The Impact of Age, Gender and Technical Experience on Three Motor Coordination Skills in Children Practicing Taekwondo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach
2.2. Participants
- Age: under 8 (5–7 years), under 10 (8–9 years) and under 12 (10–11 years).
- Gender: males and females.
- Technical level: according to the belt color achieved by the subject, high (1 Dan–5 Kup) and low (6 Kup–9 Kup).
2.3. The Ruler Drop Test
2.4. The Hexagonal Test
2.5. The Target Kick Test
2.6. Statistical Analyses
3. Results
3.1. Age Differences
3.2. Gender Differences
3.3. Technical Level Differences
3.4. Comparison between Technical Level, Gender and Age
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hardy, J.; Hall, C.R.; Gibbs, C.; Greenslade, C. Self-talk and gross motor skill performance: An experimental approach. Athl. Insight J. 2005, 7, 1–13. [Google Scholar]
- Glass, S.C.; Reeg, E.A.; Bierma, J.L. Caloric cost of martial arts training in novice participants. J. Exerc. Physiol. Online 2002, 5, 29–34. [Google Scholar]
- Bridge, C.A.; Jones, M.A.; Hitchen, P.; Sanchez, X. Heart rate responses to taekwondo training in experienced practitioners. J. Strength Cond. Res. 2007, 21, 718–723. [Google Scholar] [CrossRef]
- Leong, H.-T.; Fu, S.N.; Ng, G.Y.F.; Tsang, W.W.N. Low-level Taekwondo practitioners have better somatosensory organisation in standing balance than sedentary people. Graefe′s Arch. Clin. Exp. Ophthalmol. 2011, 111, 1787–1793. [Google Scholar] [CrossRef] [PubMed]
- Pons van Dijk, G.; Lenssen, A.F.; Leffers, P.; Kingma, H.; Lodder, J. Taekwondo training improves balance in volunteers over 40. Front Aging Neurosci. 2013, 5, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Graham, J.D.; Li, Y.-C.; Bray, S.R.; Cairney, J. Effects of Cognitive Control Exertion and Motor Coordination on Task Self-Efficacy and Muscular Endurance Performance in Children. Front. Hum. Neurosci. 2018, 12, 379. [Google Scholar] [CrossRef]
- Piek, J.P.; Dyck, M.J.; Nieman, A.; Anderson, M.; Hay, D.; Smith, L.M.; McCoy, M.; Hallmayer, J. The relationship between motor coordination, executive functioning and attention in school aged children. Arch. Clin. Neuropsychol. 2004, 19, 1063–1076. [Google Scholar] [CrossRef] [Green Version]
- Gierczuk, D.; Bujak, Z.; Rowiński, J.; Dmitriyev, A. Selected Coordination Motor Abilities in Elite Wrestlers and Taekwon-Do Competitors. Pol. J. Sport Tour. 2012, 19, 230–234. [Google Scholar] [CrossRef] [Green Version]
- Roth, K.; Ruf, K.; Obinger, M.; Mauer, S.; Ahnert, J.; Schneider, W.; Graf, C.; Hebestreit, H. Is there a secular decline in motor skills in preschool children? Scand. J. Med. Sci. Sports 2010, 20, 670–678. [Google Scholar] [CrossRef]
- Barnett, L.M.; Van Beurden, E.; Morgan, P.J.; Brooks, L.O.; Beard, J.R. Childhood motor skill proficiency as a predictor of ad-olescent physical activity. J. Adolesc. Health 2009, 44, 252–259. [Google Scholar] [CrossRef]
- Lehnertz, K.; Steinbrecher, A. Ammoniak als Beanspruchungsindikator sportbedingter Belastungen. Köln Sport Buch Strauß 1992, 107–125. [Google Scholar]
- Kim, J.-W.; Kwon, M.-S.; Yenuga, S.S.; Kwon, Y.-H. The effects of target distance on pivot hip, trunk, pelvis, and kicking leg kinematics in Taekwondo roundhouse kicks. Sports Biomech. 2010, 9, 98–114. [Google Scholar] [CrossRef] [PubMed]
- Falcó, C.; Molina-García, J.; Alvarez, O.; Estevan, I. Effects of target distance on select biomechanical parameters in taekwondo roundhouse kick. Sports Biomech. 2013, 12, 381–388. [Google Scholar] [CrossRef]
