Modelling the Relationship between the Nature of Work Factors and Driving Performance Mediating by Role of Fatigue
Abstract
:1. Introduction
2. Literature Review and Hypotheses Development
2.1. Work Schedule
2.2. Work Activities
2.3. Fatigue as a Mediation
3. Research Approaches
3.1. SEM (Structural Equation Modeling)
3.2. Sampling and Data Collection
4. Results
4.1. Tests of Model Fit
4.1.1. Analysis of Reliability
4.1.2. Discriminant Validity
4.2. Structural Model Assessment
4.2.1. Direct Effect
4.2.2. Mediation Effect Analysis
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, F.; Li, S.; Cao, L.; Li, M.; Peng, Q.; Wang, C.; Zhang, W. Driving Fatigue in Professional Drivers: A Survey of Truck and Taxi Drivers. Traffic Inj. Prev. 2015, 16, 474–483. [Google Scholar] [CrossRef]
- Sagberg, F. Road accidents caused by drivers falling asleep. Accid. Anal. Prev. 1999, 31, 639–649. [Google Scholar] [CrossRef]
- Maycock, G. Sleepiness and driving: The experience of U.K. car drivers. Accid. Anal. Prev. 1997, 29, 453–462. [Google Scholar] [CrossRef]
- Fletcher, A.; McCulloch, K.; Baulk, S.D.; Dawson, D. Countermeasures to driver fatigue: a review of public awareness campaigns and legal approaches. Aust. N. Z. J. Public Health 2005, 29, 471–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philip, P.; Sagaspe, P.; Moore, N.; Tail lard, J.; Charles, A.; Guilleminault, C.; Bioulac, B. Fatigue, sleep restriction and driving performance. Accid. Anal. Prev. 2005, 37, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yuan, W.; Ma, Y. Drivers’ Attention Strategies before Eyes-off-Road in Different Traffic Scenarios: Adaptation and Anticipation. Int. J. Environ. Res. Public Health 2021, 18, 3716. [Google Scholar] [CrossRef] [PubMed]
- Al-Mekhlafi, A.-B.A.; Isha, A.S.N.; Naji, G.M.A. The relationship between fatigue and driving performance: A review and directions for future research. J. Crit. Rev. 2020, 7, 134–141. [Google Scholar]
- Chen, S.; Zhang, S.; Xing, Y.; Lu, J. Identifying the Factors Contributing to the Severity of Truck-Involved Crashes in Shanghai River-Crossing Tunnel. Int. J. Environ. Res. Public Health 2020, 17, 3155. [Google Scholar] [CrossRef]
- Blair, B.D.; Hughes, J.; Allshouse, W.B.; McKenzie, L.M.; Adgate, J.L. Truck and Multivehicle Truck Accidents with Injuries Near Colorado Oil and Gas Operations. Int. J. Environ. Res. Public Health 2018, 15, 1861. [Google Scholar] [CrossRef] [Green Version]
- Yassierli, M.M.; Sutalaksana, I.Z. Fatigue Evaluation of Fuel Truck Drivers. Procedia Manuf. 2015, 4, 352–358. [Google Scholar] [CrossRef] [Green Version]
- Vitaterna, M.H.; Takahashi, J.S.; Turek, F.W. Overview of Circadian Rhythms. Alcohol Res. Health 2001, 25, 85–93. [Google Scholar]
- Adams-Guppy, J.; Guppy, A. Truck driver fatigue risk assessment and management: a multinational survey. Ergonomics 2003, 46, 763–779. [Google Scholar] [CrossRef] [PubMed]
- Selvarajah Krishnan, S.M.H.; Firdhaus, A.; Sarah, S.; Taufiq, A. Analysis of exhaustion related psychological risk factors among oil and gas tanker drivers in Malaysia. Int. J. Adv. Multidiscip. Soc. Sci. 2017, 3, 22–27. [Google Scholar]
- Sabir, A.A.; Isha, A.S.N.B. Psychological well-being and fatigue impact on aberrant driving behaviors in oil and gas sector of malaysia. Glob. Bus. Manag. Res. 2017, 9, 110. [Google Scholar]
- Sabir, A.A.; Ahmad Shahrul, N.B. Marketing assessing the fatigue related psychological risk factors among oil and gas tankers drivers in Malaysia. Int. Rev. Manag. Mark. 2016, 6, 138–142. [Google Scholar]
- Sabir, A.A.; Shahru, A.; Bin Isha, N.; Langove, N.; Javaid, M.U. An Integrative Approach to Study Drivers Perceived Stress on Aberrant Driving Behaviour: The Mediation Role of Driver Fatigue. In Proceedings of the SHS Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 56, p. 02009. [Google Scholar]
