.; et al. Prolonged cardiac repolarisation during spontaneous nocturnal hypoglycaemia in children and adolescents with type 1 diabetes. Diabetologia 2004, 47, 1940–1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.L.; Shen, H.N.; Hu, S.C.; Wang, J.D.; Li, C.Y. A Population-Based Study of All-Cause Mortality and Cardiovascular Disease in Association With Prior History of Hypoglycemia Among Patients With Type 1 Diabetes. Diabetes Care 2016, 39, 1571–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.R.; Chen, Y.T.; Sheu, W.H. Glycemic variability and diabetes retinopathy: A missing link. J. Diabetes Complicat. 2015, 29, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Lind, M.; Pivodic, A.; Svensson, A.M.; Ólafsdóttir, A.F.; Wedel, H.; Ludvigsson, J. HbA(1c) level as a risk factor for retinopathy and nephropathy in children and adults with type 1 diabetes: Swedish population based cohort study. BMJ 2019, 366, l4894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, C.L.; Albers, J.W.; Pop-Busui, R.; DCCT/EDiC research Group. Neuropathy and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 2014, 37, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakurai, M.; Saitoh, S.; Miura, K.; Nakagawa, H.; Ohnishi, H.; Akasaka, H.; Kadota, A.; Kita, Y.; Hayakawa, T.; Ohkubo, T.; et al. HbA1c and the risks for all-cause and cardiovascular mortality in the general Japanese population: NIPPON DATA90. Diabetes Care 2013, 36, 3759–3765. [Google Scholar] [CrossRef] [Green Version]
- Farabi, S.S.; Quinn, L.; Phillips, S.; Mihailescu, D.; Park, C.; Ali, M.; Martyn-Nemeth, P. Endothelial dysfunction is related to glycemic variability and quality and duration of sleep in adults with type 1 diabetes. J. Cardiovasc. Nurs. 2018, 33, E21–E25. [Google Scholar] [CrossRef]
- Jamiołkowska, M.; Jamiołkowska, I.; Łuczyński, W.; Tołwińska, J.; Bossowski, A.; Głowińska Olszewska, B. Impact of real-time continuous glucose monitoring use on glucose variability and endothelial function in adolescents with type 1 diabetes: New technology--new possibility to decrease cardiovascular risk? J. Diabetes Res. 2016, 2016, 4385312. [Google Scholar] [CrossRef]
- Ceriello, A.; Novials, A.; Ortega, E.; La Sala, L.; Pujadas, G.; Testa, R.; Bonfigli, A.R.; Esposito, K.; Giugliano, D. Evidence that hyperglycemia after recovery from hypoglycemia worsens endothelial function and increases oxidative stress and inflammation in healthy control subjects and subjects with type 1 diabetes. Diabetes 2012, 61, 2993–2997. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, R.P.; Dye, A.S.; Huang, H.; Bauer, J.A. Glycemic variability predicts inflammation in adolescents with type 1 diabetes. J. Pediatr. Endocrinol. Metab. 2016, 29, 1129–1133. [Google Scholar] [CrossRef] [Green Version]
- Borg, R.; Kuenen, J.C.; Carstensen, B.; Zheng, H.; Nathan, D.M.; Heine, R.J.; Nerup, J.; Borch-Johnsen, K.; Witte, D.R. HbA₁(c) and mean blood glucose show stronger associations with cardiovascular disease risk factors than do postprandial glycaemia or glucose variability in persons with diabetes: The A1C-Derived Average Glucose (ADAG) study. Diabetologia 2011, 54, 69–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.J.; Latham, N.K. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst. Rev. 2009, 2009, Cd002759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, E.A.; Wanderley, F.; Machado, L.; Sousa, F.; Viana, J.L.; Moreira-Gonçalves, D.; Moreira, P.; Mota, J.; Carvalho, J. Effects of resistance and aerobic exercise on physical function, bone mineral density, OPG and RANKL in older women. Exp. Gerontol. 2011, 46, 524–532. [Google Scholar] [CrossRef]
