Why We Will Continue to Lose Our Battle with Cancers If We Do Not Stop Their Triggers from Environmental Pollution
Abstract
:1. Introduction: Prevent Cancers Instead of Fighting Them
2. Carcinogens into Water
3. Carcinogens into Air
4. Carcinogens into Soil
5. A Matter of Dose and Time
6. Conclusions: Future Research, Precautionary Principle, and Acceptable Risk
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cazzolla Gatti, R.; Menéndez, L.P.; Laciny, A.; Bobadilla Rodríguez, H.; Bravo Morante, G.; Carmen, E.; Dorninger, C.; Fabris, F.; Grunstra, N.D.S.; Schnorr, S.L.; et al. Diversity lost: COVID-19 as a phenomenon of the total environment. Sci. Total Environ. 2021, 756, 144014. [Google Scholar] [CrossRef] [PubMed]
- WCRF 2020. Available online: https://www.wcrf.org/dietandcancer/cancer-trends (accessed on 15 December 2020).
- ACS 2020. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2020.html (accessed on 10 November 2020).
- Osório-Costa, F.; Rocha, G.Z.; Dias, M.M.; Carvalheira, J.B. Epidemiological and Molecular Mechanisms Aspects Linking Obesity and Cancer. Arq. Bras. Endocrinol. Metabol. 2009, 53, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.; Afaq, F.; Mukhtar, H. Lifestyle as risk factor for cancer: Evidence from human studies. Cancer Lett. 2010, 293, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Thun, M.J.; Henley, S.J.; Burns, D.; Jemal, A.; Shanks, T.G.; Calle, E.E. Lung Cancer Deaths in Lifelong Non-smokers. JNCI 2006, 98, 691–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ihsan, R.; Chauhan, P.S.; Mishra, A.K.; Yadav, D.S.; Kaushal, M.; Sharma, J.D.; Zomawia, E.; Verma, Y.; Kapur, S.; Saxena, S. Multiple analytical approaches reveal distinct gene-environment interactions in smokers and non smokers in lung cancer. PLoS ONE 2011, 6, e29431. [Google Scholar] [CrossRef]
- Deng, T.; Lyon, C.J.; Bergin, S.; Caligiuri, M.A.; Hsueh, W.A. Obesity, inflammation, and cancer. Ann. Rev. Pathol. Mech. Dis. 2016, 11, 421–449. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Giovannucci, E.L. Alcohol as a risk factor for cancer. Semin. Oncol. Nurs. 2016, 32, 325–331. [Google Scholar] [CrossRef]
- Reaves, D.K.; Ginsburg, E.; Bang, J.J.; Fleming, J.M. Persistent organic pollutants and obesity: Are they potential mechanisms for breast cancer promotion? Endocr. Relat. Cancer 2015, 22, R69–R86. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.B.; Shim, J.Y.; Park, B.; Lee, Y.J. Long-term exposure to air pollutants and cancer mortality: A meta-analysis of cohort studies. Int. J. Environ. Res. Public Health 2018, 15, 2608. [Google Scholar] [CrossRef] [Green Version]
- Wild, C.P.; Weiderpass, E.; Stewart, B.W. (Eds.) World Cancer Report; IARC: Lyon, France, 2020. [Google Scholar]
- Blacksmith Institute. The World′s Worst Polluted Places: The Top Ten (of the Dirty Thirty); Blacksmith Institute: New York, NY, USA, 2007. [Google Scholar]
- Hashim, D.; Boffetta, P. Occupational and environmental exposures and cancers in developing countries. Ann. Glob. Health 2014, 80, 393–411. [Google Scholar] [CrossRef]
- Rudel, R.A.; Attfield, K.R.; Schifano, J.N.; Brody, J.G. Chemicals Causing Mammary Gland Tumors in Animals Signal New Directions for Epidemiology, Chemicals Testing, and Risk Assessment for Breast Cancer Prevention. Cancer 2007, 109, 2635–2666. [Google Scholar] [CrossRef]
- Rodgers, K.M.; Udesky, J.O.; Rudel, R.A.; Brody, J.G. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. Environ. Res. 2018, 160, 152–182. [Google Scholar] [CrossRef]
- O′Leary, L.M.; Hicks, A.M.; Peters, J.M.; London, S. “Parental Exposures and Risk of Childhood Cancer: A Review”. Am. J. Ind. Med. 1991, 20, 17–35. [Google Scholar] [CrossRef]
- Vinson, F.; Merhi, M.; Baldi, I.; Raynal, H.; Gamet-Payrastre, L. Exposure to pesticides and risk of childhood cancer: A meta-analysis of recent epidemiological studies. Occup. Environ. Med. 2011, 68, 694–702. [Google Scholar] [CrossRef]
- Hannon, P.R.; Flaws, J.A. The effects of phthalates on the ovary. Front. Endocrinol. 2015, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Goncharov, A.; Rej, R.; Negoita, S.; Schymura, M.; Santiago-Rivera, A.; Morse, G. Lower Serum Testosterone Associated with Elevated Polychlorinated Biphenyl Concentrations in Native American Men. EHP 2009, 117, 1454–1460. [Google Scholar] [CrossRef] [Green Version]
- Desdoits-Lethimonier, C.; Albert, O.; Le Bizec, B.; Perdu, E.; Zalko, D.; Courant, F.; Lesné, L.; Guillé, F.; Dejucq-Rainsford, N.; Jégou, B. Human testis steroidogenesis is inhibited by phthalates. Hum. Reprod. 2012, 27, 1451–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steenland, K.; Winquist, A. PFAS and cancer, a scoping review of the epidemiologic evidence. Environ. Res. 2020, 110690. [Google Scholar] [CrossRef]
- Sjodin, A.; Wong, L.Y.; Jones, R.S.; Park, A.; Zhang, Y.; Hodge, C.; Dipietro, E.; McClure, C.; Turner, W.; Needham, L.L.; et al. Concentrations of Polybrominated Diphenyl Ethers (PBDEs) and Polybrominated Biphenyl (PBB) in the United States Population: 2003–2004. Environ. Sci. Technol. 2008, 42, 1377–1384. [Google Scholar] [CrossRef]
- Calafat, A.M.; Ye, X.; Wong, L.Y.; Reidy, J.A.; Needham, L.L. Exposure of the U.S. Population to Bisphenol A and 4-tertiary-Octylphenol: 2003–2004. EHP 2008, 116, 39–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seachrist, D.D.; Bonk, K.W.; Ho, S.M.; Prins, G.S.; Soto, A.M.; Keri, R.A. A review of the carcinogenic potential of bisphenol A. Reprod. Toxicol. 2016, 59, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durando, M.; Kass, L.; Piva, J.; Sonnenschein, C.; Soto, A.M.; Luque, E.H.; Muñoz-de-Toro, M. Prenatal Bisphenol A Exposure Induces Preneoplastic Lesions in the Mammary Gland in Wistar Rats. EHP 2007, 115, 80–86. [Google Scholar] [CrossRef]
- Ho, S.M.; Tang, W.Y.; De Frausto, J.B.; Prins, G.S. Developmental Exposure to Estradiol and Bisphenol A Increases Susceptibility to Prostate Carcinogenesis and Epigenetically Regulates Phosphodiesterase Type 4 Variant 4. Cancer Res. 2006, 66, 5624–5632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snedeker, S. Environmental Estrogens: Effects on Puberty and Cancer Risk. Ribbon 2007, 12, 5–7. [Google Scholar]
- Wilson, N.K.; Chuang, J.C.; Morgan, M.K.; Lordo, R.A.; Sheldon, L.S. An Observational Study of the Potential Exposures of Preschool Children to Pentachlorophenol, Bisphenol A, and nonylphenol at Home and Day-care. Environ. Res. 2007, 103, 9–20. [Google Scholar] [CrossRef]
- Gilliom, R.J.; Barbash, J.E.; Crawford, C.G.; Hamilton, P.A.; Martin, J.D.; Nakagaki, N.; Nowell, L.H.; Scott, J.C.; Stackelberg, P.E.; Thelin, G.P.; et al. The Quality of Our Nation′s Waters: Pesticides in the Nation′s Streams and Ground Water, 1992–2001; U.S. Geological Survey: Reston, VA, USA, 2006.
