The Supply of Calories, Proteins, and Fats in Low-Income Countries: A Four-Decade Retrospective Study
Abstract
1. Introduction
2. Theoretical Framework and Hypotheses
3. Materials and Methods
3.1. Variables
3.2. Collinearity
3.3. Redundancy
3.4. Regression
3.5. Strength and Direction of Relationships
4. Results
5. Discussion
5.1. Hypothesis 1: Supply and Production
5.2. Hypothesis 2: Supply and Income
5.3. Hypothesis 3: Supply and Trade
6. Conclusions
6.1. Hypotheses Results
- In low-income countries, food supply parameters are more strongly affected by production factors, such as agricultural production value, per capita agricultural production index, and the agricultural sector’s share of GDP.
- The effect of economic factors on the per capita supply of calories and nutrients increases with the rise in the level of income—it is the lowest in low-income countries and the highest in upper-middle-income economies. However, the effect is mainly tracked for higher-value food products, such as meat and dairy products, fruits, and vegetables, while it is marginal for staples.
- The effects of trade factors on food supply are stronger compared to production and economic determinants in import-dependent countries irrelevant of the income group they belong to. This effect is equally recorded in both lower-middle and upper-middle-income countries.
6.2. Future Research Directions
6.3. Potential Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Index | Food Group | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|
Low-income economies | ||||||||||
Y1.1 | Cereals | 630.773 | 685.000 | 670.409 | 738.591 | 774.136 | 780.273 | 861.500 | 882.864 | 884.136 |
Y1.2 | Fruits | 104.727 | 102.182 | 97.091 | 98.045 | 90.545 | 89.909 | 87.182 | 85.727 | 81.455 |
Y1.3 | Vegetables | 23.136 | 22.091 | 22.909 | 26.091 | 25.364 | 28.045 | 27.727 | 35.545 | 37.773 |
Y1.4 | Roots, tubers, plantains | 302.000 | 270.818 | 266.409 | 231.273 | 280.318 | 276.682 | 275.545 | 272.045 | 265.545 |
Y1.5 | Pulses, seeds, nuts | 91.182 | 79.818 | 78.000 | 75.955 | 84.364 | 93.273 | 108.909 | 109.773 | 107.364 |
Y1.6 | Eggs | 2.727 | 2.955 | 3.045 | 3.045 | 2.864 | 3.455 | 3.682 | 4.091 | 3.955 |
Y1.7 | Meat | 61.273 | 59.227 | 60.727 | 63.773 | 67.682 | 71.000 | 74.364 | 73.182 | 72.818 |
Y1.8 | Fish, shellfish | 12.455 | 10.727 | 11.500 | 10.864 | 11.091 | 12.455 | 13.955 | 14.591 | 14.909 |
Y1.9 | Milk and dairy products | 48.864 | 48.045 | 47.318 | 53.182 | 54.455 | 63.045 | 67.136 | 59.364 | 60.500 |
Y1.10 | Fats and oils | 154.955 | 160.864 | 168.000 | 192.000 | 187.000 | 206.227 | 212.045 | 212.091 | 212.045 |
Y1.11 | Sugars and sweeteners | 80.227 | 84.727 | 86.682 | 92.591 | 99.500 | 111.773 | 114.682 | 120.909 | 125.273 |
Lower-Middle-income economies | ||||||||||
Y1.1 | Cereals | 983.703 | 1012.757 | 1022.432 | 1172.865 | 1181.351 | 1223.243 | 1238.135 | 1262.378 | 1269.000 |
Y1.2 | Fruits | 68.595 | 64.703 | 58.568 | 70.135 | 69.486 | 78.270 | 85.838 | 96.595 | 99.459 |
Y1.3 | Vegetables | 23.081 | 24.270 | 25.676 | 32.351 | 40.703 | 45.973 | 54.243 | 62.486 | 62.405 |
Y1.4 | Roots, tubers, plantains | 148.162 | 147.703 | 155.216 | 180.459 | 188.811 | 198.541 | 208.189 | 210.270 | 213.486 |
Y1.5 | Pulses, seeds, nuts | 51.405 | 54.162 | 56.027 | 55.297 | 61.270 | 68.054 | 74.838 | 70.486 | 72.351 |
Y1.6 | Eggs | 6.973 | 7.189 | 7.378 | 9.595 | 10.108 | 11.568 | 13.324 | 15.054 | 15.216 |
Y1.7 | Meat | 71.622 | 72.649 | 77.459 | 97.703 | 103.595 | 112.486 | 127.676 | 137.324 | 138.838 |
Y1.8 | Fish, shellfish | 15.162 | 16.811 | 16.730 | 16.378 | 20.027 | 22.297 | 25.297 | 27.730 | 27.243 |
Y1.9 | Milk and dairy products | 61.297 | 62.649 | 60.514 | 91.270 | 99.027 | 106.649 | 111.622 | 118.676 | 119.135 |
Y1.10 | Fats and oils | 151.541 | 164.081 | 175.351 | 208.946 | 208.676 | 221.919 | 237.757 | 241.054 | 252.405 |
Y1.11 | Sugars and sweeteners | 151.324 | 150.405 | 153.378 | 178.378 | 197.568 | 199.378 | 204.730 | 199.081 | 202.757 |
Upper-middle-income economies | ||||||||||
Y1.1 | Cereals | 863.450 | 885.575 | 876.200 | 1115.475 | 1125.350 | 1113.275 | 1115.250 | 1139.375 | 1134.750 |
Y1.2 | Fruits | 97.300 | 97.725 | 94.500 | 109.650 | 114.350 | 118.200 | 121.725 | 133.450 | 135.750 |
Y1.3 | Vegetables | 29.700 | 32.925 | 35.050 | 51.075 | 57.325 | 66.800 | 69.700 | 71.850 | 71.350 |
Y1.4 | Roots, tubers, plantains | 110.900 | 109.750 | 104.525 | 134.725 | 133.600 | 143.050 | 139.800 | 147.700 | 142.975 |
Y1.5 | Pulses, seeds, nuts | 56.500 | 55.375 | 53.975 | 55.075 | 51.025 | 54.975 | 51.625 | 51.075 | 51.225 |
Y1.6 | Eggs | 16.300 | 16.975 | 18.725 | 24.225 | 25.300 | 28.950 | 31.800 | 34.850 | 36.375 |
Y1.7 | Meat | 129.450 | 137.000 | 140.975 | 190.950 | 197.125 | 206.550 | 230.800 | 234.525 | 240.550 |
Y1.8 | Fish, shellfish | 23.300 | 26.150 | 22.400 | 27.575 | 31.725 | 32.550 | 35.375 | 34.075 | 31.275 |
Y1.9 | Milk and dairy products | 106.600 | 102.875 | 107.350 | 160.725 | 166.400 | 173.925 | 176.875 | 184.200 | 185.950 |
Y1.10 | Fats and oils | 210.325 | 229.650 | 242.375 | 280.750 | 290.050 | 319.900 | 333.475 | 348.525 | 357.500 |
Y1.11 | Sugars and sweeteners | 274.825 | 278.200 | 272.325 | 307.675 | 306.550 | 323.000 | 320.175 | 324.000 | 323.300 |
Index | Food Group | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|
Low-income economies | ||||||||||
Y2.1 | Cereals | 15.098 | 16.404 | 16.115 | 18.122 | 18.995 | 19.095 | 20.911 | 21.435 | 21.465 |
Y2.2 | Fruits | 1.187 | 1.152 | 1.096 | 1.103 | 1.029 | 1.020 | 1.005 | 0.960 | 0.909 |
Y2.3 | Vegetables | 1.263 | 1.210 | 1.224 | 1.340 | 1.279 | 1.380 | 1.352 | 1.715 | 1.791 |
Y2.4 | Roots, tubers, plantains | 2.928 | 2.705 | 2.628 | 2.474 | 3.033 | 3.026 | 3.044 | 3.049 | 2.989 |
Y2.5 | Pulses, seeds, nuts | 5.953 | 5.184 | 5.049 | 4.928 | 5.464 | 6.044 | 7.043 | 7.090 | 6.917 |
Y2.6 | Eggs | 0.227 | 0.236 | 0.256 | 0.254 | 0.238 | 0.278 | 0.304 | 0.335 | 0.319 |
Y2.7 | Meat | 4.765 | 4.598 | 4.586 | 4.610 | 4.953 | 5.271 | 5.507 | 5.249 | 5.321 |
Y2.8 | Fish, shellfish | 1.991 | 1.705 | 1.846 | 1.749 | 1.770 | 1.971 | 2.211 | 2.346 | 2.366 |
Y2.9 | Milk and dairy products | 2.717 | 2.805 | 2.591 | 2.848 | 2.901 | 3.262 | 3.480 | 3.109 | 3.157 |
Y2.10 | Fats and oils | 0.027 | 0.027 | 0.029 | 0.029 | 0.028 | 0.030 | 0.035 | 0.030 | 0.032 |
Y2.11 | Sugars and sweeteners | 0.010 | 0.007 | 0.005 | 0.005 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 |
Lower-middle-income economies | ||||||||||
Y2.1 | Cereals | 24.586 | 25.218 | 25.418 | 29.670 | 29.751 | 30.547 | 30.780 | 31.469 | 31.608 |
Y2.2 | Fruits | 0.768 | 0.736 | 0.667 | 0.771 | 0.761 | 0.881 | 0.968 | 1.091 | 1.114 |
Y2.3 | Vegetables | 1.159 | 1.211 | 1.270 | 1.550 | 1.946 | 2.153 | 2.531 | 2.895 | 2.879 |
Y2.4 | Roots, tubers, plantains | 1.818 | 1.823 | 1.894 | 2.327 | 2.540 | 2.787 | 2.960 | 2.948 | 3.004 |
Y2.5 | Pulses, seeds, nuts | 3.332 | 3.502 | 3.632 | 3.578 | 3.969 | 4.409 | 4.832 | 4.535 | 4.667 |
Y2.6 | Eggs | 0.558 | 0.569 | 0.586 | 0.767 | 0.811 | 0.917 | 1.053 | 1.188 | 1.201 |
Y2.7 | Meat | 5.309 | 5.299 | 5.562 | 6.816 | 7.349 | 8.023 | 9.012 | 9.680 | 9.742 |
Y2.8 | Fish, shellfish | 2.395 | 2.641 | 2.615 | 2.560 | 3.108 | 3.437 | 3.916 | 4.276 | 4.211 |
Y2.9 | Milk and dairy products | 3.520 | 3.633 | 3.515 | 5.115 | 5.432 | 5.912 | 6.091 | 6.480 | 6.542 |
Y2.10 | Fats and oils | 0.043 | 0.042 | 0.048 | 0.056 | 0.061 | 0.073 | 0.079 | 0.089 | 0.090 |
Y2.11 | Sugars and sweeteners | 0.034 | 0.031 | 0.024 | 0.021 | 0.020 | 0.020 | 0.021 | 0.018 | 0.016 |
Upper-middle-income economies | ||||||||||
Y2.1 | Cereals | 22.094 | 22.713 | 22.435 | 29.201 | 29.295 | 28.766 | 28.787 | 29.362 | 29.232 |
Y2.2 | Fruits | 1.117 | 1.113 | 1.098 | 1.258 | 1.312 | 1.333 | 1.375 | 1.525 | 1.561 |
Y2.3 | Vegetables | 1.376 | 1.516 | 1.566 | 2.293 | 2.538 | 2.934 | 3.099 | 3.185 | 3.166 |
Y2.4 | Roots, tubers, plantains | 1.647 | 1.650 | 1.568 | 2.323 | 2.287 | 2.490 | 2.396 | 2.485 | 2.436 |
Y2.5 | Pulses, seeds, nuts | 3.612 | 3.538 | 3.439 | 3.520 | 3.274 | 3.526 | 3.309 | 3.277 | 3.287 |
Y2.6 | Eggs | 1.263 | 1.315 | 1.447 | 1.870 | 1.956 | 2.239 | 2.454 | 2.682 | 2.799 |
Y2.7 | Meat | 9.523 | 10.015 | 10.373 | 13.665 | 14.173 | 15.004 | 16.811 | 17.035 | 17.549 |
Y2.8 | Fish, shellfish | 3.539 | 3.981 | 3.484 | 4.302 | 4.923 | 4.957 | 5.314 | 5.132 | 4.723 |
Y2.9 | Milk and dairy products | 6.312 | 6.122 | 6.137 | 8.980 | 9.346 | 9.708 | 9.948 | 10.505 | 10.634 |