- Evans, W.; Willey, Q.; Hanson, E.D.; Stoner, L. Effects of resistance training on arterial stiffness in persons at risk for cardiovascular disease: A meta-analysis. Sport. Med. 2018, 48, 2785–2795. [Google Scholar] [CrossRef] [PubMed]
- Westcott, W.L. Resistance training is medicine: Effects of strength training on health. Curr. Sport. Med. Rep. 2012, 11, 209–216. [Google Scholar] [CrossRef]
- Levinger, I.; Goodman, C.; Hare, D.L.; Jerums, G.; Selig, S. The effect of resistance training on functional capacity and quality of life in individuals with high and low numbers of metabolic risk factors. Diabetes Care 2007, 30, 2205–2210. [Google Scholar] [CrossRef] [Green Version]
- Guelfi, K.J.; Jones, T.W.; Fournier, P.A. New insights into managing the risk of hypoglycaemia associated with intermittent high-intensity exercise in individuals with type 1 diabetes mellitus: Implications for existing guidelines. Sport. Med. 2007, 37, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Yardley, J.E.; Kenny, G.P.; Perkins, B.A.; Riddell, M.C.; Malcolm, J.; Boulay, P.; Khandwala, F.; Sigal, R.J. Effects of performing resistance exercise before versus after aerobic exercise on glycemia in type 1 diabetes. Diabetes Care 2012, 35, 669–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zouhal, H.; Jacob, C.; Delamarche, P.; Gratas-Delamarche, A. Catecholamines and the effects of exercise, training and gender. Sport. Med. 2008, 38, 401–423. [Google Scholar] [CrossRef]
- Sigal, R.J.; Armstrong, M.J.; Bacon, S.L.; Boulé, N.G.; Dasgupta, K.; Kenny, G.P.; Riddell, M.C. Physical activity and diabetes. Can. J. Diabetes 2018, 42 (Suppl. 1), S54–S63. [Google Scholar] [CrossRef] [Green Version]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical activity/exercise and diabetes: A position statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study | Number of Participants | Type of Physical Activity/Exercise | Intensity/Frequency | Program Duration | Outcome |
---|---|---|---|---|---|
STUDIES INVOLVING AEROBIC EXERCISE AND UNSPECIFIED PHYSICAL ACTIVITY | |||||
Juppi et al. 2020 [35] | 234 | Habitual physical activity (observational data) | At least 150 min of moderate-to-vigorous PA/week, ≈ 21 min/day | Women were followed from peri to early post menopause | While menopausal transition decreased lean body mass and index and appendicular lean mass and index, physical activity was positively associated with maintained lean body mass (r = 0.182) and appendicular lean mass and index (r = 0.235 and r = 0.238, respectively) |
Mazurek et al. 2017 [36] | 35 | Physical activity | 2 weeks moderate-intensity physical training program (2.5–5.0 METs, 3 times/day, 40–75 min/session, at 40–60% of MHR) followed by 3 months of organized home-based physical activity targeting all major muscle groups | 2 weeks and 3 months | Physical activity reduced systolic and diastolic blood pressure, and reduced BMI, waist-to-hip ratio, and LDL-C as compared to baseline (data provided as figures). Among participants with organized physical activity, 40.6% of women met the baseline criteria of metabolic syndrome. After two weeks of physical exercise, this percentage decreased to 18.7%, mainly due to the reduction in the above-mentioned risk factors |
Hagner et al. 2009 [37] | 168 (pre-, peri-, and post-menopausal women) | Aerobic exercise | Moderate-intensity Nordic walking program, three 90-minute sessions, average heart rate of 100–140 bpm | 12 weeks | Exercise improved VO2 max, reduced BMI, waist circumference, and total fat mass, increased HDL-C, and deceased LDL-C, cholesterol, and triglycerides after 12 weeks in pre-, peri-, and post-menopausal women (except for HDL level in post-menopausal women) |
