Occupational Heat Stress: Multi-Country Observations and Interventions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observational Studies
2.2. Interventional Studies
2.2.1. Agriculture Industry
2.2.2. Construction Industry
2.2.3. Tourism Industry
2.3. Data Analysis
3. Results
3.1. Observational Studies
3.2. Interventional Studies
3.2.1. Agriculture Industry
3.2.2. Construction Industry
3.2.3. Tourism Industry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Activity | Metabolic Equivalents | W/m2 | Compendium of Physical Activities Code |
---|---|---|---|
irregular work break taking place in the shade | 1.3 | 76 | 07021 |
planned lunch break | 1.5 | 87 | 13030 |
irregular work break taking place under the sun | 2.0 | 116 | 05160 |
giving instructions and guidance to the workers | 2.3 | 134 | 21015 |
moving the truck to a different place | 2.5 | 146 | 16050 |
helping other workers with their tasks | 3.5 | 204 | 11795 |
harvesting crops | 3.5 | 204 | 08246 |
driving and/or pushing the mechanical fruit cart | 4.5 | 262 | 21060 |
lifting boxes full of fruits | 4.5 | 262 | 20095 |
carrying empty fruit boxes (i.e., usually three to four boxes of 3 kg) | 4.8 | 279 | 21065 |
carrying 25-kg-boxes full of fruits | 7.5 | 436 | reference [59] |
Mean Skin Temperature (°C) | Core Temperature (°C) | Metabolic Rate (W/m2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Inter. | Slope | R2 | p | Inter. | Slope | R2 | p | Inter. | Slope | R2 | p | |
Agriculture | 26.475 | 0.311 | 0.941 | <0.001 | - | - | - | - | 256.148 | −3.085 | 0.619 | <0.001 |
Construction | 27.145 | 0.225 | 0.850 | <0.001 | 36.400 | 0.047 | 0.585 | 0.010 | - | - | - | - |
Tourism | 31.381 | 0.090 | 0.354 | 0.032 | NL | NL | 0.852 | <0.001 | - | - | - | - |
Agriculture—Cyprus | ||||||||
BAU | eCart | Work Rest Ratio | Vent. Garments | |||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Tair (°C) | 27.8 | 5.7 | 28.2 | 3.2 | 29.1 | 3.8 | 26.6 | 4.5 |
Tglobe (°C) | 38 | 6.5 | 39.7 | 3.7 | 40.3 | 5.5 | 37.9 | 4.5 |
RH (%) | 35.0 | 13.3 | 54.4 | 12.3 | 49.5 | 10.9 | 38.5 | 11.5 |
WS (m/s) | 0.9 | 1.1 | 1.3 | 1.0 | 1.0 | 0.9 | 1.0 | 1.1 |
WBGT (°C) | 24.0 | 4.6 | 26.8 * | 2.9 | 27.0 * | 5.0 | 23.7 | 5.2 |
Agriculture—Qatar | ||||||||
BAU | Hydration | Evap. garments | Work rest ratio | |||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Tair (°C) | 32.6 | 5.1 | 31.6 | 5.0 | 31.7 | 5.5 | 32.7 | 5.4 |
Tglobe (°C) | 39.2 | 9.4 | 37.7 | 10.4 | 35.5 | 8.9 | 36.4 | 9.6 |
RH (%) | 52.1 | 20.0 | 59.8 | 15.1 | 62.7 | 19.3 | 64.1 | 15.1 |
WS (m/s) | 3.5 | 1.9 | 0.6 | 0.6 | 0.9 | 0.8 | 0.6 | 0.6 |
WBGT (°C) | 28.9 | 3.6 | 29.2 | 4.8 | 28.9 | 4.7 | 29.9 | 5.3 |
Construction—Qatar | ||||||||
BAU | Hydration | Evap. garments | Work rest ratio | |||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Tair (°C) | 36.3 | 5.7 | 36.1 | 5.7 | 35.6 | 5.5 | 35.0 | 6.3 |
Tglobe (°C) | 38.2 | 7.7 | 37.8 | 7.2 | 37.6 | 7.4 | 36.6 | 7.8 |
RH (%) | 30.4 | 12.1 | 33.2 | 14.2 | 37.8 | 15.0 | 39.3 | 23.2 |
WS (m/s) | 1.9 | 1.9 | 1.8 | 1.7 | 1.3 | 1.1 | 1.2 | 0.9 |
WBGT (°C) | 27.6 | 3.6 | 27.8 | 3.5 | 28.2 | 3.9 | 27.5 | 4.2 |
Construction—Spain | ||||||||