- Al-Mekhlafi, A.-B.A.; Isha, A.S.N.; Sabir, A.A.; Naji, G.M.A.; Ajmal, M.; Al-Harasi, A.H. Fatigue assessment of oil and gas tanker drivers: Psychomotor vigilance test (PVT-192). Solid State Technol. 2020, 63, 4256–4262. [Google Scholar]
- Baines, T.; Asch, R.; Hadfield, L.; Mason, J.; Fletcher, S.; Kay, J. Towards a theoretical framework for human performance modelling within manufacturing systems design. Simul. Model. Pr. Theory 2005, 13, 486–504. [Google Scholar] [CrossRef] [Green Version]
- Williamson, A.; Lombardi, D.A.; Folkard, S.; Stutts, J.; Courtney, T.; Connor, J. The link between fatigue and safety. Accid. Anal. Prev. 2011, 43, 498–515. [Google Scholar] [CrossRef]
- Paas, F.; Van Merriënboer, J.J.G. The Efficiency of Instructional Conditions: An Approach to Combine Mental Effort and Performance Measures. Hum. Factors J. Hum. Factors Ergon. Soc. 1993, 35, 737–743. [Google Scholar] [CrossRef]
- McGehee, D.V.; Mazzae, E.N.; Baldwin, G.S. Driver Reaction Time in Crash Avoidance Research: Validation of a Driving Simulator Study on a Test Track. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting; SAGE Publications: Los Angeles, CA, USA, 2000; Volume 44, pp. 3–320. [Google Scholar]
- Oken, B.S.; Salinsky, M.C.; Elsas, S.M. Vigilance, alertness, or sustained attention: physiological basis and measurement. Clin. Neurophysiol. 2006, 117, 1885–1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahrokhi, M.; Bernard, A. A framework to develop an analysis agent for evaluating human performance in manufacturing systems. CIRP J. Manuf. Sci. Technol. 2009, 2, 55–60. [Google Scholar] [CrossRef]
- Genaidy, A.; Salem, S.; Karwowski, W.; Paez, O.; Tuncel, S. The work compatibility improvement framework: an integrated perspective of the human-at-work system. Ergonomics 2007, 50, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Schieman, S.; Whitestone, Y.K.; Van Gundy, K.T. The Nature of Work and the Stress of Higher Status. J. Health Soc. Behav. 2006, 47, 242–257. [Google Scholar] [CrossRef]
- Dorrian, J.; Baulk, S.D.; Dawson, D. Work hours, workload, sleep and fatigue in Australian Rail Industry employees. Appl. Ergon. 2011, 42, 202–209. [Google Scholar] [CrossRef]
- Fletcher, A.; Dawson, D. Field-based validations of a work-related fatigue model based on hours of work. Transp. Res. Part F Traffic Psychol. Behav. 2001, 4, 75–88. [Google Scholar] [CrossRef]
- Guo, M.; Li, S.; Wang, L.; Chai, M.; Chen, F.; Wei, Y. Research on the Relationship between Reaction Ability and Mental State for Online Assessment of Driving Fatigue. Int. J. Environ. Res. Public Health 2016, 13, 1174. [Google Scholar] [CrossRef]
- Lyu, N.; Xie, L.; Wu, C.; Fu, Q.; Deng, C. Driver’s Cognitive Workload and Driving Performance under Traffic Sign Information Exposure in Complex Environments: A Case Study of the Highways in China. Int. J. Environ. Res. Public Health 2017, 14, 203. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.; Joo, J.-M.; Kim, S.; Sok, S. Effects of Meridian Acupressure on Stress, Fatigue, Anxiety, and Self-Efficacy of Shiftwork Nurses in South Korea. Int. J. Environ. Res. Public Health 2021, 18, 4199. [Google Scholar] [CrossRef] [PubMed]
- Savic, M.; Ogeil, R.P.; Sechtig, M.J.; Lee-Tobin, P.; Ferguson, N.; Lubman, D.I. How Do Nurses Cope with Shift Work? A Qualitative Analysis of Open-Ended Responses from a Survey of Nurses. Int. J. Environ. Res. Public Health 2019, 16, 3821. [Google Scholar] [CrossRef] [Green Version]
- Folkard, S.; Lombardi, D.A. Modeling the impact of the components of long work hours on injuries and “accidents”. Am. J. Ind. Med. 2006, 49, 953–963. [Google Scholar] [CrossRef]