Y2.10 | Fats and oils | 0.073 | 0.081 | 0.085 | 0.102 | 0.098 | 0.114 | 0.116 | 0.129 | 0.131 |
Y2.11 | Sugars and sweeteners | 0.032 | 0.031 | 0.026 | 0.027 | 0.025 | 0.024 | 0.023 | 0.023 | 0.023 |
Index | Food Group | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|
Low-income economies | ||||||||||
Y3.1 | Cereals | 3.354 | 3.636 | 3.480 | 4.103 | 4.265 | 4.655 | 4.894 | 5.010 | 4.856 |
Y3.2 | Fruits | 0.514 | 0.497 | 0.469 | 0.456 | 0.447 | 0.507 | 0.585 | 0.481 | 0.454 |
Y3.3 | Vegetables | 0.227 | 0.217 | 0.219 | 0.246 | 0.225 | 0.246 | 0.237 | 0.284 | 0.294 |
Y3.4 | Roots, tubers, plantains | 0.407 | 0.367 | 0.348 | 0.322 | 0.386 | 0.384 | 0.390 | 0.443 | 0.435 |
Y3.5 | Pulses, seeds, nuts | 0.475 | 0.419 | 0.422 | 0.410 | 0.465 | 0.497 | 0.582 | 0.584 | 0.560 |
Y3.6 | Eggs | 0.193 | 0.200 | 0.216 | 0.214 | 0.200 | 0.235 | 0.259 | 0.287 | 0.274 |
Y3.7 | Meat | 4.535 | 4.400 | 4.550 | 4.871 | 5.145 | 5.372 | 5.634 | 5.635 | 5.561 |
Y3.8 | Fish, shellfish | 0.436 | 0.376 | 0.385 | 0.380 | 0.393 | 0.445 | 0.502 | 0.504 | 0.525 |
Y3.9 | Milk and dairy products | 2.556 | 2.376 | 2.569 | 2.929 | 3.066 | 3.580 | 3.764 | 3.318 | 3.350 |
Y3.10 | Fats and oils | 17.520 | 18.200 | 18.985 | 21.702 | 21.152 | 23.339 | 23.958 | 23.946 | 23.965 |
Y3.11 | Sugars and sweeteners | 0.009 | 0.005 | 0.003 | 0.003 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Lower-middle-income economies | ||||||||||
Y3.1 | Cereals | 5.469 | 5.581 | 5.562 | 6.021 | 6.011 | 6.199 | 6.389 | 6.626 | 6.749 |
Y3.2 | Fruits | 0.342 | 0.343 | 0.328 | 0.384 | 0.405 | 0.408 | 0.456 | 0.506 | 0.554 |
Y3.3 | Vegetables | 0.199 | 0.210 | 0.221 | 0.273 | 0.333 | 0.372 | 0.422 | 0.491 | 0.481 |
Y3.4 | Roots, tubers, plantains | 0.259 | 0.249 | 0.264 | 0.291 | 0.305 | 0.318 | 0.338 | 0.342 | 0.348 |
Y3.5 | Pulses, seeds, nuts | 0.276 | 0.298 | 0.301 | 0.290 | 0.322 | 0.361 | 0.399 | 0.382 | 0.403 |
Y3.6 | Eggs | 0.480 | 0.488 | 0.500 | 0.664 | 0.703 | 0.801 | 0.924 | 1.041 | 1.056 |
Y3.7 | Meat | 5.413 | 5.534 | 5.956 | 7.595 | 8.002 | 8.665 | 9.883 | 10.639 | 10.763 |
Y3.8 | Fish, shellfish | 0.528 | 0.604 | 0.600 | 0.591 | 0.738 | 0.822 | 0.925 | 1.020 | 0.992 |
Y3.9 | Milk and dairy products | 2.999 | 3.028 | 3.034 | 4.752 | 5.195 | 5.618 | 5.791 | 6.169 | 6.189 |
Y3.10 | Fats and oils | 17.105 | 18.531 | 19.784 | 23.581 | 23.553 | 25.045 | 26.824 | 27.195 | 28.462 |
Y3.11 | Sugars and sweeteners | 0.003 | 0.004 | 0.005 | 0.004 | 0.004 | 0.004 | 0.005 | 0.005 | 0.005 |
Upper-middle-income economies | ||||||||||
Y3.1 | Cereals | 3.839 | 3.879 | 3.907 | 4.817 | 4.947 | 5.151 | 5.243 | 5.512 | 5.570 |
Y3.2 | Fruits | 0.617 | 0.607 | 0.549 | 0.630 | 0.694 | 0.729 | 0.801 | 0.937 | 0.977 |
Y3.3 | Vegetables | 0.245 | 0.270 | 0.282 | 0.412 | 0.467 | 0.538 | 0.564 | 0.590 | 0.583 |
Y3.4 | Roots, tubers, plantains | 0.248 | 0.247 | 0.230 | 0.280 | 0.273 | 0.288 | 0.280 | 0.301 | 0.290 |
Y3.5 | Pulses, seeds, nuts | 0.308 | 0.302 | 0.301 | 0.308 | 0.284 | 0.297 | 0.279 | 0.282 | 0.283 |
Y3.6 | Eggs | 1.124 | 1.171 | 1.284 | 1.673 | 1.752 | 2.005 | 2.200 | 2.403 | 2.509 |
Y3.7 | Meat | 9.763 | 10.367 | 10.659 | 14.646 | 15.093 | 15.746 | 17.566 | 17.871 | 18.289 |
Y3.8 | Fish, shellfish | 0.878 | 0.990 | 0.817 | 1.000 | 1.147 | 1.236 | 1.373 | 1.317 | 1.201 |
Y3.9 | Milk and dairy products | 5.265 | 5.118 | 5.496 | 8.551 | 8.906 | 9.327 | 9.495 | 9.998 | 10.091 |
Y3.10 | Fats and oils | 23.698 | 25.857 | 27.326 | 31.645 | 32.692 | 36.072 | 37.594 | 39.299 | 40.301 |
Y3.11 | Sugars and sweeteners | 0.008 | 0.008 | 0.006 | 0.007 | 0.005 | 0.004 | 0.004 | 0.004 | 0.003 |
Appendix B
Index | Variable | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|
X1 | Gross agricultural production value, USD 1 million | 807.51 | 849.99 | 1032.41 | 1483.46 | 1776.76 | 2253.33 | 3170.37 | 3464.77 | 3839.63 |
X2 | Gross per capita agricultural production index, points (2014–2016 = 100) | 93.28 | 88.71 | 83.62 | 85.94 | 88.52 | 92.13 | 102.26 | 99.14 | 100.49 |
X3 | Agricultural sector’s share of gross domestic product, % | 35.46 | 36.04 | 34.66 | 38.48 | 35.69 | 34.26 | 34.06 | 32.03 | 31.72 |
X4 | Nominal gross national income at current prices per capita, USD | 370.59 | 342.01 | 388.71 | 343.26 | 309.46 | 417.37 | 650.22 | 720.86 | 709.66 |
X5 | Commodity price index, food products, points (2000 = 100) | 183.87 | 103.35 | 121.77 | 138.85 | 100.00 | 128.44 | 231.56 | 203.50 | 194.55 |
X6 | Commodity price index, agricultural raw materials, points (2000 = 100) | 131.11 | 93.97 | 128.18 | 150.36 | 100.00 | 129.42 | 225.72 | 160.57 | 165.55 |
X7 | Consumer price index, points (2010 = 100) | 10.75 | 16.43 | 18.56 | 32.97 | 48.27 | 69.57 | 100.00 | 151.59 | 216.23 |
X8 | Total exports of food and agricultural products, USD 1 million | 57.91 | 36.36 | 43.36 | 113.49 | 108.82 | 157.98 | 294.58 | 398.84 | 492.15 |
X9 | Total imports of food and agricultural products, USD 1 million | 57.14 | 49.68 | 25.36 | 135.63 | 150.15 | 300.10 | 606.59 | 776.90 | 885.37 |
X10 | Currency exchange rate, local currency units/USD | 68.77 | 143.92 | 152.35 | 330.02 | 570.10 | 683.38 | 843.73 | 1115.71 | 1364.16 |
Index | Variable | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|
X1 | Gross agricultural production value, USD 1 million | 6379.55 | 7697.09 | 9184.69 | 11329.70 | 12871.71 | 14906.79 | 17883.47 | 20824.23 | 23289.33 |
X2 | Gross per capita agricultural production index, points (2014–2016 = 100) | 70.07 | 68.23 | 69.11 | 75.96 | 81.57 | 86.57 | 94.53 | 101.02 | 104.42 |
X3 | Agricultural sector’s share of gross domestic product, % | 23.63 | 22.26 | 22.60 | 24.73 | 22.66 | 19.58 | 17.94 | 17.21 | 16.32 |
X4 | Nominal gross national income at current prices per capita, USD | 653.71 | 584.04 | 639.42 | 734.27 | 737.89 | 1108.54 | 1799.39 | 2143.28 | 2286.77 |
X5 | Commodity price index, food products, points (2000 = 100) | 183.87 | 103.35 | 121.77 | 138.85 | 100.00 | 128.44 | 231.56 | 203.50 | 194.55 |
X6 | Commodity price index, agricultural raw materials, points (2000 = 100) | 131.11 | 93.97 | 128.18 | 150.36 | 100.00 | 129.42 | 225.72 | 160.57 | 165.55 |
X7 | Consumer price index, points (2010 = 100) | 14.68 | 18.18 | 25.61 | 40.98 | 54.20 | 69.30 | 100.00 | 135.63 | 164.39 |
X8 | Total exports of food and agricultural products, USD 1 million | 340.73 | 284.16 | 291.78 | 751.25 | 732.55 | 1262.57 | 2454.22 | 3421.79 | 3946.75 |
X9 | Total imports of food and agricultural products, USD 1 million | 265.27 | 282.76 | 335.24 | 670.25 | 716.06 | 1244.13 | 2564.81 | 3358.89 | 3855.78 |
X10 | Currency exchange rate, local currency units/USD | 28.31 | 61.82 | 250.01 | 485.26 | 867.18 | 1032.32 | 1065.55 | 1225.72 | 1441.59 |
Index | Variable | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|
X1 | Gross agricultural production value, USD 1 million | 14058.49 | 17690.97 | 20953.41 | 28448.85 | 32940.97 | 38623.30 | 44410.85 | 50580.01 | 53064.79 |
X2 | Gross per capita agricultural production index, points (2014–2016 = 100) | 84.00 | 83.88 | 82.65 | 93.40 | 91.98 | 95.25 | 97.31 | 99.96 | 101.07 |
X3 | Agricultural sector’s share of gross domestic product, % | 11.91 | 10.95 | 11.02 | 15.21 | 11.46 | 9.63 | 8.45 | 8.14 | 7.73 |
X4 | Nominal gross national income at current prices per capita, USD | 1491.07 | 1291.79 | 1673.61 | 2340.99 | 2440.59 | 3653.83 | 6040.82 | 6638.53 | 7091.28 |
X5 | Commodity price index, food products, points (2000 = 100) | 183.87 | 103.35 | 121.77 | 138.85 | 100.00 | 128.44 | 231.56 | 203.50 | 194.55 |
X6 | Commodity price index, agricultural raw materials, points (2000 = 100) | 131.11 | 93.97 | 128.18 | 150.36 | 100.00 | 129.42 | 225.72 | 160.57 | 165.55 |
X7 | Consumer price index, points (2010 = 100) | 7.41 | 10.32 | 15.27 | 34.01 | 53.00 | 72.17 | 100.00 | 136.00 | 163.24 |
X8 | Total exports of food and agricultural products, USD 1 million | 862.48 | 915.05 | 1231.47 | 2286.01 | 2226.51 | 3979.44 | 7686.02 | 9504.70 | 10956.62 |
X9 | Total imports of food and agricultural products, USD 1 million | 391.25 | 253.92 | 521.82 | 1551.42 | 1544.82 | 2698.25 | 5783.36 | 7202.73 | 8428.83 |
X10 | Currency exchange rate, local currency units/USD | 28.77 | 58.96 | 128.06 | 287.84 | 643.25 | 804.01 | 766.54 | 1386.69 | 1726.99 |
References
- Asai, M.; Mahler, D.G.; Malgioglio, S.; Narayan, A.; Nguyen, M.C. Which Countries Reduced Poverty Rates the Most? Available online: https://blogs.worldbank.org/opendata/which-countries-reduced-poverty-rates-most (accessed on 26 April 2021).