- Melhim, A.F. Aerobic and anaerobic power responses to the practice of taekwon-do. Br. J. Sports Med. 2001, 35, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Fiorilli, G.; Mitrotasios, M.; Iuliano, E.; Pistone, E.M.; Aquino, G.; Calcagno, G.; Di Cagno, A. Agility and change of direction in soccer: Differences according to the player ages. J. Sports Med. Phys. Fit. 2016, 57, 1597–1604. [Google Scholar]
- di Cagno, A.; Fiorilli, G.; Iuliano, E.; Aquino, G.; Giombini, A.; Battaglia, C.; Piazza, M.; Tsopani, D.; Calcagno, G. Time-of-Day Effects on Static and Dynamic Balance in Elite Junior Athletes and Untrained Adolescents. Int. J. Sports Sci. Coach. 2014, 9, 615–625. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Tomporowski, P.D.; McCullick, B.; Pendleton, D.M.; Pesce, C. Exercise and children’s cognition: The role of exercise charac-teristics and a place for metacognition. J. Sport Health Sci. 2015, 4, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Bidzan-Bluma, I.; Lipowska, M. Physical Activity and Cognitive Functioning of Children: A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 800. [Google Scholar] [CrossRef]
- Gutiérrez-Santiago, A.; Pereira-Rodríguez, R.; Prieto-Lage, I. Detection of the technical and tactical motion of the scorable movements in taekwondo. Physiol. Behav. 2020, 217, 112813. [Google Scholar] [CrossRef]
- Kim, Y.H.; Jeong, M.K.; Park, H.; Park, S.K. Effects of regular taekwondo intervention on health-related physical fitness, cardiovascular disease risk factors and epicardial adipose tissue in elderly women with hypertension. Int. J. Environ. Res. Public Health 2021, 18, 2935. [Google Scholar] [CrossRef]
- Tayech, A.; Mejri, M.A.; Makhlouf, I.; Mathlouthi, A.; Behm, D.G.; Chaouachi, A. Second wave of COVID-19 global pandemic and athletes’ confinement: Recommendations to better manage and optimize the modified lifestyle. Int. J. Environ. Res. Public Health 2020, 17, 8385. [Google Scholar] [CrossRef]
- Mackenzie, B. Ruler Drop Test. 2004. Available online: https://www.brianmac.co.uk/rulerdrop.htm (accessed on 28 March 2021).
- Roetert, E.P.; Garrett, G.E.; Brown, S.W.; Camaione, D.N. Performance profiles of nationally ranked junior tennis players. J. Strength Cond. Res. 1992, 6, 225–231. [Google Scholar]
- da Silva Santos, J.F.; Franchini, E. Frequency speed of kick test performance comparison between female taekwondo athletes of different competitive levels. J. Strength Cond. Res. 2018, 32, 2934–2938. [Google Scholar] [CrossRef] [PubMed]
- van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; Nijhuis-van der Sanden, M.W.; van Cingel, R.E. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS ONE 2017, 12, e0189876. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.; Roy, E.; Rohr, L.; Bryden, P. Using hand performance measures to predict handedness. Laterality 2006, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Román, P.Á.L.; López, D.M.; Sánchez, M.F.; Sánchez, J.S.; Coronas, F.M.; García-Pinillos, F. Test-retest reliability of a field-based physical fitness assessment for children aged 3–6 years. Nutr. Hosp. 2015, 32, 1683–1688. [Google Scholar]
- Pauole, K.; Madole, K.; Garhammer, J.; Lacourse, M.; Rozenek, R. Reliability and validity of the T-test as a measure of agility, leg power, and leg speed in college-aged men and women. J. Strength Cond. Res. 2000, 14, 443–450. [Google Scholar]