- Straub, C.L.; Maul, J.D.; Halbrook, R.S.; Spears, B.; Lydy, M.J. Trophic Transfer of Polychlorinated Biphenyls in Great Blue Heron (Ardea Herodias) at Crab Orchard National Wildlife Refuge, Illinois, United States. Arch. Environ. Contam. Toxicol. 2007, 52, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Authman, M.M.; Zaki, M.S.; Khallaf, E.A.; Abbas, H.H. Use of fish as bio-indicator of the effects of heavy metals pollution. J. Aquac. Res. Dev. 2015, 6, 1–13. [Google Scholar] [CrossRef]
- Harper, R.G.; Frick, J.A.; Capparella, A.P.; Borup, B.; Nowak, M.; Biesinger, D.; Thompson, C.F. Organochlorine Pesticide Contamination in Neotropical Migrant Passerines. Arch. Environ. Contam. Toxicol. 1996, 31, 386–390. [Google Scholar] [CrossRef]
- Smith, W.H.; Hale, R.C.; Greaves, J.; Huggett, R.J. Trace Organochlorine Contamination of the Forest Floor of the White Mountain National Forest, New Hampshire. Environ. Sci. Technol. 1993, 27, 2244–2246. [Google Scholar] [CrossRef]
- Xin, J.; Liu, X.; Liu, W.; Jiang, L.; Wang, J.; Niu, J. Production and use of DDT containing antifouling paint resulted in high DDTs residue in three paint factory sites and two shipyard sites, China. Chemosphere 2011, 84, 342–347. [Google Scholar] [CrossRef]
- Cohn, B.A.; Wolff, M.S.; Cirillo, P.M.; Sholtz, R.I. DDT and breast cancer in young women: New data on the significance of age at exposure. Environ. Health Perspect. 2007, 115, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, H.; Kylin, H.; Sereda, B.; Bornman, R. High levels of DDT in breast milk: Intake, risk, lactation duration, and involvement of gender. Environ. Pollut. 2012, 170, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Stout, D.M.; Bradham, K.D.; Egeghy, P.P.; Jones, P.A.; Croghan, C.W.; Ashley, P.A.; Pinzer, E.; Friedman, W.; Brinkman, M.C.; Nishioka, M.G.; et al. American Healthy Homes Survey: A National Study of Residential Pesticides Measured from Floor Wipes. Environ. Sci. Technol. 2009, 43, 4294–4300. [Google Scholar] [CrossRef] [Green Version]
- Quirós-Alcalá, L.; Bradman, A.; Nishioka, M.; Harnly, M.E.; Hubbard, A.; McKone, T.E.; Ferber, J.; Eskenazi, B. Pesticides in house dust from urban and farmworker households in California: An observational measurement study. Environ. Health 2011, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hayes, T.B.; Collins, A.; Lee, M.; Mendoza, M.; Noriega, N.; Stuart, A.A.; Vonk, A. Hermaphroditic Demasculinized Frogs after Exposure to the Herbicide Atrazine at Low Ecologically Relevant Doses. Proc. Natl. Acad. Sci. USA 2002, 99, 5476–5480. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, V.M.; Thiruchelvam, M.; Cory-Slechta, D.A. Sustained Exposure to the Widely Used Herbicide Atrazine: Altered Function and Loss of Neurons in Brain Monoamine Systems. EHP 2005, 113, 708–715. [Google Scholar] [CrossRef] [Green Version]
- Enoch, R.R.; Stanko, J.P.; Greiner, S.N.; Youngblood, G.L.; Rayner, J.L.; Fenton, S.E. Mammary Gland Development as a Sensitive End Point After Acute Prenatal Exposure to an Atrazine Metabolite Mixture in Female Long-Evans Rats. EHP 2007, 115, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R.L.; Laws, S.C.; Das, P.C.; Narotsky, M.G.; Goldman, J.M.; Lee Tyrey, E.; Stoker, T.E. Atrazine and Reproductive Function: Mode and Mechanism of Action Studies. Birth Defects Res. Part B 2007, 80, 98–112. [Google Scholar] [CrossRef] [PubMed]
- Suzawa, M.; Ingraham, H.A. The Herbicide Atrazine Activates Endocrine Gene Networks via Non-Steroidal NR5A Nuclear Receptors in Fish and Mammalian Cells. PLoS ONE 2008, 3, e2117. [Google Scholar] [CrossRef]
- Lenkowski, J.R.; Reed, J.M.; Deininger, L.; McLaughlin, K.A. Perturbation of Organogenesis by the Herbicide Atrazine in the Amphibian Xenopus laevis. EHP 2008, 116, 223–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibayama, H.; Kotera, T.; Shinoda, Y.; Hanada, T.; Kajihara, T.; Ueda, M.; Tamura, H.; Ishibashi, S.; Yamashita, Y.; Ochi, S. Collaborative Work on Evaluation of Ovarian Toxicity. 14) Two-or Four-week Repeated-Dose Studies and Fertility Study of Atrazine in Female Rats. J. Toxicol. Sci. 2009, 34, SP147–SP155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sass, J.B.; Colangelo, A. European Union Bans Atrazine, while the United States Negotiates Continued Use. Int. J. Occup. Environ. Health 2006, 12, 260–267. [Google Scholar] [PubMed]
- Wasserman, M. Organochlorine Compounds in Neoplastic and Adjacent Apparently Normal Breast Tissue. Bull. Environ. Contam. Toxicol. 1976, 15, 478–484. [Google Scholar] [CrossRef]
- Davis, D.L.; Dinse, G.E.; Hoel, D.G. Decreasing Cardiovascular Disease and Increasing Cancer among Whites in the United States from 1973 through 1987: Good News and Bad News. JAMA 1994, 271, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.L. The Need to Develop Centers for Environmental Oncology. Biomed. Pharmacother. 2007, 61, 614–622. [Google Scholar] [CrossRef]
- Martineau, D.; Lagacé, A.; Massé, R.; Morin, M.; Béland, P. Transitional Cell Carcinoma of the Urinary Bladder in a Beluga Whale (Delphinapterus leucas). J. Wildl. Dis. 1985, 22, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Hueper, W.C. Experimental Production of Bladder Tumors in Dogs by Administration of betaNaphthylamine. J. Ind. Hyg. Toxicol. 1938, 20, 46–84. [Google Scholar]
- Hayes, H.M. Bladder Cancer in Pet Dogs: A Sentinel for Environmental Cancer? AJE 1981, 114, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Glickman, L.T.; Schofer, F.S.; McKee, L.J.; Reif, J.S.; Goldschmidt, M.H. Epidemiologic Study of Insecticide Exposures, Obesity, and Risk of Bladder Cancer in Household Dogs. JTEH 1989, 28, 407–414. [Google Scholar] [CrossRef]
- Glickman, L.T.; Raghavan, M.; Knapp, D.W.; Bonney, P.L.; Dawson, M.H. Herbicide Exposure and the Risk of Transitional Cell Carcinoma of the Urinary Bladder in Scottish Terriers. J. Am. Vet. Med Assoc. 2004, 224, 1290–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marconato, L.; Leo, C.; Girelli, R.; Salvi, S.; Abramo, F.; Bettini, G.; Comazzi, S.; Nardi, P.; Albanese, F.; Zini, E. Association between Waste Management and Cancer in Companion Animals. J. Vet. Intern. Med. 2009, 23, 564–569. [Google Scholar] [CrossRef]
- Knapp, D.W.; Peer, W.A.; Conteh, A.; Diggs, A.R.; Cooper, B.R.; Glickman, N.W.; Bonney, P.L.; Stewart, J.C.; Glickman, L.T.; Murphy, A.S. Detection of herbicides in the urine of pet dogs following home lawn chemical application. Sci. Total Environ. 2013, 456, 34–41. [Google Scholar] [CrossRef] [PubMed]
- NIOSH. Special Occupational Hazard Review for Benzidene-Based Dyes, DHEW (NIOSH) Pub. 80–109; NIOSH: Cincinnati, OH, USA, 1980. [Google Scholar]
- Monson, R.R.; Nakano, K. Mortality among Rubber Workers: I. White Male Union Employees in Akron, Ohio. AJE 1976, 103, 284–296. [Google Scholar] [CrossRef]
- Cole, P.; Hoover, R.; Friedell, G.H. Occupation and Cancer of the Lower Urinary Tract. Cancer 1972, 29, 1250–1260. [Google Scholar] [CrossRef]
- Vineis, P.; Di Prima, S. Cutting Oils and Bladder Cancer. Scand. J. Work. Environ. Health 1983, 9, 449–450. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekkers, O.M.; Vandenbroucke, J.P.; Cevallos, M.; Renehan, A.G.; Altman, D.G.; Egger, M. COSMOS-E: Guidance on conducting systematic reviews and meta-analyses of observational studies of etiology. PLoS Med. 2019, 16, e1002742. [Google Scholar] [CrossRef]
- Hawthorne, M. Dry Cleaners Leave a Toxic Legacy—Despite Cleanup Effort, Chemicals Still Taint Hundreds of Illinois Sites; Chicago Tribune: Chicago, IL, USA, 2009. [Google Scholar]
- Kuch, H.M.; Ballschmiter, K. Determination of Endocrine-disrupting Phenolic Compounds and Estrogens in Surface and Drinking Water by HRGC-(NCI)-MS in the Picogram per Liter Range. Environ. Sci. Technol. 2001, 35, 3201–3206. [Google Scholar] [CrossRef] [PubMed]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999–2000: A National Reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef] [Green Version]
- Stackelberg, P.E.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Henderson, A.K.; Reissman, D.B. Persistence of Pharmaceutical Compounds and Other Organic Wastewater Contaminants in a Conventional Drinking-Water Treatment Plant. Sci. Total. Environ. 2004, 329, 99–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, B.; Wiles, R.; Bondoc, E. Weed Killers by the Glass: A Citizens′ Tap Water Monitoring Project in 29 Cities; Environmental Working Group: Washington, DC, USA, 1995. [Google Scholar]
- Wu, M.; Quirindongo, M.; Sass, J.; Wetzler, A. Poisoning the Well: How the EPA Is Ignoring Atrazine Contamination in Surface and Drinking Water in the Central United States; NRDC: New York, NY, USA, 2009. [Google Scholar]
- Rivett, M.O.; Turner, R.J.; Glibbery, P.; Cuthbert, M.O. The legacy of chlorinated solvents in the Birmingham aquifer, UK: Observations spanning three decades and the challenge of future urban groundwater development. J. Contam. Hydrol. 2012, 140, 107–123. [Google Scholar] [CrossRef]
- Ward, M.H.; DeKok, T.M.; Levallois, P.; Brender, J.; Gulis, G.; Nolan, B.T.; VanDerslice, J. Workgroup Report: Drinking-water Nitrate and Health—Recent Findings and Research Needs. EHP 2005, 113, 1607–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantor, K.P.; Ward, M.H.; Moore, L.E.; Lubin, J.H. Water Contaminants. In Cancer Prevention and Epidemiology, 3rd ed.; Schottenfeld, D., Fraumeni, J.F., Eds.; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Howard, C.; Corsi, R.L. Volatilization of Chemicals from Drinking Water to Indoor Air: The Role of Residential Washing Machines. J. Air Waste Manag. Assoc. 1998, 48, 907–914. [Google Scholar] [CrossRef]
- Nuckols, J.R.; Ashley, D.L.; Lyu, C.; Gordon, S.M.; Hinckley, A.F.; Singer, P. Influence of Tap Water Quality and Household Water Use Activities on Indoor Air and Internal Dose Level of Trihalomethanes. EHP 2005, 113, 863–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, S.M.; Brinkman, M.C.; Ashley, D.L.; Blount, B.C.; Lyu, C.; Masters, J.; Singer, P.C. Changes in Breath Trihalomethane Levels Resulting from Household Water-Use Activities. EHP 2006, 114, 514–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, S.D. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2007, 79, 4295–4323. [Google Scholar] [CrossRef] [PubMed]