- Longman, D.; Shaw, C.; Varela-Mato, V.; Sherry, A.; Ruettger, K.; Sayyah, M.; Guest, A.; Chen, Y.-L.; Paine, N.; King, J.; et al. Time in Nature Associated with Decreased Fatigue in UK Truck Drivers. Int. J. Environ. Res. Public Health 2021, 18, 3158. [Google Scholar] [CrossRef]
- Capanni, C.; Sartori, S.; Carpentiero, G.; Costa, G. Work ability index in a cohort of railway construction workers. Int. Congr. Ser. 2005, 1280, 253–257. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.; Lim, J.; Park, S.; Seong, S.; Cho, Y.; Kim, H. Factors Associated with Poor Quality of Sleep in Construction Workers: A Secondary Data Analysis. Int. J. Environ. Res. Public Health 2021, 18, 2279. [Google Scholar] [CrossRef]
- Jung, M.; Lim, S.; Chi, S. Impact of Work Environment and Occupational Stress on Safety Behavior of Individual Construction Workers. Int. J. Environ. Res. Public Health 2020, 17, 8304. [Google Scholar] [CrossRef] [PubMed]
- Folkard, S.; Tucker, P. Shift work, safety and productivity. Occup. Med. 2003, 53, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Costa, G.; Tieghi, S.; Chiesi, A. Interferences between commuting and shiftwork. Night Shiftw. Longterm Eff. Prev. 1986, 311–318. [Google Scholar]
- Åkerstedt, T. Shift work and disturbed sleep/wakefulness. Occup. Med. 2003, 53, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Horne, J.; Raynor, L. Falling Asleep at the Wheel, Rep. No. TRL168; Transportation Research Laboratory: Workingham, UK, 1995. [Google Scholar]
- McCartt, A.T.; Hellinga, L.A.; Solomon, M.G. Work schedules of long-distance truck drivers before and after 2004 hours-of-service rule change. Traffic Inj. Prev. 2008, 9, 201–210. [Google Scholar] [CrossRef]
- Heslegave, R.; Rhodes, W.; Gil, V. A prospective study examining the changes to worker health and safety after shifting from 9 to 12.5-hour shifts. In Shiftwork in the 21st Century; Peter Lang: Frankfurt, Germany, 2000. [Google Scholar]
- Bjerner, B.; Holm, Å.; Swensson, Å. Åke Diurnal Variation in Mental Performance: A Study of Three-shift Workers. Occup. Environ. Med. 1955, 12, 103–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, A.; Holmes, S.; Spencer, M. The effect of shiftwork on driving to and from work. J. Hum. Ergol. 2001, 30, 131–136. [Google Scholar]
- Gillberg, M.; Kecklund, G.; Åkerstedt, T. Sleepiness and performance of professional drivers in a truck simulator—Comparisons between day and night driving. J. Sleep Res. 1996, 5, 12–15. [Google Scholar] [CrossRef]
- Barger, L.K.; Ogeil, R.P.; Drake, C.L.; O’Brien, C.S.; Ng, K.T.; Rajaratnam, S.M.W. Validation of a Questionnaire to Screen for Shift Work Disorder. Sleep 2012, 35, 1693–1703. [Google Scholar] [CrossRef] [PubMed]
- Drake, C.L.; Roehrs, T.; Richardson, G.; Walsh, J.K.; Roth, T. Shift Work Sleep Disorder: Prevalence and Consequences Beyond that of Symptomatic Day Workers. Sleep 2004, 27, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Culpepper, L. The social and economic burden of shift-work disorder. J. Fam. Pract. 2010, 59, S3. [Google Scholar]
- Schwartz, J.R. Recognition of shift-work disorder in primary care. J. Fam. Pr. 2010, 59, S18. [Google Scholar]
- Bailey, R.W.; Bailey, R.W. Human Performance Engineering: Designing High Quality, Professional User Interfaces for Computer Products, Applications, and Systems; Prentice Hall PTR: Hoboken, NJ, USA, 1996. [Google Scholar]
- Dul, J.; Neumann, W.P. Ergonomics contributions to company strategies. Appl. Ergon. 2009, 40, 745–752. [Google Scholar] [CrossRef] [Green Version]
- Schaufeli, W.; Bakker, A.B. Job demands, job resources, and their relationship with burnout and engagement: a multi-sample study. J. Organ. Behav. 2004, 25, 293–315. [Google Scholar] [CrossRef] [Green Version]