- Barne, D.; Wadhwa, D. Year in Review: 2018 in 14 Charts. Available online: https://www.worldbank.org/en/news/feature/2018/12/21/year-in-review-2018-in-14-charts (accessed on 26 April 2021).
- Food and Agriculture Organization of the United Nations; International Fund for Agricultural Development; United Nations Children’s Fund; World Food Programme; World Health Organization. The State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable Healthy Diets; FAO: Rome, Italy, 2020. [Google Scholar]
- Meira, A.; Givisiez, P.; Souza, F.G.; De Leon, C.; Azevedo, P.; Silva, N.; Oliveira, C. Food Security and Safety Mismatch in Low-Income Settings: Evidence from Milk Produced by Smallholders in Semiarid Paraiba, Northeastern Brazil. J. Arid. Environ. 2021, 188, 104453. [Google Scholar] [CrossRef]
- Arce, S.; Ottaviano, F.; Sosa, M. Sensory Acceptability, Consumption Frequency, and Factors Associated with Consumption of Fruits and Vegetables Among Low and Medium Income Consumers in Argentina. J. Sens. Stud. 2021, 36, 12632. [Google Scholar] [CrossRef]
- Laborde, D.; Martin, W.; Swinnen, J.; Vos, R. COVID-19 Risks to Global Food Security. Science 2020, 369, 500–502. [Google Scholar] [CrossRef]
- Metta, K.; Olabisi, L.; Wallace, R. A System Dynamics Approach to Examining Household Food Insecurity. J. Agric. Food Syst. Community Dev. 2021, 10, 455–472. [Google Scholar] [CrossRef]
- Swinnen, J.; Vos, R. COVID-19 Impacts on Global Food Systems and Household Welfare: Key Insights from the Special Issue. Agric. Econ. 2021, 52, 365–374. [Google Scholar] [CrossRef]
- Rahaman, A.; Kumari, A.; Zeng, X.; Khalifa, I.; Farooq, M.; Singh, N.; Ali, S.; Alee, M.; Aadil, R. The Increasing Hunger Concern and Current Need in the Development of Sustainable Food Security in the Developing Countries. Trends Food Sci. Technol. 2021, 113, 423–429. [Google Scholar] [CrossRef]
- Erokhin, V.; Gao, T. Impacts of COVID-19 on Trade and Economic Aspects of Food Security: Evidence from 45 Developing Countries. Int. J. Environ. Res. Public Health 2020, 17, 5775. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations; World Health Organization. Sustainable Healthy Diets–Guiding Principles; FAO: Rome, Italy, 2019; pp. 5–15. [Google Scholar]
- World Food Programme. COVID-19 Will Double Number of People Facing Food Crises Unless Swift Action Is Taken. Available online: https://www.wfpusa.org/news-release/covid-19-will-double-number-of-peoplefacing-food-crises-unless-swift-action-is-taken/ (accessed on 27 April 2021).
- Kose, M.A.; Nagle, P.; Ohnsorge, F.; Sugawara, N. Global Waves of Debt: Causes and Consequences; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Huang, G.; Tsai, F. Social Innovation for Food Security and Tourism Poverty Alleviation: Some Examples from China. Front. Psychol. 2021, 12, 614469. [Google Scholar] [CrossRef]
- Laborde, D.; Martin, W.; Vos, R. Impacts of COVID-19 on Global Poverty, Food Security and Diets. Agric. Econ. 2021, 52, 375–390. [Google Scholar] [CrossRef]
- Alarcon, P.; Dominguez-Salas, P.; Fevre, E.; Rushton, J. The Importance of a Food Systems Approach to Low and Middle Income Countries and Emerging Economies: A Review of Theories and Its Relevance for Disease Control and Malnutrition. Front. Sustain. Food Syst. 2021, 5, 642635. [Google Scholar] [CrossRef]
- Rousham, E.; Pradeilles, R.; Akparibo, R.; Aryeetey, R.; Bash, K.; Booth, A.; Muthuri, S.; Osei-Kwasi, H.; Marr, C.; Norris, T.; et al. Dietary Behaviours in the Context of Nutrition Transition: A Systematic Review and Meta-Analyses in Two African Countries. Public Health Nutr. 2020, 23, 1948–1964. [Google Scholar] [CrossRef] [PubMed]
- Global Nutrition Report. 2020 Global Nutrition Report: Action on Equity to End Malnutrition; Development Initiatives: Bristol, UK, 2020. [Google Scholar]
- Heady, D.; Heidkamp, R.; Osendarp, S.; Ruel, M.; Scott, N.; Black, R.; Shekar, M.; Bouis, H.; Flory, A.; Haddad, L.; et al. Impacts of COVID-19 on Childhood Malnutrition and Nutrition-Related Mortality. Lancet 2020, 396, 519–521. [Google Scholar] [CrossRef]
- Global Panel on Agriculture and Food Systems for Nutrition. The Cost of Malnutrition: Why Policy Action Is Urgent; Global Panel: London, UK, 2016. [Google Scholar]
- Hirvonen, K.; Minten, B.; Mohammed, B.; Tamru, S. Food Prices and Marketing Margins during the COVID-19 Pandemic: Evidence from Vegetable Value Chains in Ethiopia. Agric. Econ. 2021, 52, 407–421. [Google Scholar] [CrossRef]
- World Health Organization. Prevalence of Anaemia in Women of Reproductive Age–Estimates by Country; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- World Health Organization. Vitamin and Mineral Nutrition Information System (VMNIS)–Micronutrients Database; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Conner, D.S.; Levine, R. Circles of Association: The Connections of Community-Based Food Systems. J. Hunger Environ. Nutr. 2007, 1, 5–25. [Google Scholar] [CrossRef]
- Fleischer, N.; Liese, A.; Hammond, R.; Coleman-Jensen, A.; Gundersen, C.; Hirschman, J.; Frongillo, E.; Ma, X.; Mehta, N.; Jones, S. Using Systems Science to Gain Insight into Childhood Food Security in the United States: Report of an Expert Mapping Workshop. J. Hunger Environ. Nutr. 2017, 13, 362–384. [Google Scholar] [CrossRef]
- Strack, F.; Deutsch, R. Reflective and Impulsive Determinants of Social Behavior. Personal. Soc. Psychol. Rev. 2004, 8, 220–247. [Google Scholar] [CrossRef] [PubMed]
- Mackenbach, J.D. Healthy Eating: A Matter of Prioritisation by Households or Policymakers? Public Health Nutr. 2021, 24, 1851–1853. [Google Scholar] [CrossRef] [PubMed]
- Jetter, K.M.; Adkins, J.; Cortez, S.; Hopper, G.K., Jr.; Shively, V.; Styne, D.M. Yes We Can: Eating Healthy on a Limited Budget. J. Nutr. Educ. Behav. 2019, 51, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Ranjit, N.; Macias, S.; Hoelscher, D. Factors Related to Poor Diet Quality in Food Insecure Populations. Transnatl. Behav. Med. 2020, 10, 1297–1305. [Google Scholar] [CrossRef]
- Prabhakar, A.C.; Kaur, G.; Erokhin, V. Regional Trade and Development Strategies in the Era of Globalization; IGI Global: Hershey, PA, USA, 2020. [Google Scholar] [CrossRef]
- Sen, A. Poverty and Famines: An Essay on Entitlement and Deprivation; Oxford University Press: Oxford, UK, 1983. [Google Scholar]
- Urgell-Lahuerta, C.; Carrillo-Alvarez, E.; Salinas-Roca, B. Interventions on Food Security and Water Uses for Improving Nutritional Status of Pregnant Women and Children Younger Than Five Years in Low-Middle Income Countries: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 4799. [Google Scholar] [CrossRef]
- Malaiarasan, U.; Paramasivam, R.; Felix, T. Does Food Price Subsidy Affect Dietary Diversity? Evidence from South India. Margin–J. Appl. Econ. Res. 2021, 15, 268–290. [Google Scholar] [CrossRef]
- Herrera-Cuenca, M.; Jimenez, M.L.; Sifontes, Y. Challenges in Food Security, Nutritional, and Social Public Policies for Venezuela: Rethinking the Future. Front. Sustain. Food Syst. 2021, 5, 635981. [Google Scholar] [CrossRef]
- Beaulac, J.; Kristjansson, E.; Cummins, S. A Systematic Review of Food Deserts, 1966–2007. Prev. Chronic Dis. 2009, 6, A105. [Google Scholar]
- Hendrickson, D.; Smith, C.; Eikenberry, N. Fruit and Vegetable Access in Four Low-Income Food Deserts Communities in Minnesota. Agric. Hum. Values 2006, 23, 371–383. [Google Scholar] [CrossRef]
- Rizky Maulidiana, A.; Sutjiati, E. Low Intake of Essential Amino Acids and Other Risk Factors of Stunting Among Under-Five Children in Malang City, East Java, Indonesia. J. Public Health Res. 2021, 10, 2161. [Google Scholar] [CrossRef] [PubMed]