- Weisel, C.P.; Jo, W.K. Ingestion, Inhalation, and Dermal Exposures to Chloroform and Trichloroethene from Tap Water. EHP 1996, 104, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Budnick, L.D.; Sokal, D.C.; Falk, H.; Logue, J.N.; Fox, J.M. Cancer and Birth Defects near the Drake Superfund Site, Pennsylvania. AEH 1984, 39, 409–413. [Google Scholar] [CrossRef]
- Lagakos, S.W.; Wessen, B.J.; Zelen, M. An Analysis of Contaminated Well Water and Health Effects in Woburn, Massachusetts. J. Am. Stat. Assoc. 1986, 395, 583–596. [Google Scholar] [CrossRef]
- Griffith, J.; Duncan, R.C.; Riggan, W.B.; Pellom, A.C. Cancer Mortality in U.S. Counties with Hazardous Waste Sites and Ground Water Pollution. AEH 1989, 44, 69–74. [Google Scholar] [CrossRef]
- Osborne, J.S.; Shy, C.M.; Kaplan, B.H. Epidemiologic Analysis of a Reported Cancer Cluster in a Small Rural Population. AJE 1990, 132, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Lampi, P.; Hakulinen, T.; Luostarinen, T.; Pukkala, E.; Teppo, L. Cancer Incidence following Chlorophenol Exposure in a Community in Southern Finland. AEH 1992, 47, 167–175. [Google Scholar] [CrossRef]
- Aschengrau, A.; Ozonoff, D.; Paulu, C.; Coogan, P.; Vezina, R.; Heeren, T.; Zhang, Y. Cancer Risk and Tetrachloroethylene-Contaminated Drinking Water in Massachusetts. AEH 1993, 48, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Baris, D.; Waddell, R.; Beane Freeman, L.E.; Schwenn, M.; Colt, J.S.; Ayotte, J.D.; Ward, M.H.; Nuckols, J.; Schned, A.; Jackson, B.; et al. Elevated bladder cancer in Northern New England: The role of drinking water and arsenic. J. Natl. Cancer Inst. 2016, 108. [Google Scholar] [CrossRef] [PubMed]
- Fagliano, J.; Berry, M.; Bove, F.; Burke, T. Drinking Water Contamination and the Incidence of Leukemia: An Ecologic Study. AJPH 1990, 80, 1209–1212. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, W.; Kranefeld, A.; Schmitz-Feuerhake, I. Radium226-Contaminated Drinking Water: Hypothesis on an Exposure Pathway in a Population with Elevated Childhood Leukemias. EHP 1993, 101, 113–115. [Google Scholar]
- Winde, F.; Erasmus, E.; Geipel, G. Uranium contaminated drinking water linked to leukaemia—Revisiting a case study from South Africa taking alternative exposure pathways into account. Sci. Total Environ. 2017, 574, 400–421. [Google Scholar] [CrossRef]
- Fernandez-Luqueno, F.; López-Valdez, F.; Gamero-Melo, P.; Luna-Suárez, S.; Aguilera-González, E.N.; Martínez, A.I.; García-Guillermo, M.D.S.; Hernández-Martínez, G.; Herrera-Mendoza, R.; Álvarez-Garza, M.A.; et al. Heavy metal pollution in drinking water-a global risk for human health: A review. Afr. J. Environ. Sci. Technol. 2013, 7, 567–584. [Google Scholar]
- Chhabra, D.; Oda, K.; Jagannath, P.; Utsunomiya, H.; Takekoshi, S.; Nimura, Y. Chronic heavy metal exposure and gallbladder cancer risk in India, a comparative study with Japan. Asian Pac. J. Cancer Prev. 2012, 13, 187–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyambura, C.; Hashim, N.O.; Chege, M.W.; Tokonami, S.; Omonya, F.W. Cancer and non-cancer health risks from carcinogenic heavy metal exposures in underground water from Kilimambogo, Kenya. Groundw. Sustain. Dev. 2020, 10, 100315. [Google Scholar] [CrossRef]
- Zhitkovich, A. Chromium in drinking water: Sources, metabolism, and cancer risks. Chem. Res. Toxicol. 2011, 24, 1617–1629. [Google Scholar] [CrossRef]
- Bulka, C.M.; Jones, R.M.; Turyk, M.E.; Stayner, L.T.; Argos, M. Arsenic in drinking water and prostate cancer in Illinois counties: An ecologic study. Environ. Res. 2016, 148, 450–456. [Google Scholar] [CrossRef] [Green Version]
- Roh, T.; Lynch, C.F.; Weyer, P.; Wang, K.; Kelly, K.M.; Ludewig, G. Low-level arsenic exposure from drinking water is associated with prostate cancer in Iowa. Environ. Res. 2017, 159, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Marshall, G.; Ferreccio, C.; Yuan, Y.; Bates, M.N.; Steinmaus, C.; Selvin, S.; Liaw, J.; Smith, A.H. Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J. Natl. Cancer Inst. 2007, 99, 920–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, R.C.; Hsu, K.H.; Chen, C.J.; Froines, J.R. Arsenic methylation capacity and skin cancer. Cancer Epidemiol. Prev. Biomark. 2000, 9, 1259–1262. [Google Scholar]
- Hrudey, S.E.; Backer, L.C.; Humpage, A.R.; Krasner, S.W.; Michaud, D.S.; Moore, L.E.; Singer, P.C.; Stanford, B.D. Evaluating evidence for association of human bladder cancer with drinking-water chlorination disinfection by-products. J. Toxicol. Environ. Health Part B 2015, 18, 213–241. [Google Scholar] [CrossRef] [PubMed]
- Cantor, K.P. Water Chlorination, Mutagenicity, and Cancer Epidemiology. AJPH 1994, 84, 1211–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.B.; Driscoll, T.; Cowie, C.; Armstrong, B.K. Disinfection by-products in drinking water and colorectal cancer: A meta-analysis. Int. J. Epidemiol. 2010, 39, 733–745. [Google Scholar] [CrossRef] [Green Version]
- McDonald, T.A.; Komulainen, H. Carcinogenicity of the Chlorination Disinfection By-Product MX. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2005, 23, 163–214. [Google Scholar] [CrossRef]
- Ononugbo, C.P.; Avwiri, G.O.; Egieya, J.M. Evaluation of natural radionuclide content in surface and ground water and excess lifetime cancer risk due to gamma radioactivity. Acad. Res. Int. 2013, 4, 636. [Google Scholar]
- Radespiel-Tröger, M.; Meyer, M. Association between drinking water uranium content and cancer risk in Bavaria, Germany. Int. Arch. Occup. Environ. Health 2013, 86, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Karahan, G.; Taskin, H.; Bingoldag, N.; Kapdan, E.; Yilmaz, Y.Z. Environmental impact assessment of natural radioactivity and heavy metals in drinking water around Akkuyu Nuclear Power Plant in Mersin Province. Turk. J. Chem. 2018, 42, 735–747. [Google Scholar]
- Tomatis, L. (Ed.) Air Pollution and Human Cancer; Springer Science Business Media: Berlin, Germany, 2012. [Google Scholar]
- Pinter, A.; Bejczi, K.; Csik, M.; Kelecsenyi, Z.; Kertesz, M.; Surjan, A.; Török, G. Mutagenicity of Emission and Immission Samples around Industrial Areas. In Complex Mixtures and Cancer Risk; IARC Scientific Publications: Lyon, France, 1990. [Google Scholar]
- Mudipalli, A. Airborne Carcinogens: Mechanisms of Cancer. In Air Pollution and Health Effects; Springer: London, UK, 2015; pp. 151–184. [Google Scholar]
- Raloff, J. Bad Breath: Studies are Homing In on Which Particles Polluting the Air Are Most Sickening—And Why. Sci. News 2009, 176, 26. [Google Scholar] [CrossRef]
- Buonanno, G.; Giovinco, G.; Morawska, L.; Stabile, L. Lung cancer risk of airborne particles for Italian population. Environ. Res. 2015, 142, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Cazzolla Gatti, R.; Velichevskaya, A.; Tateo, A.; Amoroso, N.; Monaco, A. Machine learning reveals that prolonged exposure to air pollution is associated with SARS-CoV-2 mortality and infectivity in Italy. Environ. Pollut. 2020, 267, 115471. [Google Scholar] [CrossRef]
- Hemminki, K.; Pershagen, G. Cancer Risk of Air Pollution: Epidemiological Evidence. EHP 1994, 102, 187–192. [Google Scholar]
- Breslin, K. The Impact of Ozone. EHP 1995, 103, 660–664. [Google Scholar]
- Jakab, G.J.; Spannhake, E.W.; Canning, B.J.; Kleeberger, S.R.; Gilmour, M.I. The Effects of Ozone on Immune Function. EHP 1995, 103, 77–89. [Google Scholar] [PubMed]
- Valavanidis, A.; Vlachogianni, T.; Fiotakis, K.; Loridas, S. Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int. J. Environ. Res. Public Health 2013, 10, 3886–3907. [Google Scholar] [CrossRef] [PubMed]
- Richters, A. Effects of Nitrogen Oxide and Ozone on Blood-Borne Cancer Cell Colonization of the Lungs. JTEH 1988, 25, 383–390. [Google Scholar]
- Fackelmann, K.A. Air Pollution Boosts Cancer Spread. Sci. News 1990, 137, 221. [Google Scholar]
- Cohen, A.J. Outdoor Air Pollution and Lung Cancer. EHP 2000, 108, 743–750. [Google Scholar] [PubMed] [Green Version]
- Vineis, P.; Husgafvel-Pursiainen, K. Air Pollution and Cancer: Biomarker Studies in Human Populations. Carcinogenesis 2005, 26, 1846–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clapp, R.W.; Jacobs, M.M.; Loechler, E.L. Environmental and Occupational Causes of Cancer: New Evidence 2005–2007. Rev. Environ. Health 2008, 23, 1–36. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, L.W.; Huang, J.J.; Song, F.J.; Zhang, L.P.; Qian, Z.M.; Trevathan, E.; Mao, H.J.; Han, B.; Vaughn, M.; et al. Long-term exposure to urban air pollution and lung cancer mortality: A 12-year cohort study in Northern China. Sci. Total Environ. 2016, 571, 855–861. [Google Scholar] [CrossRef]
- Charloux, A.; Quoix, E.; Wolkove, N.; Small, D.; Pauli, G.; Kreisman, H. The Increasing Incidence of Lung Adenocarcinoma: Reality or Artefact? A Review of the Epidemiology of Lung Adenocarcinoma. Int. J. Epidemiol. 1997, 26, 14–23. [Google Scholar] [CrossRef]
- Mayoralas-Alises, S.; Diaz-Lobato, S. Air pollution and lung cancer. Curr. Respir. Med. Rev. 2012, 8, 418–429. [Google Scholar] [CrossRef] [Green Version]
- Tseng, C.H.; Tsuang, B.J.; Chiang, C.J.; Ku, K.C.; Tseng, J.S.; Yang, T.Y.; Hsu, K.H.; Chen, K.C.; Yu, S.L.; Lee, W.C.; et al. The relationship between air pollution and lung cancer in nonsmokers in Taiwan. J. Thorac. Oncol. 2019, 14, 784–792. [Google Scholar] [CrossRef]
- Dockery, D.W. An Association between Air Pollution and Mortality in Six, U.S. Cities. NEJM 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [Green Version]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.J.; Brunekreef, B.; et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013, 14, 813–822. [Google Scholar] [CrossRef]
- Blot, W.J.; Fraumeni, J.F.J. Geographic Patterns of Lung Cancer: Industrial Correlations. AJE 1976, 103, 539–550. [Google Scholar] [CrossRef]
- Fernández-Navarro, P.; García-Pérez, J.; Ramis, R.; Boldo, E.; López-Abente, G. Industrial pollution and cancer in Spain: An important public health issue. Environ. Res. 2017, 159, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Cong, X. Air pollution from industrial waste gas emissions is associated with cancer incidences in Shanghai, China. Environ. Sci. Pollut. Res. 2018, 25, 13067–13078. [Google Scholar] [CrossRef]
- American Lung Association, State of the Air. 2019. Available online: https://www.stateoftheair.org/ (accessed on 15 January 2020).