- Schneiders, A.G.; Sullivan, S.J.; O’Malley, K.J.; Clarke, S.V.; Knappstein, S.A.; Taylor, L.J. A valid and reliable clinical determination of footedness. PM R 2010, 2, 835–841. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Tanaka, C.; Hikihara, Y.; Ohkawara, K.; Tanaka, S. Locomotive and nonlocomotive activity as determined by triaxial accelerometry and physical fitness in Japanese preschool children. Pediatr. Exerc. Sci. 2012, 24, 420–434. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.; Müller, E.; Kornexl, E.; Raschner, C. The relationship between physical motor skills, gender and relative age effects in young Austrian alpine ski racers. Int. J. Sports Sci. Coach. 2015, 10, 69–85. [Google Scholar] [CrossRef]
- Castetbon, K.; Andreyeva, T. Obesity and motor skills among 4 to 6-year-old children in the United States: Nationally-representative surveys. BMC Pediatr. 2012, 12, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjumea, J.M.C.; Afonso, J.R.; Hurtado, J.M.R.; Truan, J.C.F. Assessment of motor coordination in students aged 6 to 11 years. J. Phys. Educ. Sport. 2015, 15, 765. [Google Scholar]
- Plisk, S.S. Chapter 17 speed, agility, and speed-endurance development. In Essentials of Strength Training and Conditioning; Baechle, T.R., Earle, R.W., Eds.; Human Kinetics: Champaign, IL, USA, 2008; pp. 458–462. [Google Scholar]
- Fiorilli, G.; Iuliano, E.; Aquino, G.; Campanella, E.; Tsopani, D.; Di Costanzo, A.; Calcagno, G.; di Cagno, A. Different consecutive training protocols to design an intervention program for overweight youth: A controlled study. Diabetes Metab. Syndr. Obes. 2017, 10, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Pekel, H.A.; Kamiş, O. 14 Yaş Altı Atletlerde Bağıl Yaş Etkisi. Gazi Beden Eğitimi Spor Bilimleri Dergisi 2018, 23, 153–162. [Google Scholar]
- Sheppard, J.M.; Young, W.B. Agility literature review: Classifications, training and testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Jung, C.; Sin, S.; Lee, D. An analysis of the angular momentum of dolyeo chagi in taekwondo. Int. J. Appl. Sport Sci. 2001, 13, 18–32. [Google Scholar]
- Gagen, L.M.; Getchell, N. Using ‘Constraints’ to Design Developmentally Appropriate Movement Activities for Early Childhood Education. J. Fam. Econ. Issues 2006, 34, 227–232. [Google Scholar] [CrossRef]
- Montesinos, C.H.; Gil-Madrona, P.; Losada-Puente, L. Early childhood teacher professional development in physical education and its impact on preschooler motor development. In Physical Education Initiatives for Early Childhood Learners; IGI Global City: Pennsylvania, PA, USA, 2021; pp. 16–32. [Google Scholar]
- Kuang, S. Is reaction time an index of white matter connectivity during training? Cogn. Neurosci. 2017, 8, 126–128. [Google Scholar] [CrossRef]
- Jayaswal, A.A. Comparison between auditory and visual simple reaction times and its relationship with gender in 1st year MBBS students of Jawaharlal Nehru Medical College, Bhagalpur, Bihar. Int. J. Med. Res. Rev. 2016, 4, 1228–1232. [Google Scholar] [CrossRef] [Green Version]
- Aranha, V.; Saxena, S.; Moitra, M.; Narkeesh, K.; Arumugam, N.; Samuel, A. Reaction time norms as measured by ruler drop method in school-going South Asian children: A cross-sectional study. HOMO 2017, 68, 63–68. [Google Scholar] [CrossRef]
- Boisgontier, M.P.; Wittenberg, G.F.; Fujiyama, H.; Levin, O.; Swinnen, S.P. Complexity of Central Processing in Simple and Choice Multilimb Reaction-Time Tasks. PLoS ONE 2014, 9, e90457. [Google Scholar] [CrossRef]
- Rabiner, D.L.; Murray, D.W.; Skinner, A.T.; Malone, P.S. A Randomized Trial of Two Promising Computer-Based Interventions for Students with Attention Difficulties. J. Abnorm. Child Psychol. 2009, 38, 131–142. [Google Scholar] [CrossRef]
- Kirk, H.; Gray, K.; Riby, D.; Cornish, K. Cognitive training as a resolution for early executive function difficulties in children with intellectual disabilities. Res. Dev. Disabil. 2015, 38, 145–160. [Google Scholar] [CrossRef] [Green Version]