- Smita; Rajpal, S.; Lu, S.-Y.; Joe, W. Why Market Orientation Matters for Agriculture and Fishery Workers? Unravelling the Association Between Households’ Occupational Background and Caloric Deprivation in India. BMC Public Health 2021, 21, 681. [Google Scholar] [CrossRef] [PubMed]
- Carpio, C.; Kalenkoski, C.; Moyeda-Carabaza, A.; Murimi, M. The Effect of Time Use and Food Cost on Dietary Quality. Public Health Nutr. 2020, 23, 3284–3294. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Shang, X.; Chen, Y. Household Dairy Demand by Income Groups in an Urban Chinese Province: A Multistage Budgeting Approach. Agribusiness 2020. [Google Scholar] [CrossRef]
- Sarica, D.; Demircan, V.; Erturk, A.; Arslantas, N. An Econometric Analysis of the Factors Affecting Consumers’ Bread Waste and Consumption Behaviour: A Case Study of Isparta Province, Turkey. Br. Food J. 2021, 123, 1449–1464. [Google Scholar] [CrossRef]
- Sikandar, F.; Erokhin, V.; Shu, W.H.; Rehman, S.; Ivolga, A. The Impact of Foreign Capital Inflows on Agriculture Development and Poverty Reduction: Panel Data Analysis for Developing Countries. Sustainability 2021, 13, 3242. [Google Scholar] [CrossRef]
- Qiu, H.; Leng, G.; Feng, X.; Yang, S. Effects of the Poverty Alleviation Relocation Program on Diet Quality Among Low-Income Households. China Agric. Econ. Rev. 2020. [Google Scholar] [CrossRef]
- World Health Organization. Double-Duty Actions for Nutrition. Policy Brief; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Hussein, M.; Law, C.; Fraser, I. An Analysis of Food Demand in a Fragile and Insecure Country: Somalia as a Case Study. Food Policy 2021, 101, 102092. [Google Scholar] [CrossRef]
- Reeves, A.; Loopstra, R.; Stuckler, D. The Growing Disconnect between Food Prices and Wages in Europe: Cross-National Analysis of Food Deprivation and Welfare Regimes in Twenty-One EU Countries, 2004–2012. Public Health Nutr. 2017, 20, 1414–1422. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, K. Food Insecurity, Income Inequality, and the Changing Comparative Advantage in World Agriculture. Agric. Econ. 2013, 44, 7–18. [Google Scholar] [CrossRef]
- Power, E.M. Determinants of Healthy Eating Among Low-Income Canadians. Can. J. Public Health 2005, 96, 537–542. [Google Scholar]
- Esturk, O.; Ören, M.N. Impact of Household Socio-Economic Factors on Food Security: Case of Adana. Pak. J. Nutr. 2013, 13, 1–6. [Google Scholar] [CrossRef]
- Smith, L.C.; El Obeid, A.E.; Jensen, H.H. The Geography and Causes of Food Insecurity in Developing Countries. Agric. Econ. 2000, 22, 199–215. [Google Scholar] [CrossRef]
- Sonnino, R.; Faus, A.M.; Maggio, A. Sustainable Food Security: An Emerging Research and Policy Agenda. Int. J. Sociol. Agric. Food 2014, 21, 173–188. [Google Scholar]
- Elbushra, A.A.; Ahmed, A.E. Food Security in Sudan: A Historical Analysis of Food Availability. Iraqi J. Agric. Sci. 2020, 51, 422–431. [Google Scholar] [CrossRef][Green Version]
- Ritchie, H.; Reay, D.; Higgins, P. Sustainable Food Security in India–Domestic Production and Macronutrient Availability. PLoS ONE 2018, 13, e0193766. [Google Scholar] [CrossRef]
- Thome, K.; Meade, B.; Rosen, S.; Beghin, J.C. Assessing Food Security in Ethiopia. In World Agricultural Resources and Food Security (Frontiers of Economics and Globalization, Vol. 17); Schmitz, A., Kennedy, P.L., Schmitz, T.G., Eds.; Emerald Publishing Limited: Bingley, UK, 2017; pp. 207–219. [Google Scholar]
- Collins, S.M.; Owuor, P.M.; Miller, J.D.; Boateng, G.O.; Wekesa, P.; Onono, M.; Young, S.L. I Know How Stressful It Is to Lack Water! Exploring the Lived Experiences of Household Water Insecurity Among Pregnant and Postpartum Women in Western Kenya. Glob. Public Health 2019, 14, 649–662. [Google Scholar] [CrossRef]
- Smith, V.; Glauber, J. Trade, Policy, and Food Security. Agric. Econ. 2020, 51, 159–171. [Google Scholar] [CrossRef]
- Erokhin, V. Establishing Food Security and Alternatives to International Trade in Emerging Economies; IGI Global: Hershey, PA, USA, 2018. [Google Scholar] [CrossRef]
- Chavas, J.-P.; Hummels, D.; Wright, B.D. The Economics of Food Price Volatility; University of Chicago Press: Chicago, IL, USA, 2014. [Google Scholar]
- Erokhin, V.; Gao, T. Handbook of Research on Globalized Agricultural Trade and New Challenges for Food Security; IGI Global: Hershey, PA, USA, 2020. [Google Scholar] [CrossRef]
- Monterrosa, E.; Drewnowski, A.; de Pee, S.; Frongillo, E.; Vandevijvere, S. The Role of Culture, Economics, and Food Environment in Shaping Choices for Sustainable Diets. In Sustainable Healthy Diets–Guiding Principles; Food and Agriculture Organization of the United Nations: Rome, Italy; World Health Organization: Geneva, Switzerland; FAO: Rome, Italy, 2019; pp. 25–27. [Google Scholar]
- Drewnowski, A.; Popkin, B.M. The Nutrition Transition: New Trends in the Global Diet. Nutr. Rev. 1997, 55, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Haddad, L.; Hawkes, C.; Waage, J.; Webb, P.; Godfra, C.; Toulmin, C. Food Systems and Diets: Facing the Challenges of the 21st Century; Global Panel on Agriculture and Food Systems for Nutrition: London, UK, 2016. [Google Scholar]
- Yeung, M.; Kerr, W.; Coomber, B.; Lantz, M.; McConnell, A. The Importance of Trade for Food Security. In Declining International Cooperation on Pesticide Regulation; Yeung, M., Kerr, W., Coomber, B., Lantz, M., McConnell, A., Eds.; Palgrave Macmillan: Cham, Switzerland, 2017; pp. 11–18. [Google Scholar] [CrossRef]
- Verter, N. Food Security and Trade in Food Products in Nigeria. Eur. J. Sustain. Dev. 2019, 8, 527. [Google Scholar] [CrossRef]
- Hachem, F.; Vanham, D.; Moreno, L. Territorial Diets. In Sustainable Healthy Diets–Guiding Principles; Food and Agriculture Organization of the United Nations: Rome, Italy; World Health Organization: Geneva, Switzerland; FAO: Rome, Italy, 2019; pp. 29–31. [Google Scholar]
- World Health Organization. Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 26 April 2021).
- Jaffee, S.M.; Henson, S.; Unnevehr, L.J.; Delia, G.; Cassou, E. The Safe Food Imperative: Accelerating Progress in Low and Middle-Income Countries; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Wood, S.A.; Smith, M.R.; Fanzo, J.; Remans, R.; DeFries, R.S. Trade and the Equitability of Global Food Nutrient Distribution. Nat. Sustain. 2018, 1, 34–37. [Google Scholar] [CrossRef]
- Micha, R.; Coates, J.; Leclercq, C.; Charrondiere, U.R.; Mozaffarian, D. Global Dietary Surveillance: Data Gaps and Challenges. Food Nutr. Bull. 2018, 39, 175–205. [Google Scholar] [CrossRef] [PubMed]
- Imamura, F.; Micha, R.; Khatibzadeh, S.; Fahimi, S.; Shi, P.; Powles, J.; Mozaffarian, D. Dietary Quality Among Men and Women in 187 Countries in 1990 and 2010: A Systematic Assessment. Lancet Glob. Health 2015, 3, e132–e142. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Data. Available online: http://www.fao.org/faostat/en/#data (accessed on 13 April 2021).
- United Nations Conference on Trade and Development. Data Center. Available online: https://unctadstat.unctad.org/EN/ (accessed on 13 April 2021).
- World Trade Organization. Statistics on Merchandise Trade. Available online: https://www.wto.org/english/res_e/statis_e/merch_trade_stat_e.htm (accessed on 21 April 2021).
- Food and Agriculture Organization of the United Nations. FAO/WHO GIFT–Global Individual Food Consumption Data Tool. Available online: www.fao.org/gift-individual-food-consumption/en (accessed on 14 April 2021).