BAU | Work rest | Ice slurry | Hydration | |||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Tair (°C) | 30.5 | 1.2 | 30.7 | 2.1 | 30.5 | 1.8 | 30.7 | 1.4 |
Tglobe (°C) | 38.9 | 3.5 | 37.3 | 4.0 | 36.8 | 2.7 | 36.2 | 1.9 |
RH (%) | 55.1 | 5.7 | 55.2 | 7.3 | 53.5 | 8.3 | 32.9 | 3.8 |
WS (m/s) | 1.8 | 0.8 | 0.8 | 0.7 | 0.7 | 0.6 | 1.0 | 0.8 |
WBGT (°C) | 28.2 | 1.5 | 27.8 | 1.6 | 27.4 | 1.0 | 24.7 * | 0.8 |
Tourism—Greece | ||||||||
BAU | Work rest | Ice slurry | Combined | |||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Tair (°C) | 28.5 | 1.6 | 28.2 | 1.6 | 28.5 | 0.7 | 27.3 | 1.2 |
Tglobe (°C) | 28.4 | 1.6 | 28.1 | 1.7 | 28.4 | 0.7 | 27.2 | 1.2 |
RH (%) | 45.2 | 5.4 | 46.5 | 5.3 | 44.5 | 3.1 | 46.5 | 3.6 |
WS (m/s) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
WBGT (°C) | 22.9 | 0.9 | 23.0 | 1.0 | 22.9 | 0.7 | 22.1 | 0.8 |
References
- Piil, J.F.; Lundbye-Jensen, J.; Christiansen, L.; Ioannou, L.; Tsoutsoubi, L.; Dallas, C.N.; Mantzios, K.; Flouris, A.D.; Nybo, L. High prevalence of hypohydration in occupations with heat stress—Perspectives for performance in combined cognitive and motor tasks. PLoS ONE 2018, 13, e0205321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawatsupa, B.; Yiengprugsawan, V.; Kjellstrom, T.; Berecki-Gisolf, J.; Seubsman, S.-A.; Sleigh, A. Association between heat stress and occupational injury among Thai workers: Findings of the Thai Cohort Study. Ind. Health 2013, 51, 34–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, L.; Sheppard, S. Heat Stress: The Impact of Ambient Temperature on Occupational Injuries in the US; Department of Economics Working Papers: Williamstown, MA, USA, 2016. [Google Scholar]
- Varghese, B.M.; Hansen, A.; Bi, P.; Pisaniello, D. Are workers at risk of occupational injuries due to heat exposure? A comprehensive literature review. Saf. Sci. 2018, 110, 380–392. [Google Scholar] [CrossRef]
- Zander, K.K.; Botzen, W.J.; Oppermann, E.; Kjellstrom, T.; Garnett, S.T. Heat stress causes substantial labour productivity loss in Australia. Nat. Clim. Chang. 2015, 5, 647. [Google Scholar] [CrossRef]
- Flouris, A.D.; Dinas, P.C.; Ioannou, L.G.; Nybo, L.; Havenith, G.; Kenny, G.P.; Kjellstrom, T. Workers’ health and productivity under occupational heat strain: A systematic review and meta-analysis. Lancet Planet Health 2018, 2, e521–e531. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, L.G.; Tsoutsoubi, L.; Samoutis, G.; Bogataj, L.K.; Kenny, G.P.; Nybo, L.; Kjellstrom, T.; Flouris, A.D. Time-motion analysis as a novel approach for evaluating the impact of environmental heat exposure on labor loss in agriculture workers. Temperature 2017, 4, 1–11. [Google Scholar] [CrossRef]
- Ioannou, L.G.; Mantzios, K.; Tsoutsoubi, L.; Panagiotaki, Z.; Kapnia, A.K.; Ciuha, U.; Nybo, L.; Flouris, A.D.; Mekjavic, I.B. Effect of a simulated heat wave on physiological strain and labour productivity. Int. J. Environ. Res. Public Health 2021, 18, 3011. [Google Scholar] [CrossRef]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V. Global risk of deadly heat. Nat. Clim. Chang. 2017, 7, 501. [Google Scholar] [CrossRef]