- Lynall, R.C.; Blackburn, J.T.; Guskiewicz, K.M.; Marshall, S.W.; Plummer, P.; Mihalik, J.P. Reaction Time and Joint Kinematics During Functional Movement in Recently Concussed Individuals. Arch. Phys. Med. Rehabil. 2018, 99, 880–886. [Google Scholar] [CrossRef]
- Walton, C.C.; Keegan, R.J.; Martin, M.; Hallock, H. The Potential Role for Cognitive Training in Sport: More Research Needed. Front. Psychol. 2018, 9, 1121. [Google Scholar] [CrossRef]
- Barnett, L.M.; Van Beurden, E.; Morgan, P.J.; Brooks, L.O.; Bea, J.R. Does childhood motor skill proficiency predict adolescent fitness? Med. Sci. Sports Exerc. 2008, 40, 2137–2144. [Google Scholar] [CrossRef] [Green Version]
- Giagazoglou, P.; Kabitsis, N.; Kokaridas, D.; Zaragas, C.; Katartzi, E.; Kabitsis, C. The movement assessment battery in Greek preschoolers: The impact of age, gender, birth order, and physical activity on motor outcome. Res. Dev. Disabil. 2011, 32, 2577–2582. [Google Scholar] [CrossRef]
- Kambas, A.; Fatouros, J.; Aggeloussis, N.; Gourgoulis, V.; Taxildaris, K. Effect of age and sex on the coordination abilities in childhood. Inq. Sport Phys. Ed. 2003, 1, 152–158. [Google Scholar]
- Di Cagno, A.; Marchetti, M.; Battaglia, C.; Giombini, A.; Calcagno, G.; Fiorilli, G.; Piazza, M.; Pigozzi, F.; Borrione, P. Is menstrual delay a serious problem for elite rhythmic gymnasts? J. Sports Med. Phys. Fit. 2012, 52, 647–653. [Google Scholar]
- Venetsanou, F.; Kambas, A. Motor proficiency in young children: A closer look at potential gender differences. Sage Open 2016, 6, 2158244015626226. [Google Scholar] [CrossRef] [Green Version]
- Skandhan, K.P.; Mehta, S.K.; Mehta, Y.B.; Gaur, H.K. Visuomotor coordination time in normal children. Ind. Ped. 1980, 17, 275–278. [Google Scholar]
- Lidor, R.; Côté, J.; Hackfort, D. ISSP position stand: To test or not to test? The use of physical skill tests in talent detection and in early phases of sport development. Int. J. Sport Exerc. Psychol. 2009, 7, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Bridge, C.A.; Santos, J.F.D.S.; Chaabène, H.; Pieter, W.; Franchini, E. Physical and Physiological Profiles of Taekwondo Athletes. Sports Med. 2014, 44, 713–733. [Google Scholar] [CrossRef] [PubMed]
- Ball, N.; Nolan, E.; Wheeler, K. Anthropometrical, Physiological, and Tracked Power Profiles of Elite Taekwondo Athletes 9 Weeks before the Olympic Competition Phase. J. Strength Cond. Res. 2011, 25, 2752–2763. [Google Scholar] [CrossRef]
Variable | n |
---|---|
Total | 115 |
Gender | |
Male | 83 |
Female | 32 |
Age | |
Under 8 (5–7) | 55 |
Under 10 (8–9) | 37 |
Under 12 (10–11) | 23 |
Technical level | |
High (1 Dan–5 Kup) | 52 |
Low (6 Kup–9 Kup) | 63 |
Variable | Groups | Mean ± SD | Standard Error | 95% CI | p-Value | Effect Size | |||
---|---|---|---|---|---|---|---|---|---|
Low | High | ||||||||
Ruler drop test | Under 8 | Under 10 | 31.80 ± 11.36 | 30.48 ± 7.09 | 2.071 | −3.71 | 6.36 | 1.000 | |
Under 8 | Under 12 | 31.80 ± 11.36 | 30.29 ± 9.18 | 2.587 | −6.10 | 6.48 | 1.000 | ||
Under 12 | Under 10 | 30.29 ± 9.18 | 30.48 ± 7.09 | 2.587 | −6.48 | 6.10 | 1.000 | ||
Hexagonal test | Under 8 | Under 10 * | 25.63 ± 8.86 | 20.39 ± 7.82 | 1.656 | 1.21 | 9.27 | 0.006 * | 0.627 |
Under 8 | Under 12 * | 25.63 ± 8.86 | 15.15 ± 4.02 | 1.934 | 5.78 | 15.19 | <0.001 * | 1.523 | |
Under 12 * | Under 10 | 15.15 ± 4.02 | 20.39 ± 7.82 | 2.068 | −10.27 | −0.22 | 0.038 * | 0.843 | |
Target kick test | Under 8 | Under 10 | 4.85 ± 2.07 | 5.98 ± 2.44 | 0.522 | −2.39 | 0.15 | 0.104 | |