- Ajmal, M.; Isha, A.S.N.; Nordin, S.M.; Kanwal, N.; Al-Mekhlafi, A.-B.A.; Naji, G.M.A. A conceptual framework for the determinants of organizational agility: does safety commitment matters? Solid State Technol. 2020, 63, 4112–4119. [Google Scholar]
- Naji, G.M.A.; Isha, A.S.N.; Alzoraiki, M.; Al-Mekhlafi, A.B.A.; Sharafaddin, O.; Saleem, M.S. Impact of safety culture and psychosocial hazard on safety performance among upstream employees in malaysia at oil and gas industry. Solid State Technol. 2020, 63, 4120–4126. [Google Scholar]
- Hessels, J.; Rietveld, C.A.; van der Zwan, P. Self-employment and work-related stress: The mediating role of job control and job demand. J. Bus. Ventur. 2017, 32, 178–196. [Google Scholar] [CrossRef]
- Naji, G.M.A.; Isha, A.S.N.; Al-Mekhlafi, A.B.A.; Sharafaddin, O.; Ajmal, M. Implementation of leading and lagging indicators to improve safety performance in the upstream oil and gas industry. J. Crit. Rev. 2020, 7, 265–269. [Google Scholar]
- Haigney, D.; Taylor, R.; Westerman, S. Concurrent mobile (cellular) phone use and driving performance: task demand characteristics and compensatory processes. Transp. Res. Part F Traffic Psychol. Behav. 2000, 3, 113–121. [Google Scholar] [CrossRef]
- Ponds, R.W.H.M.; Brouwer, W.H.; Van Wolffelaar, P.C. Age Differences in Divided Attention in a Simulated Driving Task. J. Gerontol. 1988, 43, P151–P156. [Google Scholar] [CrossRef]
- Reimer, B.; D’Ambrosio, L.A.; Coughlin, J.F.; Fried, R.; Biederman, J. Task-Induced Fatigue and Collisions in Adult Drivers with Attention Deficit Hyperactivity Disorder. Traffic Inj. Prev. 2007, 8, 290–299. [Google Scholar] [CrossRef]
- Kecklund, L.M.; Ingre, G.; Kecklund, M.; Söderström, T.; Åkerstedt, E.; Lindberg, A.; Jansson, E.; Olsson, B.S.; Almqvist, P. The TRAIN–project: Railway safety and the train driver information environment and work situation-A summary of the main results. Signal. Saf. 2001, 50, 26–27. [Google Scholar]
- Jap, B.T.; Lal, S.; Fischer, P. Inter-hemispheric electroencephalography coherence analysis: Assessing brain activity during monotonous driving. Int. J. Psychophysiol. 2010, 76, 169–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacKinnon, D.P. Integrating Mediators and Moderators in Research Design. Res. Soc. Work. Pr. 2011, 21, 675–681. [Google Scholar] [CrossRef] [Green Version]
- Hamidun, R.; Hoong, A.P.W.; Roslan, A.; Shabadin, A.; Jamil, H. Characteristics of heavy goods vehicles (HGV) accidents in Malaysia. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 512, p. 012021. [Google Scholar]
- Davey, J.; Richards, N.; Freeman, J. Fatigue and Beyond: Patterns of and Motivations for Illicit Drug Use Among Long-Haul Truck Drivers. Traffic Inj. Prev. 2007, 8, 253–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butlewski, M.; Hankiewicz, K. Psychomotor Performance Monitoring System in the Context of Fatigue and Accident Prevention. Procedia Manuf. 2015, 3, 4860–4867. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Ishii, A.; Watanabe, Y. Neural effect of mental fatigue on physical fatigue: A magnetoencephalography study. Brain Res. 2014, 1542, 49–55. [Google Scholar] [CrossRef]
- Meyer, R.M.; Li, A.; Klaristenfeld, J.; Gold, J.I. Pediatric Novice Nurses: Examining Compassion Fatigue as a Mediator Between Stress Exposure and Compassion Satisfaction, Burnout, and Job Satisfaction. J. Pediatr. Nurs. 2015, 30, 174–183. [Google Scholar] [CrossRef]
- Hayes, A.F. Beyond Baron and Kenny: Statistical Mediation Analysis in the New Millennium. Commun. Monogr. 2009, 76, 408–420. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef]
- Sullman, M.J.; Stephens, A.N.; Yong, M. Driving anger in Malaysia. Accid. Anal. Prev. 2014, 71, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Malaysian Institute of Road Safety Research (MIROS). 2015; Report no. 239. Available online: https://miros.gov.my/xs/penerbitan.php?pagetype=15.