- Gustavsson, P.; Gustavsson, A.; Hogstedt, C. Excess Mortality among Swedish Chimney Sweeps. Br. J. Ind. Med. 1987, 44, 738–743. [Google Scholar] [CrossRef] [Green Version]
- Brody, J.G.; Moysich, K.B.; Humblet, O.; Attfield, K.R.; Beehler, G.P.; Rudel, R.A. Environmental pollutants and breast cancer: Epidemiologic studies. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2007, 109, 2667–2711. [Google Scholar] [CrossRef] [PubMed]
- Yeh, H.L.; Hsu, S.W.; Chang, Y.C.; Chan, T.C.; Tsou, H.C.; Chang, Y.C.; Chiang, P.H. Spatial analysis of ambient PM2. 5 exposure and bladder cancer mortality in Taiwan. Int. J. Environ. Res. Public Health 2017, 14, 508. [Google Scholar] [CrossRef] [PubMed]
- Sakhvidi, M.J.Z.; Lequy, E.; Goldberg, M.; Jacquemin, B. Air pollution exposure and bladder, kidney and urinary tract cancer risk: A systematic review. Environ. Pollut. 2020, 115328. [Google Scholar] [CrossRef]
- Hystad, P.; Villeneuve, P.J.; Goldberg, M.S.; Crouse, D.L.; Johnson, K. Canadian Cancer Registries Epidemiology Research Group. Exposure to traffic-related air pollution and the risk of developing breast cancer among women in eight Canadian provinces: A case–control study. Environ. Int. 2015, 74, 240–248. [Google Scholar] [CrossRef]
- White, A.J.; Bradshaw, P.T.; Hamra, G.B. Air pollution and breast cancer: A review. Curr. Epidemiol. Rep. 2018, 5, 92–100. [Google Scholar] [CrossRef]
- Morris, J.J.; Seifter, E. The Role of Aromatic Hydrocarbons in the Genesis of Breast Cancer. Med. Hypotheses 1992, 38, 177–184. [Google Scholar] [CrossRef]
- Korsh, J.; Shen, A.; Aliano, K.; Davenport, T. Polycyclic aromatic hydrocarbons and breast cancer: A review of the literature. Breast Care 2015, 10, 316–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, B.J.; Hong, Y.J.; Chang, G.C.; Wang, M.T.; Cinkotai, F.F.; Ko, Y.C. Excess Cancer Mortality Among Children and Adolescents in Residential Districts Polluted by Petrochemical Manufacturing Plants in Taiwan. JTEH 1994, 43, 117–129. [Google Scholar] [CrossRef]
- Trichopoulos, D.; Petridou, F. Epidemiologic Studies and Cancer Etiology in Humans. Med. Exerc. Nutr. Health 1994, 3, 206–225. [Google Scholar]
- Liu, C.C.; Tsai, S.S.; Chiu, H.F.; Wu, T.N.; Chen, C.C.; Yang, C.Y. Ambient Exposure to Criteria Air Pollutants and Risk of Death from Bladder Cancer in Taiwan. Inhal. Toxicol. 2009, 21, 48–54. [Google Scholar] [CrossRef]
- Tsai, S.S.; Tiao, M.M.; Kuo, H.W.; Wu, T.N.; Yang, C.Y. Association of Bladder Cancer with Residential Exposure to Petrochemical Air Pollutant Emissions in Taiwan. J. Toxicol. Environ. Health. Part A 2009, 72, 53–59. [Google Scholar] [CrossRef]
- Zook, D.R.; Rappe, C. Environmental Sources, Distribution and Fate of Polychlorinated Dibenzodioxins, Dibenzofurans, and Related Organochlorines. In Dioxins and Health; Schecter, A., Ed.; Plenum: New York, NY, USA, 1994. [Google Scholar]
- Nzihou, A.; Themelis, N.J.; Kemiha, M.; Benhamou, Y. Dioxin emissions from municipal solid waste incinerators (MSWIs) in France. Waste Manag. 2012, 32, 2273–2277. [Google Scholar] [CrossRef] [Green Version]
- Schecter, A. (Ed.) Dioxins and Health; Springer Science Business Media: Berlin, Germany, 2013. [Google Scholar]
- Jenkins, S.; Rowell, C.; Wang, J.; Lamartiniere, C.A. Prenatal TCDD Exposure Predisposes for Mammary Cancer in Rats. Reprod. Toxicol. 2007, 23, 391–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connett, P.; Connett, E. Municipal Waste Incineration: Wrong Question, Wrong Answer. Ecologist 1994, 24, 14–20. [Google Scholar]
- Schneider, K. In the Humble Ashes of a Lone Incinerator, the Makings of a Law. New York Times, 18 March 1994. [Google Scholar]
- Ouyang, Z.; Liu, W.; Zhu, J. Flameless combustion behaviour of preheated pulverized coal. Can. J. Chem. Eng. 2018, 96, 1062–1070. [Google Scholar] [CrossRef]
- Liu, W.; Ouyang, Z.; Cao, X.; Na, Y. The influence of air-stage method on flameless combustion of coal gasification fly ash with coal self-preheating technology. Fuel 2019, 235, 1368–1376. [Google Scholar] [CrossRef]
- Weidmann, M.; Honore, D.; Verbaere, V.; Boutin, G.; Grathwohl, S.; Godard, G.; Gobin, C.; Kneer, R.; Scheffknecht, G. Experimental characterization of pulverized coal MILD flameless combustion from detailed measurements in a pilot-scale facility. Combust. Flame 2016, 168, 365–377. [Google Scholar] [CrossRef]
- Brna, T.G.; Kilgore, J.D. The Impact of Particulate Emissions Control on the Control of Other MWC Air Emissions. J. Air Waste Manag. Assoc. 1990, 40, 1324–1329. [Google Scholar] [CrossRef] [Green Version]
- Schraufnagel, D.E. The health effects of ultrafine particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef]
- Zhan, Z.; Chiodo, A.; Zhou, M.; Davis, K.; Wang, D.; Beutler, J.; Cremer, M.; Wang, Y.; Wendt, J.O.L. Modeling of the submicron particles formation and initial layer ash deposition during high temperature oxy-coal combustion. Proc. Combust. Inst. 2020. [Google Scholar] [CrossRef]
- Thornton, J. Pandora′s Poison: Chlorine, Health, and a New Environmental Strategy; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- EPA. The Inventory of Sources and Environmental Releases of Dioxin-Like Compounds in the United States: The Year 2000 Update; EPA, National Center for Environmental Assessment: Washington, DC, USA, 2005. [Google Scholar]
- Dopico, M.; Gómez, A. Review of the current state and main sources of dioxins around the world. J. Air Waste Manag. Assoc. 2015, 65, 1033–1049. [Google Scholar] [CrossRef] [PubMed]
- Weber, R.; Herold, C.; Hollert, H.; Kamphues, J.; Blepp, M.; Ballschmiter, K. Reviewing the relevance of dioxin and PCB sources for food from animal origin and the need for their inventory, control and management. Environ. Sci. Eur. 2018, 30, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Connett, P.; Webster, T. An Estimation of the Relative Human Exposure to 2, 3, 7, 8-TCDD Emissions via Inhalation and Ingestion of Cow′s Milk. Chemosphere 1987, 16, 2079–2084. [Google Scholar] [CrossRef]
- Liem, A.K.D.; Hoogerbrugge, R.; Kootstra, P.R.; Van der Velde, E.G.; De Jong, A.P.J.M. Occurrence of Dioxin in Cow′s Milk in the Vicinity of Municipal Waste Incinerators and a Metal Reclamation Plant in the Netherlands. Chemosphere 1991, 23, 1675–1684. [Google Scholar] [CrossRef]
- Tritscher, A.M.; Goldstein, J.A.; Portier, C.J.; McCoy, Z.; Clark, G.C.; Lucier, G.W. Dose-response relationships for chronic exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in a rat tumor promotion model: Quantification and immunolocalization of CYP1A1 and CYP1A2 in the liver. Cancer Res. 1992, 52, 3436–3442. [Google Scholar]
- Lucier, G.W.; Portier, C.J.; Gallo, M.A. Receptor Mechanisms and Dose-Response Models for the Effects of Dioxin. EHP 1993, 101, 36–44. [Google Scholar] [CrossRef]
- Schecter, A.; Birnbaum, L.; Ryan, J.J.; Constable, J.D. Dioxins: An Overview. Environ. Res. 2006, 101, 419–428. [Google Scholar] [CrossRef]
- La Merill, M. Mouse Breast Cancer Model-Dependent Changes in Metabolic Syndrome-Associated Phenotypes Caused by Maternal Dioxin Exposure and Dietary Fat. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E203–E210. [Google Scholar] [CrossRef] [Green Version]
- Birnbaum, L.S.; Fenton, S.E. Cancer and Developmental Exposure to Endocrine Disruptors. EHP 2003, 111, 389–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorderstrasse, B.A.; Fenton, S.E.; Bohn, A.A.; Cundiff, J.A.; Lawrence, B.P. A Novel Effect of Dioxin: Exposure During Pregnancy Severely Impairs Mammary Gland Differentiation. Toxicol. Sci. 2004, 78, 248–257. [Google Scholar] [CrossRef]
- Sutter, T.R.; Guzman, K.; Dold, K.M.; Greenlee, W.F. Targets for Dioxin: Genes for Plasminogen Activator Inhibitor-2 and Interleukein-1B. Science 1991, 254, 415–418. [Google Scholar] [CrossRef]