- International Labour Organization. Working on a Warmer Planet: The Impact of Heat Stress on Labour Productivity and Decent Work; International Labour Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Amelung, B.; Nicholls, S.; Viner, D. Implications of global climate change for tourism flows and seasonality. J. Travel Res. 2007, 45, 285–296. [Google Scholar] [CrossRef]
- Wästerlund, S. Managing Heat in Agricultural Work: Increasing Worker Safety and Productivity by Controlling Heat Exposure; FAO: Roma, Italy, 2018; Volume 53. [Google Scholar]
- Buckley, M.; Zendel, A.; Biggar, J.; Frederiksen, L.; Wells, J. Migrant Work & Employment in the Construction Sector; International Labour Office: Geneva, Switzerland, 2016. [Google Scholar]
- International Labour Organization. Global Dialogue Forum on New Developments and Challenges in the Hospitality and Tourism Sector and their impact on Employment, Human Resources Development and Industrial Relations; International Labour Organization: Geneva, Switzerland, 2010. [Google Scholar]
- DARA: Climate Vulnerable Forum. Climate Vulnerability Monitor: A Guide to the Cold Calculus of a Hot Planet, 2nd ed.; DARA: Madrid, Spain, 2012. [Google Scholar]
- Morris, N.B.; Levi, M.; Morabito, M.; Messeri, A.; Ioannou, L.G.; Flouris, A.D.; Samoutis, G.; Pogačar, T.; Bogataj, L.K.; Piil, J.F.; et al. Health vs. wealth: Employer, employee and policy-maker perspectives on occupational heat stress across multiple European industries. Temperature 2020, 1–18. [Google Scholar] [CrossRef]
- Morris, N.B.; Piil, J.F.; Morabito, M.; Messeri, A.; Levi, M.; Ioannou, L.G.; Ciuha, U.; Pogačar, T.; Kajfež Bogataj, L.; Kingma, B.; et al. The HEAT-SHIELD project—Perspectives from an inter-sectoral approach to occupational heat stress. J. Sci. Med. Sport 2021. [Google Scholar] [CrossRef]
- Flouris, A.D.; Ioannou, L.G.; Dinas, P.C.; Mantzios, K.; Gkiata, P.; Gkikas, G.; Vliora, M.; Amorim, T.; Tsoutsoubi, L.; Kapnia, A.; et al. Assessment of Occupational Heat Strain and Mitigation Strategies in Qatar; International Labour Organization: Doha, Qatar, 2019. [Google Scholar]
- Bodin, T.; García-Trabanino, R.; Weiss, I.; Jarquín, E.; Glaser, J.; Jakobsson, K.; Lucas, R.; Wesseling, C.; Hogstedt, C.; Wegman, D. Intervention to reduce heat stress and improve efficiency among sugarcane workers in El Salvador: Phase 1. Occup. Environ. Med. 2016, 73, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Morris, N.B.; Jay, O.; Flouris, A.D.; Casanueva, A.; Gao, C.; Foster, J.; Havenith, G.; Nybo, L. Sustainable solutions to mitigate occupational heat strain—An umbrella review of physiological effects and global health perspectives. Environ. Health 2020, 19, 95. [Google Scholar] [CrossRef]
- Meade, R.D.; Poirier, M.P.; Flouris, A.D.; Hardcastle, S.G.; Kenny, G.P. Do the threshold limit values for work in hot conditions adequately protect workers? Med. Sci. Sports Exerc. 2016, 48, 1187–1196. [Google Scholar] [CrossRef]
- Bach, A.J.E.; Maley, M.J.; Minett, G.M.; Zietek, S.A.; Stewart, K.L.; Stewart, I.B. An evaluation of personal cooling systems for reducing thermal strain whilst working in chemical/biological protective clothing. Front. Physiol. 2019, 10, 424. [Google Scholar] [CrossRef]