- Hockey, G.R.J. Compensatory control in the regulation of human performance under stress and high workload: A cognitive-energetical framework. Biol. Psychol. 1997, 45, 73–93. [Google Scholar] [CrossRef]
- Bauer, I.M.; Baumeister, R.F. Self-regulatory strength. In Handbook of Self-Regulation: Research, Theory, and Applications; Guilford Publications: New York, NY, USA, 2011; Volume 2, pp. 64–82. [Google Scholar]
- Williams, L.J.; Vandenberg, R.J.; Edwards, J.R. 12 structural equation modeling in management research: A guide for improved analysis. Acad. Manag. Ann. 2009, 3, 543–604. [Google Scholar] [CrossRef]
- Lei, P.-W.; Wu, Q. Introduction to Structural Equation Modeling: Issues and Practical Considerations. Educ. Meas. Issues Pr. 2007, 26, 33–43. [Google Scholar] [CrossRef]
- Astrachan, C.B.; Patel, V.K.; Wanzenried, G. A comparative study of CB-SEM and PLS-SEM for theory development in family firm research. J. Fam. Bus. Strat. 2014, 5, 116–128. [Google Scholar] [CrossRef]
- Jöreskog, K.G. Structural analysis of covariance and correlation matrices. Psychometrika 1978, 43, 443–477. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Mena, J.A. An assessment of the use of partial least squares structural equation modeling in marketing research. J. Acad. Mark. Sci. 2012, 40, 414–433. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Smith, D.; Reams, R.; Hair, J.F., Jr. Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. J. Fam. Bus. Strategy 2014, 5, 105–115. [Google Scholar] [CrossRef]
- Ali, F.; Rasoolimanesh, S.M.; Sarstedt, M.; Ringle, C.M.; Ryu, K. An assessment of the use of partial least squares structural equation modeling (PLS-SEM) in hospitality research. Int. J. Contemp. Hosp. Manag. 2018, 30, 514–538. [Google Scholar] [CrossRef] [Green Version]
- Aibinu, A.A.; Al-Lawati, A.M. Using PLS-SEM technique to model construction organizations’ willingness to participate in e-bidding. Autom. Constr. 2010, 19, 714–724. [Google Scholar] [CrossRef]
- Kineber, A.F.; Othman, I.; Oke, A.E.; Chileshe, N.; Buniya, M.K. Impact of Value Management on Building Projects Success: Structural Equation Modeling Approach. J. Constr. Eng. Manag. 2021, 147, 04021011. [Google Scholar] [CrossRef]
- Kineber, A.F.; Othman, I.; Oke, A.E.; Chileshe, N.; Zayed, T. Exploring the value management critical success factors for sustainable residential building – A structural equation modelling approach. J. Clean. Prod. 2021, 293, 126115. [Google Scholar] [CrossRef]
- Oke, A.; Kineber, A.; Albukhari, I.; Othman, I.; Kingsley, C. Assessment of Cloud Computing Success Factors for Sustainable Construction Industry: The Case of Nigeria. Buildings 2021, 11, 36. [Google Scholar] [CrossRef]
- Mikalef, P.; Pateli, A. Information technology-enabled dynamic capabilities and their indirect effect on competitive performance: Findings from PLS-SEM and fsQCA. J. Bus. Res. 2017, 70, 1–16. [Google Scholar] [CrossRef]
- Aboelmaged, M. The drivers of sustainable manufacturing practices in Egyptian SMEs and their impact on competitive capabilities: A PLS-SEM model. J. Clean. Prod. 2018, 175, 207–221. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Kineber, A.F.; Othman, I.; Oke, A.E.; Chileshe, N.; Alsolami, B. Critical Value Management Activities in Building Projects: A Case of Egypt. Buildings 2020, 10, 239. [Google Scholar] [CrossRef]
- Buniya, M.K.; Othman, I.; Durdyev, S.; Sunindijo, R.Y.; Ismail, S.; Kineber, A.F. Safety Program Elements in the Construction Industry: The Case of Iraq. Int. J. Environ. Res. Public Health 2021, 18, 411. [Google Scholar] [CrossRef] [PubMed]