- Steenland, K.; Bertazzi, P.; Baccarelli, A.; Kogevinas, M. Dioxin Revisited: Developments Since the 1997 IARC Classification of Dioxin as a Human Carcinogen. EHP 2004, 112, 1265–1268. [Google Scholar] [CrossRef] [Green Version]
- Lew, B.J.; Collins, L.L.; O’Reilly, M.A.; Lawrence, B.P. Activiation of the Aryl Hydrocarbon Receptor (AhR) during Different Critical Windows in Pregnancy Alters Mammary Epithelial Cell Proliferation and Differentiation. Toxicol. Sci. 2009, 111, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Bak, S.M.; Iida, M.; Hirano, M.; Iwata, H.; Kim, E.Y. Potencies of red seabream AHR1-and AHR2-mediated transactivation by dioxins: Implication of both AHRs in dioxin toxicity. Environ. Sci. Technol. 2013, 47, 2877–2885. [Google Scholar] [CrossRef]
- Noonan, C.W. Environmental asbestos exposure and risk of mesothelioma. Ann. Transl. Med. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Martz, J.; Violi, A. A surrogate for emulating the physical and chemical properties of conventional jet fuel. Combust. Flame 2014, 161, 1489–1498. [Google Scholar] [CrossRef]
- Stayner, L.T.; Dannenberg, A.L.; Bloom, T.; Thun, M. Excess hepatobiliary cancer mortality among munitions workers exposed to dinitrotoluene. J. Occup. Med. Off. Publ. Ind. Med Assoc. 1993, 35, 291–296. [Google Scholar]
- Letzel, S.; Göen, T.; Bader, M.; Angerer, J.; Kraus, T. Exposure to nitroaromatic explosives and health effects during disposal of military waste. Occup. Environ. Med. 2003, 60, 483–488. [Google Scholar] [CrossRef] [Green Version]
- Harth, V.; Bolt, H.M.; Brüning, T. Cancer of the urinary bladder in highly exposed workers in the production of dinitrotoluenes: A case report. Int. Arch. Occup. Environ. Health 2005, 78, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Rocheleau, S.; Kuperman, R.G.; Simini, M.; Hawari, J.; Checkai, R.T.; Thiboutot, S.; Ampleman, G.; Sunahara, G.I. Toxicity of 2, 4-dinitrotoluene to terrestrial plants in natural soils. Sci. Total Environ. 2010, 408, 3193–3199. [Google Scholar] [CrossRef] [Green Version]
- Carreón, T.; Hein, M.J.; Viet, S.M.; Hanley, K.W.; Ruder, A.M.; Ward, E.M. Increased bladder cancer risk among workers exposed to o-toluidine and aniline: A reanalysis. Occup. Environ. Med. 2010, 67, 348–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carreón, T.; Hein, M.J.; Hanley, K.W.; Viet, S.M.; Ruder, A.M. Bladder cancer incidence among workers exposed to o-toluidine, aniline and nitrobenzene at a rubber chemical manufacturing plant. Occup. Environ. Med. 2014, 71, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, D.O. Electromagnetic fields and cancer: The cost of doing nothing. Rev. Environ. Health 2010, 25, 75. [Google Scholar] [CrossRef]
- Sun, J.W.; Li, X.R.; Gao, H.Y.; Yin, J.Y.; Qin, Q.; Nie, S.F.; Wei, S. Electromagnetic field exposure and male breast cancer risk: A meta-analysis of 18 studies. Asian Pac. J. Cancer Prev. 2013, 14, 523–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauri, D.D.; Spycher, B.; Huss, A.; Zimmermann, F.; Grotzer, M.; Von Der Weid, N.; Spoerri, A.; Kuehni, C.E.; Röösli, M. Exposure to radio-frequency electromagnetic fields from broadcast transmitters and risk of childhood cancer: A census-based cohort study. Am. J. Epidemiol. 2014, 179, 843–851. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Ma, X.; Zhong, M.; Yu, Z. Extremely low-frequency electromagnetic fields exposure and female breast cancer risk: A meta-analysis based on 24,338 cases and 60,628 controls. Breast Cancer Res. Treat. 2010, 123, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Inskip, P.D.; Hoover, R.N.; Devesa, S.S. Brain cancer incidence trends in relation to cellular telephone use in the United States. Neuro-Oncology 2010, 12, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Hardell, L.; Carlberg, M.; Mild, K.H. Use of mobile phones and cordless phones is associated with increased risk for glioma and acoustic neuroma. Pathophysiology 2013, 20, 85–110. [Google Scholar] [CrossRef] [PubMed]
- Destefanis, M.; Viano, M.; Leo, C.; Gervino, G.; Ponzetto, A.; Silvagno, F. Extremely low frequency electromagnetic fields affect proliferation and mitochondrial activity of human cancer cell lines. Int. J. Radiat. Biol. 2015, 91, 964–972. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lai, J.; Ruan, G.; Chen, C.; Wang, D.W. Meta-analysis of extremely low frequency electromagnetic fields and cancer risk: A pooled analysis of epidemiologic studies. Environ. Int. 2016, 88, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Di Ciaula, A. Towards 5G communication systems: Are there health implications? Int. J. Hyg. Environ. Health 2018, 221, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Repacholi, M.H.; Lerchl, A.; Röösli, M.; Sienkiewicz, Z.; Auvinen, A.; Breckenkamp, J.; d’Inzeo, G.; Elliott, P.; Frei, P.; Heinrich, S.; et al. Systematic review of wireless phone use and brain cancer and other head tumors. Bioelectromagnetics 2012, 33, 187–206. [Google Scholar] [CrossRef]
- Mortazavi, S.M.J. 5G Technology: Why Should We Expect a shift from RF-Induced Brain Cancers to Skin Cancers? J. Biomed. Phys. Eng. 2019, 9, 505. [Google Scholar]
- Catelinois, O.; Rogel, A.; Laurier, D.; Billon, S.; Hemon, D.; Verger, P.; Tirmarche, M. Lung cancer attributable to indoor radon exposure in France: Impact of the risk models and uncertainty analysis. Environ. Health Perspect. 2006, 114, 1361–1366. [Google Scholar] [CrossRef]
- Sheen, S.; Lee, K.S.; Chung, W.Y.; Nam, S.; Kang, D.R. An updated review of case–control studies of lung cancer and indoor radon-Is indoor radon the risk factor for lung cancer? Ann. Occup. Environ. Med. 2016, 28, 1–9. [Google Scholar]
- Lerner, S.P.; Schoenberg, M.; Sternberg, C. (Eds.) Textbook of Bladder Cancer; Taylor and Francis: London, UK, 2006. [Google Scholar]
- Koutros, S.; Lynch, C.F.; Ma, X.; Lee, W.J.; Hoppin, J.A.; Christensen, C.H.; Andreotti, G.; Freeman, L.B.; Rusiecki, J.A.; Hou, L.; et al. Heterocyclic Aromatic Amine Pesticide Use and Human Cancer Risk: Results from the U.S. Agricultural Health Study. Int. J. Cancer 2009, 124, 1206–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, T.B. There Is No Denying This: Defusing the Confusion About Atrazine. Bioscience 2004, 54, 1138–1149. [Google Scholar] [CrossRef]
- Cooper, R.L.; Stoker, T.E.; Tyrey, L.; Goldman, J.M.; McElroy, W.K. Atrazine Disrupts the Hypothalamic Control of Pituitary-Ovarian Function. Toxicol. Sci. 2000, 53, 297–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donna, A.; Crosignani, P.; Robutti, F.; Betta, P.G.; Bocca, R.; Mariani, N.; Ferrario, F.; Fissi, R.; Berrino, F. Triazine Herbicides and Ovarian Cancer Neoplasms. Scand. J. Work. Environ. Health 1989, 15, 47–53. [Google Scholar] [CrossRef]
- Rusiecki, J.A.; De Roos, A.; Lee, W.J.; Dosemeci, M.; Lubin, J.H.; Hoppin, J.A.; Blair, A.; Alavanja, M.C. Cancer Incidence Among Pesticide Applicators Exposed to Atrazine in the Agricultural Health Study. JNCI 2004, 96, 1375–1382. [Google Scholar] [CrossRef]
- Young, H.A.; Mills, P.K.; Riordan, D.G.; Cress, R.D. Triazine Herbicides and Epithelial Ovarian Cancer Risk in Central California. J. Occup. Environ. Med. 2005, 47, 1148–1156. [Google Scholar] [CrossRef]
- Crain, D.A.; Janssen, S.J.; Edwards, T.M.; Heindel, J.; Ho, S.M.; Hunt, P.; Iguchi, T.; Juul, A.; McLachlan, J.A.; Schwartz, J.; et al. Female Reproductive Disorders: The Roles of Endocrine-Disrupting Compounds and Developmental Timing. Fertil. Steril. 2008, 90, 911–940. [Google Scholar] [CrossRef] [Green Version]