- Gao, C.; Kuklane, K.; Holmér, I. Cooling vests with phase change materials: The effects of melting temperature on heat strain alleviation in an extremely hot environment. Eur. J. Appl. Physiol. 2011, 111, 1207–1216. [Google Scholar] [CrossRef]
- Maté, J.; Siegel, R.; Oosthuizen, J.; Laursen, P.; Watson, G. Effect of liquid versus ice slurry ingestion on core temperature during simulated mining conditions. Sci. Res. 2016. [Google Scholar] [CrossRef] [Green Version]
- Yi, W.; Chan, A.P.C.; Wong, F.K.W.; Wong, D.P. Effectiveness of a newly designed construction uniform for heat strain attenuation in a hot and humid environment. Appl. Ergon. 2017, 58, 555–565. [Google Scholar] [CrossRef]
- Barwood, M.J.; Newton, P.S.; Tipton, M.J. Ventilated vest and tolerance for intermittent exercise in hot, dry conditions with military clothing. Aviat. Space Environ. Med. 2009, 80, 353–359. [Google Scholar] [CrossRef]
- Zhao, M.; Gao, C.; Wang, F.; Kuklane, K.; Holmér, I.; Li, J. A study on local cooling of garments with ventilation fans and openings placed at different torso sites. Int. J. Ind. Ergon. 2013, 43, 232–237. [Google Scholar] [CrossRef]
- Piil, J.F.; Christiansen, L.; Morris, N.B.; Mikkelsen, C.J.; Ioannou, L.G.; Flouris, A.D.; Lundbye-Jensen, J.; Nybo, L. Direct exposure of the head to solar heat radiation impairs motor-cognitive performance. Sci. Rep. 2020, 10, 7812. [Google Scholar] [CrossRef]
- Ramanathan, N.L. A new weighting system for mean surface temperature of the human body. J. Appl. Physiol. 1964, 19, 531–533. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, L.G.; Tsoutsoubi, L.; Mantzios, K.; Flouris, A.D. A free software to predict heat strain according to the ISO 7933:2018. Ind. Health 2019, 57, 711–720. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Poulianiti, K.P.; Havenith, G.; Flouris, A.D. Metabolic energy cost of workers in agriculture, construction, manufacturing, tourism, and transportation industries. Ind. Health 2018. [Google Scholar] [CrossRef] [Green Version]
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar]
- Ngoan, L.T.; Yoshimura, T. Work, salt intake and the development of stomach cancer. Med. Hypotheses 2003, 60, 552–556. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Sawilowsky, S.S. New effect size rules of thumb. J. Mod. Appl. Stat. Methods 2009, 8, 26. [Google Scholar] [CrossRef]
- Altman, D.G. Practical Statistics for Medical Research; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Bates, G.P.; Schneider, J. Hydration status and physiological workload of UAE construction workers: A prospective longitudinal observational study. J. Occup. Med. Toxicol. 2008, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Miller, V.; Bates, G.; Schneider, J.D.; Thomsen, J. Self-pacing as a protective mechanism against the effects of heat stress. Ann. Occup. Hyg. 2011, 55, 548–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flouris, A.D.; Schlader, Z.J. Human behavioral thermoregulation during exercise in the heat. Scand. J. Med. Sci. Sports 2015, 25, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Vogt, J.; Libert, J.; Candas, V.; Daull, F.; Mairjaux, P. Heart rate and spontaneous work-rest cycles during exposure to heat. Ergonomics 1983, 26, 1173–1185. [Google Scholar] [CrossRef] [PubMed]