- Barger, L.K.; Cade, B.; Ayas, N.T.; Cronin, J.W.; Rosner, B.; Speizer, F.E.; Czeisler, C.A. Extended Work Shifts and the Risk of Motor Vehicle Crashes among Interns. N. Engl. J. Med. 2005, 352, 125–134. [Google Scholar] [CrossRef]
- Ryan, B.; Wilson, J.R.; Sharples, S.; Morrisroe, G.; Clarke, T. Developing a Rail Ergonomics Questionnaire (REQUEST). Appl. Ergon. 2009, 40, 216–229. [Google Scholar] [CrossRef]
- Austin, A.; Drummond, P. Work problems associated with suburban train driving. Appl. Ergon. 1986, 17, 111–116. [Google Scholar] [CrossRef]
- Ortiz, C.; Castro, J.J.; Alarcón, A.; Soler, M.; Anera, R.G. Quantifying age-related differences in visual-discrimination capacity: Drivers with and without visual impairment. Appl. Ergon. 2013, 44, 523–531. [Google Scholar] [CrossRef]
- Owsley, C.; Stalvey, B.; Wells, J.; Sloane, M.E. Older Drivers and Cataract: Driving Habits and Crash Risk. J. Gerontol. Ser. A Biol. Sci. Med Sci. 1999, 54, M203–M211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gradisar, M.; Lack, L.; Richards, H.; Harris, J.; Gallasch, J.; Boundy, M.; Johnston, A. The Flinders Fatigue Scale: Preliminary Psychometric Properties and Clinical Sensitivity of a New Scale for Measuring Daytime Fatigue associated with Insomnia. J. Clin. Sleep Med. 2007, 3, 722–728. [Google Scholar] [CrossRef] [Green Version]
- Sekaran, U.; Bougie, R. Research Methods for Business: A skill Building Approach; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Clemente, F.M.; Silva, A.F.; Alves, A.R.; Nikolaidis, P.T.; Ramirez-Campillo, R.; Lima, R.; Söğüt, M.; Rosemann, T.; Knechtle, B. Variations of estimated maximal aerobic speed in children soccer players and its associations with the accumulated training load: Comparisons between non, low and high responders. Physiol. Behav. 2020, 224, 113030. [Google Scholar] [CrossRef] [PubMed]
- Maccallum, F.; Bryant, R.A. An investigation of approach behaviour in Prolonged Grief. Behav. Res. Ther. 2019, 119, 103405. [Google Scholar] [CrossRef]
- Wetzels, M.; Odekerken-Schröder, G.; Van Oppen, C. Using PLS Path Modeling for Assessing Hierarchical Construct Models: Guidelines and Empirical Illustration. MIS Q. 2009, 33, 177. [Google Scholar] [CrossRef]
- Garver, M.S.; Mentzer, J.T. Logistics research methods: Employing structural equation modeling to test for construct validity. J. Bus. Logist. 1999, 20, 33. [Google Scholar]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Hulland, J. Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strateg. Manag. J. 1999, 20, 195–204. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Ringle, C.M.; da Silva, D.; Bido, D.D. Modelagem de equações estruturais com utilização do SmartPLS. Rev. Bras. Mark. 2014, 13, 56–73. [Google Scholar] [CrossRef]
- Hock, M.; Ringle, C.M. Local strategic networks in the software industry: an empirical analysis of the value continuum. Int. J. Knowl. Manag. Stud. 2010, 4, 132. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory 3E; Tata McGraw-Hill Education: New York, NY, USA, 1994. [Google Scholar]
- Urbach, N.; Ahlemann, F. Structural equation modeling in information systems research using partial least squares. J. Inf. Technol. Theory Appl. 2010, 11, 5–40. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance. Long Range Plan. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- Shrout, P.E.; Bolger, N. Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychol. Methods 2002, 7, 422. [Google Scholar] [CrossRef]