- Zainodin, H.J.; Khuneswari, G.; Noraini, A.; Haider, F.A.A. Selected Model Systematic Sequence via Variance Inflationary Factor. Int. J. Appl. Phys. Math. 2015, 5, 105–114. [Google Scholar] [CrossRef]
- Bowerman, B.L.; O’Connell, R.T. Linear Statistical Models: An Applied Approach; PWS-Kent Publishing Company: Boston, USA, 1990. [Google Scholar]
- Dan, L.; Vallant, R. Variance Inflation Factors in the Analysis of Complex Survey Data. Surv. Methodol. 2012, 38, 53–62. [Google Scholar]
- Gao, T.; Erokhin, V. Capturing a Complexity of Nutritional, Environmental, and Economic Impacts on Selected Health Parameters in the Russian High North. Sustainability 2020, 12, 2151. [Google Scholar] [CrossRef]
- Montgomery, D.; Peck, E.; Vining, G. Introduction to Linear Regression Analysis; Wiley: New York, NY, USA, 2012. [Google Scholar]
- Kutner, M.; Nachtsheim, C.; Neter, J.; Li, W. Applied Linear Statistical Models; McGraw-Hill/Irwin: New York, NY, USA, 2005. [Google Scholar]
- Snee, R.D. Some Aspects of Nonorthogonal Data Analysis, Part I. Developing Prediction Equations. J. Qual. Technol. 1973, 5, 67–79. [Google Scholar] [CrossRef]
- Levine, D.M.; Stephan, D.F.; Szabat, K.A. Statistics for Managers. Using Microsoft Excel; Pearson: London, UK, 2017. [Google Scholar]
- Johnsson, T. A Procedure for Stepwise Regression Analysis. Stat. Pap. 1992, 33, 21–29. [Google Scholar] [CrossRef]
- Zhou, X.; Jiang, T. Metamodel Selection Based on Stepwise Regression. Struct. Multidiscip. Optim. 2016, 54, 641–657. [Google Scholar] [CrossRef]
- Evans, R.D. Two Experiments with Stepwise Regression. J. Econ. Finance 1991, 15, 35–42. [Google Scholar]
- Qi, Y.; Liu, G.; Zhang, W. A Matlab Program for Stepwise Regression. Netw. Pharmacol. 2016, 1, 36–41. [Google Scholar]
- Gupta, S.S. On Some Multiple Decision (Selection and Ranking) Rules. Technometrics 1965, 7, 225–245. [Google Scholar] [CrossRef]
- Hosmer, D.; Jovanovic, B.; Lemeshow, S. Best Subsets Logistic Regression. Biometrics 1989, 45, 1265–1270. [Google Scholar] [CrossRef]
- Sullivan, D.W.; Wilson, J.R. Restricted Subset Selection Procedures for Simulation. Oper. Res. 1989, 37, 52–71. [Google Scholar] [CrossRef]
- Tamura, R.; Kobayashi, K.; Takano, Y.; Miyashiro, R.; Nakata, K.; Matsui, T. Best Subset Selection for Eliminating Multicollinearity. J. Oper. Res. Soc. Jpn. 2017, 60, 321–336. [Google Scholar] [CrossRef][Green Version]
- Erokhin, V. Measuring Food and Nutrition Security in Circumpolar Communities. Macro Manag. Public Policies 2019, 2, 18–28. [Google Scholar] [CrossRef]
- Lambert, J.; Gong, L.; Elliott, C.; Thompson, K.; Stromberg, A. rFSA: An R Package for Finding Best Subsets and Interactions. R J. 2018, 10, 295–308. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Lee, S. Best Subset Binary Prediction. J. Econom. 2018, 206, 39–56. [Google Scholar] [CrossRef]
- Erokhin, V. Health-Related Effects of Food and Nutrition Security: An Evidence of the Northern Communities in Russia. West. Balk. J. Agric. Econ. Rural Dev. 2019, 1, 11–28. [Google Scholar] [CrossRef]
- Rencher, A.; Pun, F.C. Inflation of R2 in Best Subset Regression. Technometrics 1980, 22, 49–53. [Google Scholar] [CrossRef]
- Ermakov, V.; Barbaumov, V.; Kriventsova, N.; Lebedev, A.; Matveev, V.; Rudyk, B.; Silaeva, E.; Smagina, O. Handbook on Mathematics for Economists; Plekhanov Russian University of Economics: Moscow, Russia, 2007. [Google Scholar]
- Nikolov, N.; Stoimenova, E. Mallows’ Models for Imperfect Ranking in Ranked Set Sampling. AStA Adv. Stat. Anal. 2019. [Google Scholar] [CrossRef]
- Alshqaq, S.; Abuzaid, A. On the Robustness of Mallows’ Cp Criterion. Commun. Stat. Simul. Comput. 2021. [Google Scholar] [CrossRef]
- Hansen, B.E. Least Squares Model Averaging. Econometrica 2007, 75, 1175–1189. [Google Scholar] [CrossRef]
- Irurozki, E.; Calvo, B.; Lozano, J. Mallows and Generalized Mallows Model for Matchings. Bernoulli 2019, 25, 1160–1188. [Google Scholar] [CrossRef]
- Liao, J.; Zou, G. Corrected Mallows Criterion for Model Averaging. Comput. Stat. Data Anal. 2020, 144, 106902. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Q.; Okui, R. On the Sparsity of Mallows Model Averaging Estimator. Econ. Lett. 2020, 187, 108916. [Google Scholar] [CrossRef]
- Aydin, D.; Yilmaz, E. Truncation Level Selection in Nonparametric Regression Using Pade Approximation. Commun. Stat. Simul. Comput. 2021, 50, 744–763. [Google Scholar] [CrossRef]
- World Bank. World Bank Country and Lending Groups. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (accessed on 14 April 2021).
- Erokhin, V.; Li, D.; Du, P. Sustainability-Related Implications of Competitive Advantages in Agricultural Value Chains: Evidence from Central Asia–China Trade and Investment. Sustainability 2020, 12, 1117. [Google Scholar] [CrossRef]
- Katzer, N. Obsessed by Efficiency and Productivity in Agriculture? Krit. Explor. Russ. Eurasian Hist. 2021, 22, 210–218. [Google Scholar] [CrossRef]
- Constantin, M.; Radulescu, I.D.; Andrei, J.V.; Chivu, L.; Erokhin, V.; Gao, T. A Perspective on Agricultural Labor Productivity and Greenhouse Gas Emissions in Context of the Common Agricultural Policy Exigencies. Econ. Agric. 2021, 68, 53–67. [Google Scholar] [CrossRef]
- Erokhin, V. Factors Influencing Food Markets in Developing Countries: An Approach to Assess Sustainability of the Food Supply in Russia. Sustainability 2017, 9, 1313. [Google Scholar] [CrossRef]
- Johnson, D.G. World Agriculture, Commodity Policy, and Price Variability. Am. J. Agric. Econ. 1975, 57, 823–828. [Google Scholar] [CrossRef]
- Ivanic, M.; Martin, W. Implications of Higher Global Food Prices for Poverty in Low-Income Countries. Agric. Econ. 2008, 39, 405–416. [Google Scholar] [CrossRef]
- Abbott, P. Export Restrictions as Stabilization Responses to Food Crisis. Am. J. Agric. Econ. 2011, 94, 428–434. [Google Scholar] [CrossRef]
- Anderson, K.; Nelgen, S. Trade Barrier Volatility and Agricultural Price Stabilization. World Dev. 2012, 40, 36–48. [Google Scholar] [CrossRef]
- Ma, L.; Feng, S.; Reidsma, P.; Qu, F.; Heerink, N. Identifying Entry Points to Improve Fertilizer Use Efficiency in Taihu Basin, China. Land Use Policy 2014, 37, 52–59. [Google Scholar] [CrossRef]
- Smith, L.E.D.; Siciliano, G. A Comprehensive Review of Constraints to Improved Management of Fertilizers in China and Mitigation of Diffuse Water Pollution from Agriculture. Agric. Ecosyst. Environ. 2015, 209, 15–25. [Google Scholar] [CrossRef]
- Galeana-Pizana, M.; Couturier, S.; Figueroa, D.; Jimenez, A.D. Is Rural Food Security Primarily Associated with Smallholder Agriculture or with Commercial Agriculture?: An Approach to the Case of Mexico Using Structural Equation Modeling. Agric. Syst. 2021, 190, 103091. [Google Scholar] [CrossRef]
- Van Wesenbeeck, C.F.A.; Keyzer, M.A.; Van Veen, W.C.M.; Qiu, H. Can China’s Overuse of Fertilizer Be Reduced without Threatening Food Security and Farm Incomes? Agric. Syst. 2021, 190, 103093. [Google Scholar] [CrossRef]
- Ju, X.; Kou, C.; Zhang, F.; Christie, P. Nitrogen Balance and Groundwater Nitrate Contamination: Comparison among Three Intensive Cropping Systems on the North China Plain. Environ. Pollut. 2006, 143, 117–125. [Google Scholar] [CrossRef]
- Chen, N.; Widjajanto, D.W.; Zheng, Y. Soil Problems in China and Its Lessons for Other Developing Countries. IOP Conf. Ser. Earth Environ. Sci. 2017, 102, 012001. [Google Scholar] [CrossRef]
- Kahrl, F.; Li, Y.; Su, Y.; Tennigkeit, T.; Wilkes, A.; Xu, J. Greenhouse Gas Emissions from Nitrogen Fertilizer Use in China. Environ. Sci. Policy 2010, 13, 688–694. [Google Scholar] [CrossRef]
- Li, B.; Huang, S.; Wei, M.; Zhang, H.; Shen, A.; Xu, J.; Ruan, X. Dynamics of Soil and Grain Micronutrients as Affected by Long-Term Fertilization in an Aquic Inceptisol. Pedosphere 2010, 20, 725–735. [Google Scholar] [CrossRef]
- Mihajlov, A.; Puda, A. Climate-Responsible Diet; Environmental Ambassadors for Sustainable Development: Belgrade, Serbia, 2020. [Google Scholar]
- Piras, S.; Pancotto, F.; Righi, S.; Vittuari, M.; Setti, M. Community Social Capital and Status: The Social Dilemma of Food Waste. Ecol. Econ. 2021, 183, 106954. [Google Scholar] [CrossRef]
- Eini-Zinab, H.; Sobhani, S.R.; Rezazadeh, A. Designing a Healthy, Low-Cost and Environmentally Sustainable Food Basket: An Optimisation Study. Public Health Nutr. 2021, 24, 1952–1961. [Google Scholar] [CrossRef]
- Ecker, O.; Hatzenbuehler, P. Food Consumption-Production Response to Agricultural Policy and Macroeconomic Change in Nigeria. Appl. Econ. Perspect. Policy 2021. [Google Scholar] [CrossRef]
- Vermeulen, S.; Campbell, B.; Ingram, J. Climate Change and Food Systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef]
- Myers, S.; Smith, M.; Guth, S.; Golden, C.; Vaitla, B.; Mueller, N.; Dangour, A.; Huybers, P. Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annu. Rev. Public Health 2017, 38, 259–277. [Google Scholar] [CrossRef] [PubMed]
- Hanson, K.L.; Connor, L.M. Food Insecurity and Dietary Quality in US Adults and Children: A Systematic Review. Am. J. Clin. Nutr. 2014, 100, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.M.; Sharkey, J.R.; Lackey, M.J.; Adair, L.S.; Aiello, A.E.; Bowen, S.K.; Fang, W.; Flax, V.L.; Ammerman, A.S. Relationship of Food Insecurity to Women’s Dietary Outcomes: A Systematic Review. Nutr. Rev. 2018, 76, 910–928. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.W.; Epel, E.S.; Ritchie, L.D.; Crawford, P.B.; Laraia, B.A. Food Insecurity Is Inversely Associated with Diet Quality of Lower-Income Adults. J. Acad. Nutr. Diet. 2014, 114, 1943–1953. [Google Scholar] [CrossRef] [PubMed]