Under 8 | Under 12 * | 4.85 ± 2.07 | 7.65 ± 3.24 | 0.610 | −4.28 | −1.31 | <0.001 * | 1.030 | |
Under 12 * | Under 10 | 7.65 ± 3.24 | 5.98 ± 2.44 | 0.652 | 0.09 | 3.27 | 0.034 * | 0.582 |
Variable | Gender | n | Mean ± SD | p-Value | Effect Size |
---|---|---|---|---|---|
Ruler drop test | Male | 32 | 32.59 ± 10.41 | 0.689 | - |
Female | 32 | 31.61 ± 9.05 | |||
Hexagonal test | Male | 32 | 21.38 ± 8.38 | 0.954 | - |
Female | 32 | 21.26 ± 7.91 | |||
Target kick test | Male | 32 | 5.03 ± 3.04 | 0.033 * | 0.547 |
Female * | 32 | 6.53 ± 2.41 |
Variable | Technical Level | n | Mean ± SD | p-Value | Effect Size |
---|---|---|---|---|---|
Ruler drop test | High * | 52 | 29.10 ± 9.06 | 0.047 * | 0.378 |
Low | 63 | 32.70 ± 9.95 | |||
Hexagonal test | High * | 52 | 19.81 ± 8.63 | 0.022 * | 0.434 |
Low | 63 | 23.53 ± 8.52 | |||
Target kick test | High * | 52 | 6.35 ± 3.05 | 0.035 * | 0.395 |
Low | 63 | 5.30 ± 2.20 |
Variable | Groups | Mean ± SD | p-Value | Effect Size |
---|---|---|---|---|
Hexagonal test | Female HL *–Female LL | 17.19 ± 7.21–23.43 ± 7.52 | 0.030 * | 0.847 |
Under 8 HL–Under 10 HL * | 24.81 ± 9.28–16.19 ± 5.49 | 0.002 * | 1.131 | |
Under 8 HL–Under 12 HL * | 24.81 ± 9.28–14.51 ± 4.51 | 0.001 * | 1.412 | |
Under 8 LL–Under 12 LL * | 26.27 ± 8.63–15.73 ± 3.61 | <0.001 * | 1.593 | |
Under 12 LL *–Under 10 LL | 15.73 ± 3.61– 23.97 ± 7.83 | 0.014 * | 1.352 | |
Under 8 HL–Under 12 LL * | 24.81 ± 9.28–15.73 ± 3.61 | 0.003 * | 1.290 | |
Under 10 HL *–Under 8 LL | 16.19 ± 5.49–26.27 ± 8.63 | <0.001 * | 1.394 | |
Under 10 HL *–Under 10 LL | 16.19 ± 5.49–23.97 ± 7.83 | 0.002 * | 1.151 | |
Under 12 HL *–Under 8 LL | 14.51 ± 4.51–26.27 ± 8.63 | <0.001 * | 1.708 | |
Under 12 HL *–Under 10 LL | 14.51 ± 4.51–23.97 ± 7.83 | 0.001 * | 1.481 | |
Target kick test | Male LL–Female LL * | 4.38 ± 2.13–6.14 ± 2.26 | 0.013 * | 0.801 |
Under 8 HL–Under 12 HL * | 5.29 ± 2.37–8.45 ± 4.01 | 0.011 * | 0.959 | |
Under 8 LL–Under 12 LL * | 4.52 ± 1.77–6.92 ± 2.27 | 0.003 * | 1.179 | |
Under 10 HL *–Under 8 LL | 6.47 ± 2.62–4.52 ± 1.77 | 0.004 * | 0.872 | |
Under 12 HL *–Under 8 LL | 8.45 ± 4.01–4.52 ± 1.77 | <0.001 * | 1.268 | |
Under 12 HL *–Under 10 LL | 8.45 ± 4.01–5.55 ± 2.26 | 0.015 * | 0.891 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boutios, S.; Fiorilli, G.; Buonsenso, A.; Daniilidis, P.; Centorbi, M.; Intrieri, M.; di Cagno, A. The Impact of Age, Gender and Technical Experience on Three Motor Coordination Skills in Children Practicing Taekwondo. Int. J. Environ. Res. Public Health 2021, 18, 5998. https://doi.org/10.3390/ijerph18115998
Boutios S, Fiorilli G, Buonsenso A, Daniilidis P, Centorbi M, Intrieri M, di Cagno A. The Impact of Age, Gender and Technical Experience on Three Motor Coordination Skills in Children Practicing Taekwondo. International Journal of Environmental Research and Public Health. 2021; 18(11):5998. https://doi.org/10.3390/ijerph18115998
Chicago/Turabian StyleBoutios, Stefanos, Giovanni Fiorilli, Andrea Buonsenso, Panagiotis Daniilidis, Marco Centorbi, Mariano Intrieri, and Alessandra di Cagno. 2021. "The Impact of Age, Gender and Technical Experience on Three Motor Coordination Skills in Children Practicing Taekwondo" International Journal of Environmental Research and Public Health 18, no. 11: 5998. https://doi.org/10.3390/ijerph18115998
APA StyleBoutios, S., Fiorilli, G., Buonsenso, A., Daniilidis, P., Centorbi, M., Intrieri, M., & di Cagno, A. (2021). The Impact of Age, Gender and Technical Experience on Three Motor Coordination Skills in Children Practicing Taekwondo. International Journal of Environmental Research and Public Health, 18(11), 5998. https://doi.org/10.3390/ijerph18115998