- Hamilton, W.I.; Clarke, T. Driver performance modelling and its practical application to railway safety. Appl. Ergon. 2005, 36, 661–670. [Google Scholar] [CrossRef]
- Jap, B.T.; Lal, S.; Fischer, P. Comparing combinations of EEG activity in train drivers during monotonous driving. Expert Syst. Appl. 2011, 38, 996–1003. [Google Scholar] [CrossRef]
- Dorrian, J.; Roach, G.; Fletcher, A.; Dawson, D. Simulated train driving: Fatigue, self-awareness and cognitive disengagement. Appl. Ergon. 2007, 38, 155–166. [Google Scholar] [CrossRef]
- Horrey, W.J.; Noy, Y.I.; Folkard, S.; Popkin, S.M.; Howarth, H.D.; Courtney, T. Research needs and opportunities for reducing the adverse safety consequences of fatigue. Accid. Anal. Prev. 2011, 43, 591–594. [Google Scholar] [CrossRef]
- Williamson, A.M.; Feyer, A.-M.; Mattick, R.P.; Friswell, R.; Finlay-Brown, S. Developing measures of fatigue using an alcohol comparison to validate the effects of fatigue on performance. Accid. Anal. Prev. 2001, 33, 313–326. [Google Scholar] [CrossRef]
- Lamond, N.; Dawson, D.; Roach, G.D. Fatigue assessment in the field: validation of a hand-held electronic psychomotor vigilance task. Aviat. Space Environ. Med. 2005, 76, 486–489. [Google Scholar] [PubMed]
- Strahan, C.; Watson, B.; Lennonb, A. Can organisational safety climate and occupational stress predict work-related driver fatigue? Transp. Res. Part F Traffic Psychol. Behav. 2008, 11, 418–426. [Google Scholar] [CrossRef] [Green Version]
- Barker, L.M.; Nussbaum, M. Fatigue, performance, and the work environment: a survey of registered nurses. J. Adv. Nurs. 2011, 67, 1370–1382. [Google Scholar] [CrossRef]
- Estryn-Béhar, M.; van der Heijden, B.I. Effects of extended work shifts on employee fatigue, health, satisfaction, work/family balance, and patient safety. Work 2012, 41 (Suppl. 1), 4283–4290. [Google Scholar] [CrossRef] [Green Version]
- Benedetto, S.; Pedrotti, M.; Minin, L.; Baccino, T.; Re, A.; Montanari, R. Driver workload and eye blink duration. Transp. Res. Part F Traffic Psychol. Behav. 2011, 14, 199–208. [Google Scholar] [CrossRef]
- Bedarkar, M.; Pandita, D. A Study on the Drivers of Employee Engagement Impacting Employee Performance. Procedia-Soc. Behav. Sci. 2014, 133, 106–115. [Google Scholar] [CrossRef] [Green Version]
Constructs | Dimensions | No. of Items | Reference |
---|---|---|---|
Work schedule | 15 | [46,91] | |
Night shift (NSH) | 4 | ||
Day shift (DSH) | 5 | ||
Non-standard shift (NSS) | 6 | ||
Work activities | 12 | [92,93] | |
Job demand (JD) | 7 | ||
Driving Task (DT) | 5 | ||
Driving performance | 11 | [94,95] | |
Attention (DA) | 3 | ||
Reaction time (DRT) | 4 | ||
Vigilance (DV) | 4 | ||
Driving fatigue (DF) | 5 | [96] |
Construct | Category | Frequency | Percentage |
---|---|---|---|
Gender | Male | 306 | 99.7% |
Female | 1 | 0.3% | |
Age | 20–29 years | 45 | 14.7% |
30–39 years | 148 | 48.2% | |
40–49 years | 81 | 26.4% | |
50–59 years | 31 | 10.1% | |
60 years and above | 2 | 0.7% | |
Marital | Single | 39 | 12.7% |
Married | 259 | 84.4% | |
Separated | 9 | 2.9% | |
Education | Graduate/Postgraduate | 3 | 1% |
College/Polytechnic | 39 | 12.7% | |
Secondary | 257 | 83.7% | |
Primary | 8 | 2.6% |
Constructs | Path Relationships | SIL | CA | CR | AVE | R2 | |
---|---|---|---|---|---|---|---|
Value | LEP | ||||||
WS | 0.976 | 0.898 | 0.746 | - | - | ||
NSH1 ←WS | 0.927 | ||||||
NSH2 ← WS | 0.905 | ||||||
NSH3 ← WS | 0.915 | ||||||
NSH4 ← WS | 0.909 | ||||||
DSH1 ← WS | 0.964 | ||||||
DSH2 ← WS | 0.971 | ||||||
DSH3 ← WS | 0.975 | ||||||