- Freeman, L.E.B.; Rusiecki, J.A.; Hoppin, J.A.; Lubin, J.H.; Koutros, S.; Andreotti, G.; Hoar Zahm, S.; Hines, C.J.; Coble, J.B.; Barone-Adesi, F.; et al. Atrazine and cancer incidence among pesticide applicators in the agricultural health study (1994–2007). Environ. Health Perspect. 2011, 119, 1253–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue-Choi, M.; Weyer, P.J.; Jones, R.R.; Booth, B.J.; Cantor, K.P.; Robien, K.; Ward, M.H. Atrazine in public water supplies and risk of ovarian cancer among postmenopausal women in the Iowa Women′s Health Study. Occup. Environ. Med. 2016, 73, 582–587. [Google Scholar] [CrossRef]
- Rayner, J.L.; Enoch, R.R.; Fenton, S.E. Adverse Effects of Prenatal Exposure to Atrazine during a Critical Period of Mammary Gland Growth. Toxicol. Sci. 2005, 87, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Simpkins, J.W.; Swenberg, J.A.; Weiss, N.; Brusick, D.; Eldridge, J.C.; Stevens, J.T.; Handa, R.J.; Hovey, R.C.; Plant, T.M.; Pastoor, T.P.; et al. Atrazine and breast cancer: A framework assessment of the toxicological and epidemiological evidence. Toxicol. Sci. 2011, 123, 441–459. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.R.; Chakraborty, S.; Chakraborty, T.R. Estrogen-like Endocrine-Disrupting Chemicals Affecting Puberty in Humans—A Review. Med Sci. Monit. 2009, 15, RA137–RA145. [Google Scholar]
- Hayes, T.B. Atrazine has been used safely for 50 years? In Wildlife Ecotoxicology; Springer: New York, NY, USA, 2011; pp. 301–324. [Google Scholar]
- Wilson, V.S.; LeBlanc, G.A. Endosulfan Elevates Testosterone Biotransformation and Clearance in CD-1 Mice. Toxicol. Appl. Pharmacol. 1998, 148, 158–168. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Endosulfan; USDHHS: Washington, DC, USA, 2000. [Google Scholar]
- Chambers, H.W. Organophosphorous Compounds: An Overview. In Organophosphates: Chemistry, Fate, and Effects; Chambers, J.E., Levi, P.E., Eds.; Academic Press: San Diego, CA, USA, 1992. [Google Scholar]
- Purdue, M.P.; Hoppin, J.A.; Blair, A.; Dosemeci, M.; Alavanja, M.C. Occupational Exposure to Organochlorine Insecticides and Cancer Incidence in the Agricultural Health Study. Int. J. Cancer 2007, 120, 642–649. [Google Scholar] [CrossRef] [Green Version]
- Engel, L.S.; Zabor, E.C.; Satagopan, J.; Widell, A.; Rothman, N.; O′Brien, T.R.; Zhang, M.; Van Den Eeden, S.K.; Grimsrud, T.K. Prediagnostic serum organochlorine insecticide concentrations and primary liver cancer: A case–control study nested within two prospective cohorts. Int. J. Cancer 2019, 145, 2360–2371. [Google Scholar] [CrossRef] [PubMed]
- Metayer, C.; Buffler, P.A. Residential Exposures to Pesticides and Childhood Leukemia. Radiat. Prot. Dosim. 2008, 132, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Deziel, N.C.; Warren, J.L.; Huang, H.; Zhou, H.; Sjodin, A.; Zhang, Y. Exposure to polychlorinated biphenyls and organochlorine pesticides and thyroid cancer in Connecticut women. Environ. Res. 2021, 192, 110333. [Google Scholar] [CrossRef]
- Sabarwal, A.; Kumar, K.; Singh, R.P. Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders. Environ. Toxicol. Pharmacol. 2018, 63, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.D.; Pathak, R.; Tripathi, A.K.; Ahmed, R.S.; Guleria, K.; Banerjee, B.D. Maternal and cord blood levels of aldrin and dieldrin in Delhi population. Environ. Monit. Assess. 2010, 171, 633–638. [Google Scholar] [CrossRef]
- Najam, L.; Alam, T. Levels and distribution of OCPs, (specially HCH Aldrin, Dieldrin, DDT, Endosulfan) in Karhera Drain surface water of hindon river and their adverse effects. Orient. J. Chem 2015, 31, 20. [Google Scholar] [CrossRef]
- Infante, P.F.; Epstein, S.S.; Newton, W.A. Blood Dyscrasias and Childhood Tumors and Exposure to Chlordane and Heptachlor. Scand. J. Work. Environ. Health 1978, 4, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, J.J.; Ng, C.H.; Weber, J.P.; Connors, J.M.; Gascoyne, R.D.; Lai, A.S.; Brooks-Wilson, A.R.; Le, N.D.; Berry, B.R.; Gallagher, R.P. Organochlorines and Risk of Non-Hodgkin Lymphoma. Int. J. Cancer 2007, 121, 2767–2775. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, R.A. Cancer and chlordane-treated homes: A pinch of prevention is worth a pound of cure. Leuk. Lymphoma 2010, 51, 1368–1369. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Lee, S.; Kim, S.; Choi, S.D.; Park, J.; Kim, H.J.; Lee, J.J.; Choi, G.; Choi, S.; Kim, S.; et al. Occurrence and exposure assessment of polychlorinated biphenyls and organochlorine pesticides from homemade baby food in Korea. Sci. Total. Environ. 2014, 470, 1370–1375. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Wu, Y.; Yin, S.; Li, J.; Zhao, Y.; Zhang, L.; Chen, H.; Liu, Y.; Yang, X.; Li, X. National survey of the levels of persistent organochlorine pesticides in the breast milk of mothers in China. Environ. Pollut. 2011, 159, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Buffler, P.A.; Gunier, R.B.; Dahl, G.; Smith, M.T.; Reinier, K.; Reynolds, P. Critical Windows of Exposure to Household Pesticides and Risk of Childhood Leukemia. EHP 2002, 110, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Infante-Rivard, C.; Weichenthal, S. Pesticides and childhood cancer: An update of Zahm and Ward’s 1998 review. J. Toxicol. Environ. Health Part B 2007, 10, 81–99. [Google Scholar] [CrossRef]
- Rudant, J.; Menegaux, F.; Leverger, G.; Baruchel, A.; Nelken, B.; Bertrand, Y.; Patte, C.; Pacquement, H.; Vérité, C.; Robert, A.; et al. Household Exposure to Pesticides and Risk of Hematopoietic Malignancies: The ESCALE Study (SFCE). EHP 2007, 115, 1787–1793. [Google Scholar] [CrossRef] [Green Version]
- Rosso, A.L.; Hovinga, M.E.; Rorke-Adams, L.B.; Spector, L.G.; Bunin, G.R. A Case-Control Study of Childhood Brain Tumors and Fathers′ Hobbies: A Children′s Oncology Group Study. Cancer Causes Control 2008, 19, 1201–1207. [Google Scholar] [CrossRef] [Green Version]
- Soldin, O.P.; Nsouli-Maktabi, H.; Genkinger, J.M.; Loffredo, C.A.; Ortega-Garcia, J.A.; Colantino, D.; Barr, D.B.; Luban, N.L.; Shad, A.T.; Nelson, D. Pediatric Acute Lymphoblastic Leukemia and Exposure to Pesticides. Ther. Drug Monit. 2009, 32, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Bradman, A.; Whitaker, D.; Quirós, L.; Castorina, R.; Claus Henn, B.; Nishioka, M.; Morgan, J.; Barr, D.B.; Harnly, M.; Brisbin, J.A.; et al. Pesticides and their metabolites in the homes and urine of farmworker children living in the Salinas Valley, CA. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Alavanja, M.C.; Ross, M.K.; Bonner, M.R. Increased cancer burden among pesticide applicators and others due to pesticide exposure. CA A Cancer J. Clin. 2013, 63, 120–142. [Google Scholar] [CrossRef] [Green Version]
- Moses, M.; Johnson, E.S.; Anger, W.K.; Burse, V.W.; Horstman, S.W.; Jackson, R.J.; Lewis, R.G.; Maddy, K.T.; McConnell, R.; Meggs, W.J.; et al. Environmental Equity and Pesticide Exposure. Toxicol. Ind. Health 1993, 9, 913–959. [Google Scholar] [CrossRef]
- Lewis, R.G.; Fortmann, R.C.; Camann, D.E. Evaluation of Methods for Monitoring the Potential Exposure of Small Children to Pesticides in the Residential Environment. Arch. Environ. Contam. Toxicol. 1994, 26, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Lewis-Michl, E.L.; Melius, J.M.; Kallenbach, L.R.; Ju, C.L.; Talbot, T.O.; Orr, M.F. Breast Cancer Risk and Residence Near Industry or Traffic in Nassau and Suffolk Counties, Long Island, New York. AEH 1996, 51, 255–265. [Google Scholar] [CrossRef]
- Teitelbaum, S.L.; Gammon, M.D.; Britton, J.A.; Neugut, A.I.; Levin, B.; Stellman, S.D. Reported Residential Pesticide Use and Breast Cancer Risk on Long Island, New York. AJE 2007, 165, 643–651. [Google Scholar] [CrossRef]
- Niehoff, N.M.; Nichols, H.B.; White, A.J.; Parks, C.G.; D′Aloisio, A.A.; Sandler, D.P. Childhood and adolescent pesticide exposure and breast cancer risk. Epidemiology 2016, 27, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellsworth, R.E.; Kostyniak, P.J.; Chi, L.H.; Shriver, C.D.; Costantino, N.S.; Ellsworth, D.L. Organochlorine pesticide residues in human breast tissue and their relationships with clinical and pathological characteristics of breast cancer. Environ. Toxicol. 2018, 33, 876–884. [Google Scholar] [CrossRef]