Mason et al. 2013 [38] | 117 (Exercise group) 98 (Control group) | Aerobic exercise | Moderate-to-vigorous intensity, 70–85% MHR, 45 min/day, 5 days/week | 12 months | Intervention significantly preserved appendicular lean mass (%Δ: −0.12) and skeletal muscle index (%Δ: 0.4) compared to controls (%Δ: −1.2 and −1.5, respectively), despite no change in total lean mass |
Mason et al. 2013 [38] | 118 (Reduced-calorie diet group) 117 (Reduced-calorie diet with exercise) | Aerobic exercise | Moderate-to-vigorous intensity, 70–85% MHR, 45 min/day, 5 days/week | 12 months | Exercise + diet attenuated the loss of appendicular lean mass and skeletal muscle index (%Δ: −1.4 and −1.0, respectively) as compared to the diet group (%Δ: −2.9 and −3.1, respectively) |
Friedenreich et al. 2011 [39] | 155 (Exercise group) 156 (Control group) | Aerobic exercise | Moderate-to-vigorous intensity, 45 min at 70–80% of HRR for at least half of the workout time, 5 times/week | 12 months | Changes in all measures of adiposity were observed in exercisers relative to controls (the mean difference between groups: −1.8 kg for body weight; −2.0 kg for total body fat; −14.9 cm2 for intra-abdominal fat area; and −24.1 cm2 for subcutaneous abdominal fat area). Greater body fat losses were found with increasing volume of exercise (more than 225 min per week) |
Gonzalo–Encabo et al. 2019 [40] | 200 (High-dose group) 200 (Moderate-dose group) | Aerobic exercise | 300 min a week (high dose) compared to 150 min a week (moderate dose) aerobic exercise | 12 months 24 months | Significantly higher BMD (0.006 g/cm2 higher after 12 months and 0.007 g/cm2 higher after 24 months) in the high-dose exercise group as compared to moderate-dose exercise group |
STUDIES INCLUDING RESISTANCE EXERCISE | |||||
Teoman et al. 2004 [41] | 41 (Exercise group) 40 (Control group) | Combined aerobic and resistance training program | Aerobic (65–70% MHR) and resistance training program 3 times a week for 6 weeks, starting at 30 min (including warm-up and cool-down) and increasing by 20 min over the training period | 6 weeks | Significant improvements in all six markers of quality of life (physical mobility, pain, sleep, energy, social isolation, emotional status) in the exercise group as compared to control at the end of the 6th week of the training program |
Villaverde–Gutiérrez et al. 2006 [42] | 24 (Exercise group)24 (Control group) | Combined aerobic, resistance, flexibility, and relaxation exercises | 2 supervised sessions of 30 to 60 min per week | 12 months | The health-related quality of life significantly improved after the intervention in the exercise group (16.58 pre-exercise vs. 18.58 post-exercise), while it became significantly worse in the control group at the end of the study as compared to the beginning (11.96 vs. 14.12, respectively) |
Figueroa et al. 2003 [43] | 20 and 24 (Exercise groups with and without HRT, respectively) 22 and 28 (Control groups with and without HRT, respectively) | Combined resistance training and weight-bearing and non-weight-bearing aerobic exercise program | Resistance (free-weights with machines at 70–80% of 1-RM, 2 sets/day, 3 days/week). Aerobic (50–80% of MHR, 60–75 min/session, 3 days/week) | 12 months | Combined exercise significantly increased total body (11.6%), arm (14.7%), and leg (11.0%) lean soft tissue mass, and decreased percentage of body fat (−22.9%), independent of HRT |
Wooten et al. 2011 [44] | 9 (Exercise group) 12 (Control group) | Resistance training program | 10 exercises for 2 sets at 8-RM and the 3rd set to failure, 3 days/week | 12 weeks | Significant reductions in total cholesterol (23.6%), LDL-C (28.5%), non-HDL-C (27.0%), and HDL3-C (24.1%) in the exercise group as compared to control following 12 weeks of resistance exercise |