- Wästerlund, D.S. A review of heat stress research with application to forestry. Appl. Ergon. 1998, 29, 179–183. [Google Scholar] [CrossRef]
- Choi, J.-W.; Kim, M.-J.; Lee, J.-Y. Alleviation of heat strain by cooling different body areas during red pepper harvest work at WBGT 33 °C. Ind. Health 2008, 46, 620–628. [Google Scholar] [CrossRef] [Green Version]
- ISO. ISO 7933, Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Heat Stress Using Calculation of the Predicted Heat Strain; ISO: Geneva, Switzerland, 2004. [Google Scholar]
- ISO. ISO/DIS 7933, Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Heat Stress Using the Predicted Heat Strain Model; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- Dehghan, H.; Mortazavi, S.; Jafari, M.; Maracy, M.; Jahangiri, M. The evaluation of heat stress through monitoring environmental factors and physiological responses in melting and casting industries workers. Int. J. Environ. Health Eng. 2012, 1, 21. [Google Scholar]
- Lamarche, D.T.; Meade, R.D.; D’Souza, A.W.; Flouris, A.D.; Hardcastle, S.G.; Sigal, R.J.; Boulay, P.; Kenny, G.P. The recommended Threshold Limit Values for heat exposure fail to maintain body core temperature within safe limits in older working adults. J. Occup. Environ. Hyg. 2017, 14, 703–711. [Google Scholar] [CrossRef]
- American Conference of Governmental Industrial Hygienists (ACGIH). TLVs and BEIs, Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices; Signature Publications: Cincinnati, OH, USA, 2012. [Google Scholar]
- OSHA. OSHA Technical Manual. Available online: https://www.osha.gov/dts/osta/otm/otm_iii/otm_iii_4.html (accessed on 9 June 2021).
- Horn, G.P.; Gutzmer, S.; Fahs, C.A.; Petruzzello, S.J.; Goldstein, E.; Fahey, G.C.; Fernhall, B.; Smith, D.L. Physiological recovery from firefighting activities in rehabilitation and beyond. Prehospital Emerg. Care 2011, 15, 214–225. [Google Scholar] [CrossRef]
- Pryor, R.R.; Hostler, D.; Cooper, E.R.; Grundstein, A.J. Work-to-Rest Ratio. In Sport and Physical Activity in the Heat; Springer: Amsterdam, The Netherlands, 2018; pp. 101–111. [Google Scholar]
- Sawka, M.N.; Montain, S.J.; Latzka, W.A. Hydration effects on thermoregulation and performance in the heat. Comp. Biochem. Physiol. Part. A Mol. Integr. Physiol. 2001, 128, 679–690. [Google Scholar] [CrossRef]
- Sawka, M.; Latzka, W.; Matott, R.; Montain, S. Hydration effects on temperature regulation. Int. J. Sports Med. 1998, 19, S108–S110. [Google Scholar] [CrossRef]
- Flouris, A.D. Human Thermoregulation. In Heat Stress in Sport and Exercise; Springer: Amsterdam, The Netherlands, 2019; pp. 3–27. [Google Scholar]
- Stevens, C.J.; Dascombe, B.; Boyko, A.; Sculley, D.; Callister, R. Ice slurry ingestion during cycling improves Olympic distance triathlon performance in the heat. J. Sports Sci. 2013, 31, 1271–1279. [Google Scholar] [CrossRef]