- Green, R.; Cornelsen, L.; Dangour, A.D.; Turner, R.; Shankar, B.; Mazzocchi, M.; Smith, R.D. The Effect of Rising Food Prices on Food Consumption: Systematic Review with Meta-Regression. BMJ 2013, 346, f3703. [Google Scholar] [CrossRef]
- Mundo-Rosas, V.; de la Cruz-Góngora, V.; Jiménez-Aguilar, A.; Shamah-Levy, T. Dietary Diversity and Nutrient Intake in Children 24 to 59 Months Old and Their Association with Food Insecurity. Salud Publica De Mex. 2014, 56 (Suppl. S1), S39–S46. [Google Scholar] [CrossRef]
- Ballard, T.; Kepple, A.; Cafiero, C. The Food Insecurity Experience Scale: Development of a Global Standard for Monitoring Hunger Worldwide; FAO: Rome, Italy, 2013. [Google Scholar]
- Vega-Macedo, M.; Shamah-Levy, T.; Peinador-Roldán, R.; Méndez-Gómez Humarán, I.; Melgar-Quiñónez, H. Food Insecurity and Variety of Food in Mexican Households with Children Under Five Years. Salud Publica De Mex. 2014, 56 (Suppl. S1), S21–S30. [Google Scholar] [CrossRef][Green Version]
- Stewart, H.; Hyman, J.; Dong, D.; Carlson, A. The More That Households Prioritise Healthy Eating, the Better They Can Afford to Consume a Sufficient Quantity and Variety of Fruits and Vegetables. Public Health Nutr. 2021, 24, 1841–1850. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations; World Health Organization. Fruit and Vegetables for Health; FAO: Rome, Italy, 2004. [Google Scholar]
- World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Hall, J.; Moore, S.; Harper, S.; Lynch, J. Global Variability in Fruit and Vegetable Consumption. Am. J. Prev. Med. 2009, 36, 402–409. [Google Scholar] [CrossRef]
- Afshin, A.; Sur, P.J.; Fay, K.; Cornaby, L.; Ferrara, G.; Salama, J.; Mullany, E.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health Effects of Dietary Risks in 195 Countries, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Ryckman, T.; Beal, T.; Nordhagen, S.; Murira, Z.; Torlesse, H. Affordability of Nutritious Foods for Complementary Feeding in South Asia. Nutr. Rev. 2021, 79, 52–68. [Google Scholar] [CrossRef]
- Herforth, A.; Ahmed, S. The Food Environment, Its Effects on Dietary Consumption, and Potential for Measurement within Agriculture-Nutrition Interventions. Food Secur. 2015, 7, 505–520. [Google Scholar] [CrossRef]
- Dizon, F.; Herforth, A.; Wang, Z. The Cost of a Nutritious Diet in Afghanistan, Bangladesh, Pakistan, and Sri Lanka. Glob. Food Secur. 2019, 21, 38–51. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Powell, L.M.; Chen, X.; Wang, Y. Food Prices Are Associated with Dietary Quality, Fast Food Consumption, and Body Mass Index Among U.S. Children and Adolescents. J. Nutr. 2011, 141, 304–311. [Google Scholar] [CrossRef]
- Grossman, M.; Tekin, E.; Wada, R. Food Prices and Body Fatness Among Youths. Econ. Hum. Biol. 2014, 12, 4–19. [Google Scholar] [CrossRef]
- Headey, D.D.; Alderman, H.H. The Relative Caloric Prices of Healthy and Unhealthy Foods Differ Systematically Across Income Levels and Continents. J. Nutr. 2019, 149, 2020–2033. [Google Scholar] [CrossRef] [PubMed]
- Ryckman, T.; Beal, T.; Nordhagen, S.; Chimanya, K.; Matji, J. Affordability of Nutritious Foods for Complementary Feeding in Eastern and Southern Africa. Nutr. Rev. 2021, 79, 35–51. [Google Scholar] [CrossRef]
- Morris, S.S.; Garg, A.; Black, R.E. Nutrient Gaps and Affordability of Complementary Foods in Eastern and Southern Africa and South Asia. Nutr. Rev. 2021, 79, 1–3. [Google Scholar] [CrossRef] [PubMed]
- World Cancer Research Fund; American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective; World Cancer Research Fund: London, UK, 2018. [Google Scholar]
- Bakalis, S.; Valdramidis, V.; Argyropoulos, D.; Ahrne, L.; Chen, J.; Cullen, P.; Cummins, E.; Datta, A.; Emmanouilidis, C.; Foster, T.; et al. Perspectives from CO+RE: How COVID-19 Changed Our Food Systems and Food Security Paradigms. Curr. Res. Food Sci. 2020, 3, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.P.; Haddix, A.; Barnett, K. Incremental Health Care Costs Associated with Food Insecurity and Chronic Conditions among Older Adults. Prev. Chronic Dis. 2018, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Berkowitz, S.A.; Basu, S.; Meigs, J.B.; Seligman, H.K. Food Insecurity and Health Care Expenditures in the United States, 2011–2013. Health Serv. Res. 2018, 53, 1600–1620. [Google Scholar] [CrossRef] [PubMed]
- Gundersen, C.; Ziliak, J.P. Food Insecurity and Health Outcomes. Health Aff. 2015, 34, 1830–1839. [Google Scholar] [CrossRef] [PubMed]
- Dorce, L.C.; da Silva, M.C.; Mauad, J.R.C.; Domingues, C.H.D.; Borges, J.A.R. Extending the Theory of Planned Behavior to Understand Consumer Purchase Behavior for Organic Vegetables in Brazil: The Role of Perceived Health Benefits, Perceived Sustainability Benefits and Perceived Price. Food Qual. Prefer. 2021, 91, 104191. [Google Scholar] [CrossRef]
- Panait, M.; Erokhin, V.; Andrei, J.V.; Gao, T. Implication of TNCs in Agri-Food Sector–Challenges, Constraints and Limits–Profit or CSR? Strateg. Manag. 2020, 20, 33–43. [Google Scholar] [CrossRef]
- Chandra, H.; Aditya, K.; Gupta, S.; Guha, S.; Verma, B. Food and Nutrition in the Indo-Gangetic Plain Region-A Disaggregate Level Analysis. Curr. Sci. 2020, 119, 1783–1788. [Google Scholar] [CrossRef]
- Kern, D.M.; Auchincloss, A.H.; Robinson, L.F.; Stehr, M.F.; Pham-Kanter, G. Healthy and Unhealthy Food Prices across Neighborhoods and Their Association with Neighborhood Socioeconomic Status and Proportion Black/Hispanic. J. Urban Health 2017, 94, 494–505. [Google Scholar] [CrossRef]
- Bai, Y.; Alemu, R.; Block, S.A.; Headey, D.; Masters, W.A. Cost and Affordability of Nutritious Diets at Retail Prices: Evidence from 177 Countries. Food Policy 2021, 99, 101983. [Google Scholar] [CrossRef]
- Van Hoyweghen, K.; Fabry, A.; Feyaerts, H.; Wade, I.; Maertens, M. Resilience of Global and Local Value Chains to the Covid-19 Pandemic: Survey Evidence from Vegetable Value Chains in Senegal. Agric. Econ. 2021, 52, 423–440. [Google Scholar] [CrossRef]
- Shahzad, M.; Qing, P.; Rizwan, M.; Razzaq, A.; Faisal, M. COVID-19 Pandemic, Determinants of Food Insecurity, and Household Mitigation Measures: A Case Study of Punjab, Pakistan. Healthcare 2021, 9, 621. [Google Scholar] [CrossRef]
- Ceballos, F.; Hernandez, M.; Paz, C. Short-Term Impacts of COVID-19 on Food Security and Nutrition in Rural Guatemala: Phone-Based Farm Household Survey Evidence. Agric. Econ. 2021, 52, 477–494. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.; D’Souza, A.; Meade, B.; Micha, R.; Mozaffarian, D. How Income and Food Prices Influence Global Dietary Intakes by Age and Sex: Evidence from 164 Countries. BMJ Glob. Health 2017, 2, e000184. [Google Scholar] [CrossRef] [PubMed]
- Allee, A.; Lynd, L.; Vaze, V. Cross-National Analysis of Food Security Drivers: Comparing Results Based on the Food Insecurity Experience Scale and Global Food Security Index. Food Secur. 2021. [Google Scholar] [CrossRef]
- Erokhin, V. Self-Sufficiency versus Security: How Trade Protectionism Challenges the Sustainability of the Food Supply in Russia. Sustainability 2017, 9, 1939. [Google Scholar] [CrossRef]
- Popkin, B.M. The Nutrition Transition in Low-Income Countries: An Emerging Crisis. Nutr. Rev. 1994, 52, 285–298. [Google Scholar] [CrossRef]
- Bonaccio, M.; Di Castelnuovo, A.; Bonanni, A.; Costanzo, S.; Persichillo, M.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Socioeconomic Status and Impact of the Economic Crisis on Dietary Habits in Italy: Results from the INHES Study. J. Public Health 2018, 40, 703–712. [Google Scholar] [CrossRef]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global Nutrition Transition and the Pandemic of Obesity in Developing Countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Annim, S.K.; Frempong, R.B. Effects of Access to Credit and Income on Dietary Diversity in Ghana. Food Secur. 2018, 10, 1649–1663. [Google Scholar] [CrossRef]
- Lewis, M.; McNaughton, S.; Rychetnik, L.; Lee, A. A Systematic Scoping Review of the Habitual Dietary Costs in Low Socioeconomic Groups Compared to High Socioeconomic Groups in Australia. Nutr. J. 2020, 19, 139. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Shoemaker, S.P. A Look at Food Security in China. NPJ Sci. Food 2018, 2, 4. [Google Scholar] [CrossRef]
- Fu, J.; Lyu, D.; Sun, J. China’s Grain Trade Research Based on DEA Model of National Food Security Perspective: Soybean as an Example. Tech. Gaz. 2021, 28, 609–615. [Google Scholar] [CrossRef]
- Liu, Y.; Zhuo, L.; Varis, O.; Fang, K.; Liu, G.; Wu, P. Enhancing Water and Land Efficiency in Agricultural Production and Trade Between Central Asia and China. Sci. Total Environ. 2021, 780, 146584. [Google Scholar] [CrossRef] [PubMed]
- Hodges, J.; Kimball, A.M. The Global Diet: Trade and Novel Infections. Glob. Health 2005, 1, 4. [Google Scholar] [CrossRef]
- Fanzo, J.; Davis, C. Transformations Across Diets and Food Systems. In Global Food Systems, Diets, and Nutrition; Fanzo, J., Davis, C., Eds.; Palgrave Macmillan: Cham, Switzerland, 2021; pp. 71–84. [Google Scholar] [CrossRef]
- De Raymond, A.B.; Alpha, A.; Ben-Ari, T.; Daviron, B.; Nesme, T.; Tetart, G. Systemic Risk and Food Security. Emerging Trends and Future Avenues for Research. Glob. Food Secur. Agric. Policy Econ. Environ. 2021, 29, 100547. [Google Scholar] [CrossRef]
- Hendrix, C.S. Wrong Tools, Wrong Time: Food Export Bans in the Time of COVID-19. Available online: https://www.piie.com/blogs/realtime-economic-issues-watch/wrong-tools-wrong-time-foodexport-bans-time-covid-19 (accessed on 1 July 2021).