Ogwumike et al. 2011 [45] | 90 (Exercise group) 85 (Control group) | Endurance exercise program | 10 stations of circuit training exercises at 60–80% of HRR, 3 days/week | 12 weeks | Significant reduction in the waist-to-hip ratio between baseline and end of 12th week in both peri-menopausal (0.86 ± 0.08 vs. 0.71 ± 0.07) and post-menopausal (0.88 ± 0.06 vs. 0.77 ± 0.07) exercise groups, with no significant changes in the control groups |
Conceição et al. 2013 [46] | 10 (Intervention group)10 (Control group) | Resistance training program | 3 sets of 8−10 repetitions at 50–70% of 1-RM, 3 times/week, with a progressive weekly increase in load | 16 weeks | Intervention decreased the metabolic syndrome severity Z-score (p = 0.0162) while lowering fasting blood glucose (−13.97%), improving lean body mass (2.46%), decreasing body fat percentage (−6.75%), and increasing muscle strength (41.29% for leg press and 27.23% for bench press) in exercisers as compared to controls |
Watson et al. 2018 [47] | 43 (High-impact training group) 43 (Control: low-impact training group) | Resistance training program | Supervised twice weekly HiRIT, compared to home-based low impact training of identical frequency and duration | 8 months | HiRIT effects were superior to controls for lumbar spine BMD (2.9 ± 2.8% vs. –1.2 ± 2.8%), femoral neck BMD (0.3 ± 2.6% vs. –1.9 ± 2.6%), femoral neck cortical thickness (13.6 ± 16.6% vs. 6.3 ± 16.6%), height (0.2 ± 0.5 cm vs. –0.2 ± 0.5 cm), and all functional performance measures (p < 0.001) |
Gómez–Tomás, et al. 2018 [48] | 18 (Intervention group) 20 (Control group) | Resistance training program | 6 exercises for whole-body training involving major muscle groups, 3 sets of 10 repetitions, 3 days/week | 12 months | Exercise decreased weight (1.31 ± 1.49 kg decrease), waist circumference (2.67 ± 2.61 cm decrease), total cholesterol (15.72 ± 46.47 mg/dL decrease), LDL-C (16.77 ± 41.74 mg/dL decrease), and C-reactive protein (0.81 ± 1.78 mg/L decrease). No significant difference was found in HDL-C or triglycerides |
Bea et al. 2010 [49] | 65 (Exercise group) 32 (Crossovers) 25 (Sedentary controls) | Resistance training program | Supervised 8 exercises targeting major muscle groups, 2 sets of 8 repetitions at 70–80% of 1-RM, 3 times/week, plus progressive weight-bearing activity | 6 years | Weight gain occurred in a stepwise fashion over the 6 years with controls gaining the greatest amount of weight (2.1 ± 4.3 kg controls, 0.7 ± 4.4 kg crossovers, 0.4 ± 6.2 kg exercisers). Similar to weight, gain in total body fat was also significant between baseline and 6 years in controls only (1.9 ± 4 for controls, 0.4 ± 3 for crossovers, and 0.3 ± 6 for exercisers) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momeni, Z.; Logan, J.E.; Sigal, R.J.; Yardley, J.E. Can Resistance Exercise Be a Tool for Healthy Aging in Post-Menopausal Women with Type 1 Diabetes? Int. J. Environ. Res. Public Health 2021, 18, 8716. https://doi.org/10.3390/ijerph18168716
Momeni Z, Logan JE, Sigal RJ, Yardley JE. Can Resistance Exercise Be a Tool for Healthy Aging in Post-Menopausal Women with Type 1 Diabetes? International Journal of Environmental Research and Public Health. 2021; 18(16):8716. https://doi.org/10.3390/ijerph18168716
Chicago/Turabian StyleMomeni, Zeinab, Jessica E. Logan, Ronald J. Sigal, and Jane E. Yardley. 2021. "Can Resistance Exercise Be a Tool for Healthy Aging in Post-Menopausal Women with Type 1 Diabetes?" International Journal of Environmental Research and Public Health 18, no. 16: 8716. https://doi.org/10.3390/ijerph18168716
APA StyleMomeni, Z., Logan, J. E., Sigal, R. J., & Yardley, J. E. (2021). Can Resistance Exercise Be a Tool for Healthy Aging in Post-Menopausal Women with Type 1 Diabetes? International Journal of Environmental Research and Public Health, 18(16), 8716. https://doi.org/10.3390/ijerph18168716