- Morris, N.B.; Coombs, G.; Jay, O. Ice slurry ingestion leads to a lower net heat loss during exercise in the heat. Med. Sci. Sports Exerc. 2016, 48, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Notley, S.R.; Flouris, A.D.; Kenny, G.P. On the use of wearable physiological monitors to assess heat strain during occupational heat stress. Appl. Physiol. Nutr. Metab. 2018, 43, 869–881. [Google Scholar] [CrossRef]
- Yazdi, M.M.; Sheikhzadeh, M. Personal cooling garments: A review. J. Text. Inst. 2014, 105, 1231–1250. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Ainsworth, B.E.; Washington, T.L.; Troiano, R. Assigning metabolic equivalent values to the 2002 census occupational classification system. J. Phys. Act. Health 2011, 8, 581–586. [Google Scholar] [CrossRef]
Observational Studies | ||||
Sector | Workers (n) | Weight (kg) | Height (cm) | Age (Years) |
Agriculture (Greece) | 36 (7) * | 75.4 ± 13.2 | 169.1 ± 4.9 | 39.9 ± 14.2 |
Construction (Spain) | 14 | 79.6 ± 11.1 | 174.3 ± 8.9 | 43.3 ± 10.2 |
Tourism (Greece) | 49 | 75.6 ± 14.7 | 1.7 ± 0.1 | 34.5 ± 9.5 |
Interventional Studies | ||||
Workers (n) | Weight (kg) | Height (cm) | Age (years) | |
Agriculture (Cyprus) n = 6 | ||||
Work/rest ratio | 6 | 77.0 ± 16.2 | 168.3 ± 8.5 | 39.2 ± 11.8 |
Fruit cart (eCart) | 6 | 77.0 ± 16.2 | 168.3 ± 8.5 | 39.2 ± 11.8 |
Ventilated garments | 6 | 77.0 ± 16.2 | 168.3 ± 8.5 | 39.2 ± 11.8 |
Agriculture (Qatar) n = 34 | ||||
Work/rest ratio | 24 | 66.4 ± 10.0 | 170.6 ± 5.7 | 31.5 ± 7.5 |
Hydration | 26 | 65.2 ± 9.4 | 169.7 ± 5.8 | 32.1 ± 7.2 |
Evaporative garments | 12 | 67.3 ± 9.2 | 170.1 ± 4.3 | 35.3 ± 8.5 |
Construction (Qatar) n = 83 | ||||
Work/rest ratio | 69 | 65.3 ± 8.4 | 164.9 ± 5.7 | 34.4 ± 8.3 |
Hydration | 53 | 65.7 ± 8.1 | 165.2 ± 5.8 | 34.3 ± 9.2 |
Evaporative garments | 32 | 65.1 ± 8.1 | 164.5 ± 5.9 | 35.9 ± 7.8 |
Construction (Spain) n = 10 | ||||
Work/rest ratio | 10 | 85.9 ± 14.4 | 175.8 ± 10.9 | 41.5 ± 7.3 |
Hydration | 9 | 77.9 ± 15.0 | 158.2 ± 11.5 | 39.0 ± 5.0 |
Ice slurry | 9 | 77.9 ± 15.0 | 158.2 ± 11.5 | 39.0 ± 5.0 |
Tourism (Greece) n = 6 | ||||
Work/rest ratio | 6 | 71.2 ± 9.8 | 171.2 ± 7.4 | 30.5 ± 8.3 |
Ice slurry | 6 | 71.2 ± 9.8 | 171.2 ± 7.4 | 30.5 ± 8.3 |
Combined | 6 | 71.2 ± 9.8 | 171.2 ± 7.4 | 30.5 ± 8.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannou, L.G.; Mantzios, K.; Tsoutsoubi, L.; Nintou, E.; Vliora, M.; Gkiata, P.; Dallas, C.N.; Gkikas, G.; Agaliotis, G.; Sfakianakis, K.; et al. Occupational Heat Stress: Multi-Country Observations and Interventions. Int. J. Environ. Res. Public Health 2021, 18, 6303. https://doi.org/10.3390/ijerph18126303
Ioannou LG, Mantzios K, Tsoutsoubi L, Nintou E, Vliora M, Gkiata P, Dallas CN, Gkikas G, Agaliotis G, Sfakianakis K, et al. Occupational Heat Stress: Multi-Country Observations and Interventions. International Journal of Environmental Research and Public Health. 2021; 18(12):6303. https://doi.org/10.3390/ijerph18126303
Chicago/Turabian StyleIoannou, Leonidas G., Konstantinos Mantzios, Lydia Tsoutsoubi, Eleni Nintou, Maria Vliora, Paraskevi Gkiata, Constantinos N. Dallas, Giorgos Gkikas, Gerasimos Agaliotis, Kostas Sfakianakis, and et al. 2021. "Occupational Heat Stress: Multi-Country Observations and Interventions" International Journal of Environmental Research and Public Health 18, no. 12: 6303. https://doi.org/10.3390/ijerph18126303