- Tang, M.; Zhao, M.; Shanshan, Z.; Chen, K.; Zhang, C.; Liu, W. Assessing the underlying breast cancer risk of Chinese females contributed by dietary intake of residual DDT from agricultural soils. Environ. Int. 2014, 73, 208–215. [Google Scholar] [CrossRef]
- Aamir, M.; Khan, S.; Li, G. Dietary exposure to HCH and DDT congeners and their associated cancer risk based on Pakistani food consumption. Environ. Sci. Pollut. Res. 2018, 25, 8465–8474. [Google Scholar] [CrossRef] [PubMed]
- Andreotti, G.; Koutros, S.; Hofmann, J.N.; Sandler, D.P.; Lubin, J.H.; Lynch, C.F.; Lerro, C.C.; De Roos, A.J.; Parks, C.G.; Alavanja, M.C.; et al. Glyphosate use and cancer incidence in the agricultural health study. J. Natl. Cancer Inst. 2018, 110, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Van Bruggen, A.H.C.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris Jr, J.G. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 2018, 616, 255–268. [Google Scholar] [CrossRef]
- Richmond, M.E. Glyphosate: A review of its global use, environmental impact, and potential health effects on humans and other species. J. Environ. Stud. Sci. 2018, 8, 416–434. [Google Scholar] [CrossRef]
- Thongprakaisang, S.; Thiantanawat, A.; Rangkadilok, N.; Suriyo, T.; Satayavivad, J. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem. Toxicol. 2013, 59, 129–136. [Google Scholar] [CrossRef]
- Zhang, L.; Rana, I.; Shaffer, R.M.; Taioli, E.; Sheppard, L. Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. Mutat. Res. Rev. Mutat. Res. 2019, 781, 186–206. [Google Scholar] [CrossRef] [PubMed]
- Mirvish, S.S.; Grandjean, A.C.; Moller, H.; Fike, S.; Maynard, T.; Jones, L.; Rosinsky, S.; Nie, G. N-nitrosoproline Excretion by Rural Nebraskans Drinking Water of Varied Nitrate Content. Cancer Epidemiol. Biomark. Prev. 1992, 1, 455–461. [Google Scholar]
- Ward, M.H.; Cantor, K.P.; Riley, D.; Merkle, S.; Lynch, C.F. Nitrate in Public Water Supplies and Risk of Bladder Cancer. Epidemiol. 2003, 14, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Grosse, Y.; Baan, R.; Straif, K.; Secretan, B.; Ghissassi, F.E.; Cogliano, V. Carcinogenicity of Nitrate, Nitrite, and Cyanobacterial Peptide Toxins. Lancet Oncol. 2006, 7, 628–629. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.R.; Weyer, P.J.; DellaValle, C.T.; Inoue-Choi, M.; Anderson, K.E.; Cantor, K.P.; Krasner, S.; Robien, K.; Freeman, L.E.; Silverman, D.T.; et al. Nitrate from drinking water and diet and bladder cancer among postmenopausal women in Iowa. Environ. Health Perspect. 2016, 124, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, G.; Federico, P.; De Placido, S.; Buonerba, C. Increased risk of bladder cancer in critical areas at high pressure of pollution of the Campania region in Italy: A systematic review. Crit. Rev. Oncol. Hematol. 2015, 96, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Rocco, G. Survival after surgical treatment of lung cancer arising in the population exposed to illegal dumping of toxic waste in the land of fires (‘Terra dei Fuochi′) of Southern Italy. Anticancer Res. 2016, 36, 2119–2124. [Google Scholar]
- Grandjean, P.; Bellinger, D.; Bergman, A.; Cordier, S.; Davey-Smith, G.; Eskenazi, B.; Gee, D.; Gray, K.; Hanson, M.; van den Hazel, P.; et al. The Faroes Statement: Human Health Effects of Developmental Exposures to Chemicals in Our Environment. Basic Clin. Pharmacol. Toxicol. 2008, 102, 73–75. [Google Scholar] [CrossRef]
- Vogel, S.A. From ‘The Dose Makes the Poison′ to ‘The Timing Makes the Poison′: Conceptualizing Risk in the Synthetic Age. Environ. Hist. 2008, 13, 667–673. [Google Scholar]
- Mott, L.; Vance, F.; Curtis, J. Handle with Care: Children and Environmental Carcinogens; NRDC: New York, NY, USA, 1994. [Google Scholar]
- Wargo, J. Our Children′s Toxic Legacy: How Science and Law Fail to Protect Us from Pesticides; Yale University Press: New Haven, CT, USA, 1996. [Google Scholar]
- Van Maele-Fabry, G.; Lantin, A.C.; Hoet, P.; Lison, D. Childhood leukaemia and parental occupational exposure to pesticides: A systematic review and meta-analysis. Cancer Causes Control. 2010, 21, 787–809. [Google Scholar] [CrossRef] [PubMed]
- Zahm, S.H.; Devesa, S.S. Childhood Cancer: Overview of Incidence Trends and Environmental Carcinogens. EHP 1995, 103, 177–184. [Google Scholar] [PubMed]
- Robison, L.L.; Buckley, J.D.; Bunin, G. Assessment of Environmental and Genetic Factors in the Etiology of Childhood Cancers: The Children′s Cancer Group Epidemiology Program. EHP 1995, 103, 111–116. [Google Scholar]
- Ries, L.A.G.; Devesa, S.S. Cancer Incidence, Mortality, and Patient Survival in the United States. In Cancer Epidemiology and Prevention, 3rd ed.; Schottenfeld, D., Fraumeni, J.F., Eds.; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Soto, A.M.; Sonnenschein, C. Environmental causes of cancer: Endocrine disruptors as carcinogens. Nat. Rev. Endocrinol. 2010, 6, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, S.A.; Hassan, T.; Majid, S.; Ashraf, R.; Kuchy, S. Environmental Pollution as Causative Agent for Cancer-A Review. Cancer Clin. Res. Rep. 2017, 1, 1–8. [Google Scholar]
- Liff, J.M. Does Increased Detection Account for the Rising Incidence of Breast Cancer? AJPH 1991, 81, 462–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feuer, E.J.; Wun, L.M. How Much of the Recent Rise in Breast Cancer Incidence Can Be Explained by Increases in Mammography Utilization? AJE 1992, 136, 1423–1436. [Google Scholar] [CrossRef]
- Harris, J.R. Breast Cancer. NEJM 1992, 327, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Proctor, R.N. Cancer Wars: How Politics Shapes What We Know and Don′t Know about Cancer; Basic Books: New York, NY, USA, 1995. [Google Scholar]
- Ravdin, P.M.; Cronin, K.A.; Howlader, N.; Berg, C.D.; Chlebowski, R.T.; Feuer, E.J.; Edwards, B.K.; Berry, D.A. The Decrease in Breast-Cancer Incidence in 2003 in the United States. NEJM 2007, 356, 1670–1674. [Google Scholar] [CrossRef] [Green Version]
- Stewart, S.L.; Sabatino, S.A.; Foster, S.L.; Richardson, L. Decline in Breast Cancer Incidence—United States, 1999–2003. Morb. Mortal. Wkly. Rep. 2007, 56, 549–553. [Google Scholar]
- Gray, J.; Evans, N.; Taylor, B.; Rizzo, J.; Walker, M. State of the Evidence: The Connection between Breast Cancer and the Environment. Int. J. Environ. Health 2009, 15, 43–78. [Google Scholar] [CrossRef]
- Soto, A.M.; Chung, K.L.; Sonnenschein, C. The Pesticides Endosulfan, Toxaphene, and Dieldrin Have Estrogenic Effects on Human Estrogen-Sensitive Cells. EHP 1994, 102, 380–383. [Google Scholar] [CrossRef]
- Soto, A.M.; Sonnenschein, C.; Chung, K.L.; Fernandez, M.F.; Olea, N.; Serrano, F.O. The ESCREEN Assay as a Tool to Identify Estrogens: An Update on Estrogenic Environmental Pollutants. EHP 1995, 103, 113–122. [Google Scholar] [PubMed] [Green Version]
- Jemal, A.; Thun, M.J.; Ries, L.A.; Howe, H.L.; Weir, H.K.; Center, M.M.; Ward, E.; Wu, X.C.; Eheman, C.; Anderson, R.; et al. Annual Report to the Nation on the Status of Cancer, 1975–2005, Featuring Trends in Lung Cancer, Tobacco Use, and Tobacco Control. JNCI 2008, 100, 1672–1694. [Google Scholar] [CrossRef]
- Zhou, G. Tobacco, air pollution, environmental carcinogenesis, and thoughts on conquering strategies of lung cancer. Cancer Biol. Med. 2019, 16, 700. [Google Scholar] [PubMed]
- Purdue, M.P.; Bakke, B.; Stewart, P.; De Roos, A.J.; Schenk, M.; Lynch, C.F.; Bernstein, L.; Morton, L.M.; Cerhan, J.R.; Severson, R.K.; et al. A case–control study of occupational exposure to trichloroethylene and non-Hodgkin lymphoma. Environ. Health Perspect. 2011, 119, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Kross, B.C.; Burmeister, L.F.; Ogilvie, L.K.; Fuortes, L.J.; Fu, C.M. Proportionate Mortality Study of Golf Course Superintendents. Am. J. Ind. Med. 1996, 29, 501–506. [Google Scholar] [CrossRef]