DSH4 ← WS | 0.957 | ||||||
DSH5 ← WS | 0.957 | ||||||
NSS1 ← WS | 0.908 | ||||||
NSS3 ← WS | 0.939 | ||||||
NSS4 ← WS | 0.896 | ||||||
NSS5 ← WS | 0.920 | ||||||
NSS6 ← WS | 0.938 | ||||||
NSS1 ← WS | 0.908 | ||||||
WA | 0.982 | 0.984 | 0.846 | - | - | ||
JD1 ← WA | 0.970 | ||||||
JD2 ← WA | 0.989 | ||||||
JD3 ← WA | 0.973 | ||||||
JD5 ← WA | 0.972 | ||||||
JD6 ← WA | 0.972 | ||||||
JD7 ← WA | 0.969 | ||||||
DT1 ← WA | 0.985 | ||||||
DT2 ← WA | 0.972 | ||||||
DT3 ← WA | 0.972 | ||||||
DT4 ← WA | 0.955 | ||||||
DT5 ← WA | 0.959 | ||||||
DF | 0.937 | 0.952 | 0.799 | 0.748 | Medium | ||
DF1 ←DF | 0.917 | ||||||
DF2 ← DF | 0.897 | ||||||
DF3 ← DF | 0.877 | ||||||
DF4 ← DF | 0.899 | ||||||
DF5 ← DF | 0.878 | ||||||
DP | 0.953 | 0.959 | 0.680 | 0.831 | Substantial | ||
DA1 ← DP | 0.875 | ||||||
DA2 ← DP | 0.848 | ||||||
DA3 ← DP | 0.868 | ||||||
DRT1 ← DP | 0.901 | ||||||
DRT2 ← DP | 0.811 | ||||||
DRT3 ← DP | 0.918 | ||||||
DRT4 ← DP | 0.832 | ||||||
DV1 ← DP | 0.871 | ||||||
DV2 ← DP | 0.889 | ||||||
DV3 ← DP | 0.930 | ||||||
DV4 ← DP | 0.912 |
DA | DRT | DSH | DT | DV | DF | JD | NSH | NSS | |
---|---|---|---|---|---|---|---|---|---|
DA | |||||||||
DRT | 0.408 | ||||||||
DSH | 0.833 | 0.614 | |||||||
DT | 0.614 | 0.578 | 0.559 | ||||||
DV | 0.779 | 0.723 | 0.754 | 0.652 | |||||
DF | 0.717 | 0.674 | 0.787 | 0.748 | 0.603 | ||||
JD | 0.600 | 0.558 | 0.519 | 0.801 | 0.563 | 0.664 | |||
NSH | 0.643 | 0.472 | 0.826 | 0.645 | 0.821 | 0.767 | 0.622 | ||
NSS | 0.758 | 0.736 | 0.815 | 0.561 | 0.813 | 0.804 | 0.523 | 0.311 |
Hypotheses | H1 | H2 | H3 | H4 | H5 |
---|---|---|---|---|---|
Path Relationships | WS → DP | WS → DF | WA → DP | WA → DF | DF → DP |
Path coefficient (β) | 0.490 | 0.623 | −0.029 | 0.327 | 0.484 |
Standard Error | 0.056 | 0.047 | 0.040 | 0.050 | 0.064 |
F2 Value | 0.449 | 0.948 | 0.002 | 0.261 | 0.350 |
Effect | Strong | Strong | No Effect Size | Moderate | Strong |
t Values | 8.782 | 13.244 | 0.716 | 6.532 | 7.549 |
p Values | 0.000 | 0.000 | 0.474 | 0.000 | 0.000 |
Significance level *** p < 0.001 | *** | *** | - | *** | *** |
Result | Supported | Supported | Not Supported | Supported | Supported |
Relationship | Indirect Effect | Bootstrapped Confidence Interval | Decision | ||||
---|---|---|---|---|---|---|---|
Path Coeff | SE | t-Value | 95% LL | 95% UL | |||
H6 | WS-DF-DP | 0.302 ** | 0.056 | 5.385 | 0.192 | 0.411 | Partial mediation |
H7 | WA-DF-DP | 0.158 ** | 0.040 | 3.957 | 0.080 | 0.237 | Full mediation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mekhlafi, A.-B.A.; Isha, A.S.N.; Chileshe, N.; Abdulrab, M.; Saeed, A.A.H.; Kineber, A.F. Modelling the Relationship between the Nature of Work Factors and Driving Performance Mediating by Role of Fatigue. Int. J. Environ. Res. Public Health 2021, 18, 6752. https://doi.org/10.3390/ijerph18136752
Al-Mekhlafi A-BA, Isha ASN, Chileshe N, Abdulrab M, Saeed AAH, Kineber AF. Modelling the Relationship between the Nature of Work Factors and Driving Performance Mediating by Role of Fatigue. International Journal of Environmental Research and Public Health. 2021; 18(13):6752. https://doi.org/10.3390/ijerph18136752
Chicago/Turabian StyleAl-Mekhlafi, Al-Baraa Abdulrahman, Ahmad Shahrul Nizam Isha, Nicholas Chileshe, Mohammed Abdulrab, Anwar Ameen Hezam Saeed, and Ahmed Farouk Kineber. 2021. "Modelling the Relationship between the Nature of Work Factors and Driving Performance Mediating by Role of Fatigue" International Journal of Environmental Research and Public Health 18, no. 13: 6752. https://doi.org/10.3390/ijerph18136752