- Frankenberg, E.; Thomas, D. Human Capital and Shocks: Evidence on Education, Health, and Nutrition. In The Economics of Poverty Traps; Barrett, C.B., Carter, M.R., Chavas, J.-P., Eds.; National Bureau of Economic Research: Cambridge, MA, USA, 2019; pp. 23–56. [Google Scholar] [CrossRef]
- Martin, W.; Anderson, K. Export Restrictions and Price Insulation During Commodity Price Booms; The World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Deuss, A. Impact of Agricultural Export Restrictions on Prices in Importing Countries; OECD Publishing: Paris, France, 2017. [Google Scholar]
- Puma, M.; Bose, S.; Chon, S.Y.; Cook, B. Assessing the Evolving Fragility of the Global Food System. Environ. Res. Lett. 2015, 10, 024007. [Google Scholar] [CrossRef]
- Nath, R.; Luan, Y.; Yang, W.; Yang, C.; Chen, W.; Li, Q.; Cui, X. Changes in Arable Land Demand for Food in India and China: A Potential Threat to Food Security. Sustainability 2015, 7, 5371–5397. [Google Scholar] [CrossRef]
- Filiberto, D.M.; Gaunt, J.L. Practicality of Biochar Additions to Enhance Soil and Crop Productivity. Agriculture 2013, 3, 715–725. [Google Scholar] [CrossRef]
- Hijbeek, R.; Van Loon, M.P.; Ouaret, W.; Boekelo, B.; Van Ittersum, M.K. Liming Agricultural Soils in Western Kenya: Can Long-Term Economic and Environmental Benefits Pay off Short Term Investments? Agric. Syst. 2021, 190, 103095. [Google Scholar] [CrossRef]
- Brennan, A.; Browne, S. Food Waste and Nutrition Quality in the Context of Public Health: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 5379. [Google Scholar] [CrossRef]
- Santeramo, F.G.; Lamonaca, E. Food Loss–Food Waste–Food Security: A New Research Agenda. Sustainability 2021, 13, 4642. [Google Scholar] [CrossRef]
Stage | Method | Results |
---|---|---|
Selection of variables | Establishment of the arrays of dependent (Yn) and independent (Xn) variables | |
Collinearity check | Variance inflationary factor (VIF) | Elimination of Xn variables with strong correlations between each other |
Redundancy check | Stepwise regression, best subsets approach (BSA), Mallows’ statistic method (Cp) | Determination of whether the resulting Stage 2 datasets all yield appropriate models with low redundancy |
Regression analysis | Multiple regression method | Multiple regression analysis of all combinations of the selected non-collinear Xn regressors aggregated in multitudes separately for each Yn |
Strengths and directions of the X–Y relationships | Scale measurement of effects | Assessment of positive and negative impacts of Xn regressors on Yn regressands separately for three groups of countries and six regions |
Index | Definition | Unit of Measure | Source of Data |
---|---|---|---|
Regressands | |||
Y1 | Food supply, per food group | kcal/capita/day | FAO [71] |
Y2 | Protein supply quantity, per food group | g/capita/day | FAO [71] |
Y3 | Fat supply quantity, per food group | g/capita/day | FAO [71] |
Regressors | |||
X1 | Gross agricultural production value | USD 1 million (constant 2014–2016) | FAO [71] |
X2 | Gross per capita agricultural production index | Points (2014–2016 = 100) | FAO [71] |
X3 | Agricultural sector’s share of gross domestic product | % | UNCTAD [72] |
X4 | Nominal gross national income per capita | USD, current prices | UNCTAD [72] |
X5 | Commodity price index, food products | Points (2000 = 100) | UNCTAD [72] |
X6 | Commodity price index, agricultural raw materials | Points (2000 = 100) | UNCTAD [72] |
X7 | Consumer price index | Points (2010 = 100) | UNCTAD [72] |
X8 | Total exports of food and agricultural products | USD 1 million | UNCTAD [72], WTO [73] |
X9 | Total imports of food and agricultural products | USD 1 million | UNCTAD [72], WTO [73] |
X10 | Currency exchange rate | Local currency units/USD | FAO [71] |
Index | Food Groups | Food Subgroups |
---|---|---|
Yn.1 | Cereals and their products | Rice and rice-based products, maize and maize-based products, wheat and wheat-based products |
Yn.2 | Fruits and their products | Fruit, fresh; fruit, citrus; fruit, tropical fresh |
Yn.3 | Vegetables and their products | Vegetables, fresh; vegetables, leguminous |
Yn.4 | Roots, tubers, plantains, and their products | Potato, sweet potato, and their products; cassava and its products; starchy roots (taro, yam) and their products; plantain and plantain-based products |
Yn.5 | Pulses, seeds, nuts, and their products | Pulses (excluding soybeans) and their products, soybean and soy-based products (excluding soybean oil), nuts and their products, seeds and their products (excluding seed oil) |
Yn.6 | Eggs and their products | Eggs, hen; eggs, other birds |
Yn.7 | Meat and meat products | Meat, chicken; meat, pig; meat, cattle; meat offal, edible |
Yn.8 | Fish, shellfish, and their products | Fresh and processed fish, cured fish, fresh and processed shellfish |
Yn.9 | Milk and dairy products | Fresh milk, dried milk and subproducts, cheese, yogurt and other dairy subproducts |
Yn.10 | Fats and oils | Vegetable fat and oil, animal fat and oil |
Yn.11 | Sugars and sweeteners | Sugar and sweeteners, sugar crops |
Regions | Low-Income Economies | Lower-Middle-Income Economies | Upper-Middle-Income Economies |
---|---|---|---|
East Asia and Pacific | Cambodia, Lao PDR, Mongolia, Myanmar, Philippines, Vietnam | China, Fiji, Indonesia, Malaysia, Thailand | |
Europe and Central Asia | Tajikistan | Kyrgyzstan, Moldova, Ukraine, Uzbekistan | Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Georgia, Kazakhstan, Russia, Serbia, Turkey, Turkmenistan |
Latin America and the Caribbean | Haiti | Bolivia, El Salvador, Honduras, Nicaragua | Argentina, Belize, Brazil, Colombia, Costa Rica, Cuba, Dominica, Dominican Republic, Ecuador, Guatemala, Jamaica, Mexico, Paraguay, Peru, Suriname |
The Middle East and North Africa | Yemen | Algeria, Egypt, Morocco, Tunisia | Iran, Iraq, Lebanon |
South Asia | Afghanistan | Bangladesh, India, Nepal, Pakistan, Sri Lanka | Maldives |
Sub-Saharan Africa | Burkina Faso, Central African Republic, Chad, Ethiopia, Gambia, Guinea, Guinea-Bissau, Liberia, Madagascar, Malawi, Mali, Mozambique, Niger, Rwanda, Sierra Leone, Sudan, Togo, Uganda | Angola, Benin, Cabo Verde, Cameroon, Cote d’Ivoire, Ghana, Kenya, Lesotho, Mauritania, Nigeria, Senegal, Tanzania, Zambia, Zimbabwe | Botswana, Gabon, Namibia, South Africa |
Intervals | Scale |
---|---|
(Xmax + Xmean)/2 ≥ Xmean ≥ (Xmin + Xmean)/2 | Positive (P)/Negative (N) |
Xmax ≥ Xn > (Xmax + Xmean)/2 | Highly positive (HP)/Extremely negative (EN) |
(Xmin + Xmean)/2 > Xn ≥ Xmin | Marginally positive (MP)/Moderately negative (MN) |
Country Group | Geographic Region | R2 | Adjusted R2 | VIF | Mallows’ Cp Statistic | Eliminated Regressors |
---|---|---|---|---|---|---|
Low-income economies | ECA | 0.8096 | 0.7715 | 5.2521 | 8.1205 | Tajikistan (X2, X8) |
LAC | 0.7314 | 0.6940 | 3.7230 | 7.1473 | Haiti (X4) | |
MENA | 0.7891 | 0.7806 | 4.7416 | 9.0018 | Yemen (X9) | |
SA | 0.4027 | 0.3713 | 1.6742 | 4.7359 | - | |
SSA | 0.6903 | 0.6057 | 3.2289 | 6.3967 | Central African Republic (X8), Gambia (X2), Guinea (X4), Guinea-Bissau (X8), Liberia (X1), Malawi (X8), Mali (X9), Sudan (X10), Togo (X8), Uganda (X2) | |
Lower-middle-income economies | EAP | 0.9146 | 0.7328 | 11.7096 | 3.4722 | Cambodia (X4, X8), Lao PDR (X10), Mongolia (X4, X8, X9), Myanmar (X2, X3), Philippines (X1–3), Vietnam (X5–7) |
ECA | 0.8592 | 0.8464 | 7.1023 | 6.1004 | Kyrgyzstan (X2, X4), Moldova (X9), Ukraine (X4, X5), Uzbekistan (X2, X4, X8) | |
LAC | 0.7401 | 0.7157 | 3.8476 | 8.5263 | Bolivia (X7), El Salvador (X3), Honduras (X5), Nicaragua (X3) | |
MENA | 0.7888 | 0.6895 | 4.7348 | 7.1950 | Algeria (X2, X9), Egypt (X8), Morocco (X9), Tunisia (X2, X8, X9) | |
SA | 0.6749 | 0.6296 | 3.1104 | 5.2028 | Bangladesh (X8), India (X8), Pakistan (X2, X3, X8), Sri Lanka (X4, X5) | |
SSA | 0.6927 | 0.5702 | 3.2541 | 9.0053 | Angola (X4), Benin (X5), Cabo Verde (X2, X10), Cameroon (X10), Cote d’Ivoire (X8–10), Ghana (X2), Kenya (X4), Mauritania (X3), Nigeria (X6), Senegal (X5, X6), Tanzania (X9), Zambia (X3), Zimbabwe (X4) | |
Upper-middle-income economies | EAP | 0.4063 | 0.3813 | 1.6844 | 9.6492 | - |