- Clapp, R.; Cobb, S.; Chan, C.K.; Walker, B. Leukemia Near Massachusetts Nuclear Power Plant. Lancet 1987, 2, 1324–1325. [Google Scholar] [CrossRef]
- Morris, M.S.; Knorr, R.S. Southeastern Massachusetts Health Study Final Report: Investigation of Leukemia Incidence in 22 Massachusetts Communities, 1978–1986; MDPH: Boston, MA, USA, 1990. [Google Scholar]
- Morris, M.S.; Knorr, R.S. Adult Leukemia and Proximity-Based Surrogates for Exposure to Pilgrim Plant′s Nuclear Emissions. AEH 1996, 51, 266–274. [Google Scholar]
- Sermage-Faure, C.; Laurier, D.; Goujon-Bellec, S.; Chartier, M.; Guyot-Goubin, A.; Rudant, J.; Hémon, D.; Clavel, J. Childhood leukemia around French nuclear power plants—the Geocap study, 2002–2007. Int. J. Cancer 2012, 131, E769–E780. [Google Scholar] [CrossRef] [PubMed]
- Fairlie, I. A hypothesis to explain childhood cancers near nuclear power plants. J. Environ. Radioact. 2014, 133, 10–17. [Google Scholar] [CrossRef]
- Zahm, S.H.; Blair, A. Pesticides and Non-Hodgkin′s Lymphoma. Cancer Res. 1992, 52, 5485s–5488s. [Google Scholar]
- Zahm, S.H. The Role of Agricultural Pesticide Use in the Development of Non-Hodgkin′s Lymphoma in Women. AEH 1993, 48, 253–258. [Google Scholar]
- Engel, L.S.; Lan, Q.; Rothman, N. Polychlorinated Biphenyls and Non-Hodgkin Lymphoma. Cancer Epidemiol. Biomark. Prev. 2007, 16, 373–376. [Google Scholar] [CrossRef] [Green Version]
- Colt, J.S.; Rothman, N.; Severson, R.K.; Hartge, P.; Cerhan, J.R.; Chatterjee, N.; Cozen, W.; Morton, L.M.; De Roos, A.J.; Davis, S.; et al. Organochlorine Exposure, Immune Gene Variation, and Risk of Non-Hodgkin Lymphoma. Blood 2008, 113, 1899–1905. [Google Scholar] [CrossRef] [Green Version]
- Hardell, K.; Carlberg, M.; Hardell, L.; Björnfoth, H.; Ericson Jogsten, I.; Eriksson, M.; Van Bavel, B.; Lindström, G. Concentrations of Organohalogen Compounds and Titres of Antibodies to Epstein-Barr Virus Antigens and the Risk for Non-Hodgkin Lymphoma. Oncol. Rep. 2009, 21, 1567–1576. [Google Scholar] [CrossRef]
- Chen, M.; Chang, C.H.; Tao, L.; Lu, C. Residential exposure to pesticide during childhood and childhood cancers: A meta-analysis. Pediatrics 2015, 136, 719–729. [Google Scholar] [CrossRef] [Green Version]
- Hartge, P.; Colt, J.S.; Severson, R.K.; Cerhan, J.R.; Cozen, W.; Camann, D.; Zahm, S.H.; Davis, S. Residential Herbicide Use and Risk of Non-Hodgkin Lymphoma. Cancer Epidemiol. Biomark. Prev. 2005, 14, 934–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, M.C.; Wigle, D.T.; Krewski, D. Residential pesticides and childhood leukemia: A systematic review and meta-analysis. Environ. Health Perspect. 2010, 118, 33–41. [Google Scholar] [CrossRef]
- Hayes, H.M.; Tarone, R.E.; Cantor, K.P.; Jessen, C.R.; McCurnin, D.M.; Richardson, R.C. Case-Control Study of Canine Malignant Lymphoma: Positive Association with Dog Owner′s Use of 2,4-Dichlorophenoxyacetic Acid Herbicides. JNCI 1991, 83, 1226–1231. [Google Scholar] [CrossRef]
- Takashima-Uebelhoer, B.B.; Barber, L.G.; Zagarins, S.E.; Procter-Gray, E.; Gollenberg, A.L.; Moore, A.S.; Bertone-Johnson, E.R. Household chemical exposures and the risk of canine malignant lymphoma, a model for human non-Hodgkin′s lymphoma. Environ. Res. 2012, 112, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol. Prev. Biomark. 2016, 25, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Enewold, L. Rising Rates of Cancer Incidence in the United States by Demographic and Tumor Characteristics, 1980–2005. Cancer Epidemiol. Biomark. Prev. 2009, 18, 784–791. [Google Scholar] [CrossRef] [Green Version]
- Cerhan, J.R.; Vajdic, C.M.; Spinelli, J.J. The non-Hodgkin lymphomas. In Schottenfeld and Fraumeni Cancer Epidemiology and Prevention, 4th ed.; Oxford University Press: New York, NY, USA, 2017; pp. 767–796. [Google Scholar]
- Schüz, J.; Erdmann, F. Environmental exposure and risk of childhood leukemia: An overview. Arch. Med. Res. 2016, 47, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Wedebye, E.B.; Dybdahl, M.; Nikolov, N.G.; Jónsdóttir, S.Ó.; Niemelä, J. QSAR screening of 70,983 REACH substances for genotoxic carcinogenicity, mutagenicity and developmental toxicity in the ChemScreen project. Reprod. Toxicol. 2015, 55, 64–72. [Google Scholar] [CrossRef]
- Steingraber, S. Living Downstream: An Ecologist’s Personal Investigation of cancer and the Environment; Da Capo Press: Boston, MA, USA, 2010. [Google Scholar]
- NRC. Animals as Sentinels of Environmental Health Hazards; National Academy Press: Washington, DC, USA, 1991. [Google Scholar]
- Pitot, H.C., III; Dragan, Y.P. Chemical Carcinogens. In Casarett and Doull′s Toxicology: The Basic Science of Poison, 5th ed.; Klaassen, D., Ed.; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Doke, S.K.; Dhawale, S.C. Alternatives to animal testing: A review. Saudi Pharm. J. 2015, 23, 223–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailar, J.C., III; Smith, E.M. Progress against Cancer? NEJM 1986, 314, 1226–1232. [Google Scholar] [CrossRef]
- Grossman, E. Chasing Molecules: Poisonous Products, Human Health, and the Promise of Green Chemistry; Island Press: Washington, DC, USA, 2009. [Google Scholar]
- Cazzolla Gatti, R. Trends in human development and environmental protection. Int. J. Environ. Stud. 2016, 73, 268–276. [Google Scholar] [CrossRef]
- Cazzolla Gatti, R. A century of biodiversity: Some open questions and some answers. Biodiversity 2017, 18, 175–185. [Google Scholar] [CrossRef]
- Cazzolla Gatti, R. Coronavirus outbreak is a symptom of Gaia’s sickness. Ecol. Model. 2020, 426, 109075. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.; Ahmed, I. The Carbohydrate Economy: Making Chemicals and Industrial Materials from Plant Matter; Institute for Local Self-Reliance: Washington, DC, USA, 1992. [Google Scholar]
- Fenichell, S. Plastic: The Making of a Synthetic Century; Harper-Business: New York, NY, USA, 1996. [Google Scholar]
- Thompson, R.C.; Swan, S.H.; Moore, C.J.; Vom Saal, F.S. Our Plastic Age. Philos. Trans. R. Soc. 2009, 364, 1973–1976. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.C.; Moore, C.J.; Vom Saal, F.S.; Swan, S.H. Plastics, the Environment, and Human Health: Current Consensus and Future Trends. Philos. Trans. R. Soc. 2009, 364, 2153–2166. [Google Scholar] [CrossRef] [PubMed]
- Hyland, C.; Bradman, A.; Gerona, R.; Patton, S.; Zakharevich, I.; Gunier, R.B.; Klein, K. Organic diet intervention significantly reduces urinary pesticide levels in US children and adults. Environ. Res. 2019, 171, 568–575. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cazzolla Gatti, R. Why We Will Continue to Lose Our Battle with Cancers If We Do Not Stop Their Triggers from Environmental Pollution. Int. J. Environ. Res. Public Health 2021, 18, 6107. https://doi.org/10.3390/ijerph18116107
Cazzolla Gatti R. Why We Will Continue to Lose Our Battle with Cancers If We Do Not Stop Their Triggers from Environmental Pollution. International Journal of Environmental Research and Public Health. 2021; 18(11):6107. https://doi.org/10.3390/ijerph18116107
Chicago/Turabian StyleCazzolla Gatti, Roberto. 2021. "Why We Will Continue to Lose Our Battle with Cancers If We Do Not Stop Their Triggers from Environmental Pollution" International Journal of Environmental Research and Public Health 18, no. 11: 6107. https://doi.org/10.3390/ijerph18116107
APA StyleCazzolla Gatti, R. (2021). Why We Will Continue to Lose Our Battle with Cancers If We Do Not Stop Their Triggers from Environmental Pollution. International Journal of Environmental Research and Public Health, 18(11), 6107. https://doi.org/10.3390/ijerph18116107