ECA | 0.7820 | 0.7054 | 4.5872 | 7.9667 | Albania (X2, X3), Armenia (X7), Azerbaijan (X3), Belarus (X4), Bulgaria (X6, X7), Georgia (X6), Kazakhstan (X3), Russia (X3, X4), Serbia (X4), Turkey (X8), Turkmenistan (X9, X10) | |
LAC | 0.4234 | 0.3769 | 1.7343 | 10.4395 | - | |
MENA | 0.5100 | 0.4870 | 2.0408 | 8.5941 | - | |
SA | 0.7941 | 0.7837 | 4.8567 | 4.7206 | Maldives (X4, X5) | |
SSA | 0.8738 | 0.8095 | 7.9239 | 6.6870 | Botswana (X4–6), Gabon (X3), Namibia (X8, X9), South Africa (X1–3) |
Regressor | Food Groups | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Yn.1 | Yn.2 | Yn.3 | Yn.4 | Yn.5 | Yn.6 | Yn.7 | Yn.8 | Yn.9 | Yn.10 | Yn.11 | |
Food supply | |||||||||||
X1 | HP | P | P | HP | MP | MN | MN | P | MN | P | MP |
X2 | HP | MP | HP | HP | MN | N | MP | MP | N | P | P |
X3 | MP | MN | P | P | N | N | N | N | EN | MP | MP |
X4 | MN | MN | MN | MP | N | MP | MP | MN | MN | MN | MP |
X5 | EN | N | N | EN | MN | MN | MP | MN | MP | N | N |
X6 | N | MN | MN | EN | N | MP | P | MP | P | N | N |
X7 | EN | N | N | EN | EN | MN | MP | MN | MP | MN | MP |
X8 | MN | N | MP | MN | MP | MP | P | MP | P | MP | P |
X9 | P | MP | P | MP | MP | MN | HP | MP | HP | MN | MN |
X10 | P | P | MP | P | MN | MN | EN | N | EN | MN | MN |
Protein supply quantity | |||||||||||
X1 | P | MP | P | HP | P | MN | N | MP | MN | P | P |
X2 | HP | P | P | P | MN | MN | P | P | MN | MP | P |
X3 | MP | MN | MP | MP | N | N | MN | N | EN | P | MP |
X4 | N | N | N | MP | MN | MP | P | MN | N | MN | MP |
X5 | EN | EN | N | N | MN | N | MP | MN | MP | EN | EN |
X6 | N | MN | MP | EN | MN | P | MP | MP | P | MN | N |
X7 | EN | N | MN | EN | EN | MP | P | MP | MP | N | P |
X8 | N | MN | MP | MN | P | MP | MN | P | MP | MP | P |
X9 | MP | MP | MP | P | MN | MN | HP | MP | HP | MP | N |
X10 | MP | P | MN | MP | N | N | N | MN | EN | MP | N |
Fat supply quantity | |||||||||||
X1 | P | MP | MP | P | MN | MN | HP | P | HP | HP | MP |
X2 | MP | P | P | MP | N | MN | HP | MP | HP | HP | P |
X3 | MP | MN | MP | MN | MN | N | MP | P | P | MP | MN |
X4 | MN | N | N | MN | MN | MP | P | MN | MP | MP | MP |
X5 | N | MN | MN | N | MP | N | MP | MP | P | MP | MP |
X6 | MN | MP | MP | N | MN | P | MP | MP | P | MN | P |
X7 | N | MN | N | EN | N | MN | P | MN | P | MN | MP |
X8 | MN | MP | P | MN | MP | P | MP | MP | MP | P | MP |
X9 | MP | MP | MP | MP | P | MP | HP | P | HP | HP | P |
X10 | MN | MN | MP | MP | MN | N | EN | MN | EN | EN | N |
Regressor | Food Groups | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Yn.1 | Yn.2 | Yn.3 | Yn.4 | Yn.5 | Yn.6 | Yn.7 | Yn.8 | Yn.9 | Yn.10 | Yn.11 | |
Food supply | |||||||||||
X1 | P | HP | HP | MP | MN | MP | MN | HP | N | MN | MN |
X2 | MP | P | P | MP | N | P | MN | HP | MN | MN | N |
X3 | MN | MP | MP | MN | MN | N | N | P | MN | N | MN |
X4 | MP | P | MP | N | N | MP | HP | MP | HP | MP | P |
X5 | N | MN | MN | MP | MP | P | MP | N | EN | N | N |
X6 | EN | N | N | MP | P | HP | MP | N | EN | MP | MN |
X7 | N | MN | MN | MN | MP | P | MP | MN | EN | P | N |
X8 | MP | P | P | MN | N | MP | P | P | MN | MN | P |
X9 | HP | MP | MP | MP | MP | HP | HP | P | HP | P | MP |
X10 | N | MN | MN | MN | N | N | EN | MN | EN | N | MN |
Protein supply quantity | |||||||||||
X1 | HP | P | P | MP | N | MP | N | MP | MN | MN | MN |
X2 | MP | MP | MP | P | MN | P | MP | HP | N | N | N |
X3 | N | MN | MN | N | MN | MN | MN | P | MN | MN | MN |
X4 | MP | MP | P | MN | N | P | P | P | MP | HP | MP |
X5 | MN | MN | N | MP | P | MN | MP | MN | N | N | N |
X6 | EN | N | N | MP | MP | HP | HP | MN | N | MP | MN |
X7 | MN | N | MP | MP | P | HP | P | N | EN | MP | MN |
X8 | P | P | MP | N | MN | MP | MP | MP | MN | N | MP |
X9 | HP | P | MP | P | MP | P | P | MP | HP | HP | MP |
X10 | MN | MN | MP | MP | N | MN | EN | MN | EN | MN | N |
Fat supply quantity | |||||||||||
X1 | MP | P | P | MP | MN | MP | P | P | HP | HP | P |
X2 | MP | P | P | P | MN | MP | P | HP | HP | HP | P |
X3 | MN | MP | MP | N | N | MN | MN | MP | P | P | MP |
X4 | P | MP | MN | MN | MN | P | P | P | MP | MP | MP |
X5 | N | N | N | MP | P | MP | MP | MN | N | N | MN |
X6 | N | N | MN | P | MP | HP | HP | MN | MN | EN | N |
X7 | N | MN | MN | MN | P | MP | N | N | EN | EN | EN |
X8 | MN | MP | MP | MN | MN | MP | NP | MP | N | N | MN |
X9 | MN | MN | MN | MN | MP | HP | HP | P | HP | HP | P |
X10 | MN | MN | MN | MN | MN | N | EN | N | EN | EN | N |
Regressor | Food Groups | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Yn.1 | Yn.2 | Yn.3 | Yn.4 | Yn.5 | Yn.6 | Yn.7 | Yn.8 | Yn.9 | Yn.10 | Yn.11 | |
Food supply | |||||||||||
X1 | MP | MP | P | MN | MN | P | P | MP | P | MN | MN |
X2 | P | MP | MP | MN | MN | MP | P | P | P | MP | MP |
X3 | MN | MN | MN | N | N | MP | MN | MP | MP | P | MN |
X4 | HP | P | P | MP | MP | P | HP | HP | HP | MP | MP |
X5 | N | EN | EN | MN | MN | N | EN | N | EN | MN | N |
X6 | N | N | N | MN | MN | N | N | MN | N | MN | N |
X7 | N | N | N | MN | MN | N | EN | N | EN | MN | N |
X8 | P | HP | HP | MP | MP | MP | HP | HP | P | P | MP |
X9 | HP | P | P | P | P | P | HP | P | HP | MP | MP |
X10 | N | P | P | MN | MN | MN | P | MN | P | N | N |
Protein supply quantity | |||||||||||
X1 | P | MP | MP | MN | N | MP | HP | P | HP | MN | MN |
X2 | P | P | P | MN | N | MP | P | P | P | MN | MN |
X3 | MP | MP | MP | N | MN | MN | MP | MP | MP | N | N |
X4 | P | MP | MP | P | MP | MP | P | HP | HP | P | P |
X5 | MN | EN | N | MN | MN | N | N | MN | EN | MN | MN |
X6 | MN | N | MN | MN | N | N | MN | MN | MN | MP | MP |
X7 | N | MN | MN | N | N | MN | EN | MN | N | MP | MP |
X8 | P | HP | HP | P | MP | P | MP | P | MP | MP | MP |
X9 | P | MP | P | MP | MP | MP | HP | MP | P | MP | MP |
X10 | MN | P | MP | MN | MN | MN | MP | MN | P | MN | N |
Fat supply quantity | |||||||||||
X1 | MP | MP | MP | MN | MN | P | HP | MP | HP | HP | P |
X2 | P | P | MP | N | MN | P | MP | P | P | P | MP |
X3 | MP | MP | MP | N | MN | MP | MP | MP | MP | MP | MP |
X4 | P | MP | MN | MN | MP | P | HP | P | HP | HP | P |
X5 | MN | MN | MN | MN | MP | N | EN | N | EN | EN | N |
X6 | MN | MP | MP | MN | MN | N | EN | N | N | N | MN |
X7 | MP | P | MN | MN | N | MN | N | N | EN | N | MN |
X8 | P | P | P | P | MP | MP | P | MP | P | P | MP |
X9 | MP | MP | MP | MP | P | P | HP | HP | HP | HP | P |
X10 | MN | MN | MN | MN | MN | N | N | N | MN | N | MN |
Factor/Parameter | Effects/Income Groups | ||||
---|---|---|---|---|---|
Low-Income | Lower-Middle-Income | Upper-Middle-Income | Hypothesis | ||
Production factors | |||||
Calorie supply | Strong | Weak | Weak | Confirmed | |
Protein supply | Moderate | Moderate | Weak | ||
Fat supply | Strong | Weak | Moderate | ||
Economic factors | |||||
Calorie supply | Moderate | Strong | Moderate | Partly confirmed for higher-value food products | |
Protein supply | Strong | Strong | Moderate | ||
Fat supply | Weak | Moderate | Strong | ||
Trade factors | |||||
Calorie supply | Weak | Moderate | Strong | Partly confirmed for import-dependent countries | |
Protein supply | Weak | Weak | Strong | ||
Fat supply | Moderate | Strong | Weak |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erokhin, V.; Diao, L.; Gao, T.; Andrei, J.-V.; Ivolga, A.; Zong, Y. The Supply of Calories, Proteins, and Fats in Low-Income Countries: A Four-Decade Retrospective Study. Int. J. Environ. Res. Public Health 2021, 18, 7356. https://doi.org/10.3390/ijerph18147356
Erokhin V, Diao L, Gao T, Andrei J-V, Ivolga A, Zong Y. The Supply of Calories, Proteins, and Fats in Low-Income Countries: A Four-Decade Retrospective Study. International Journal of Environmental Research and Public Health. 2021; 18(14):7356. https://doi.org/10.3390/ijerph18147356
Chicago/Turabian StyleErokhin, Vasilii, Li Diao, Tianming Gao, Jean-Vasile Andrei, Anna Ivolga, and Yuhang Zong. 2021. "The Supply of Calories, Proteins, and Fats in Low-Income Countries: A Four-Decade Retrospective Study" International Journal of Environmental Research and Public Health 18, no. 14: 7356. https://doi.org/10.3390/ijerph18147356
APA StyleErokhin, V., Diao, L., Gao, T., Andrei, J.-V., Ivolga, A., & Zong, Y. (2021). The Supply of Calories, Proteins, and Fats in Low-Income Countries: A Four-Decade Retrospective Study. International Journal of Environmental Research and Public Health, 18(14), 7356. https://doi.org/10.3390/ijerph18147356