Comparison of Official and Friendly Matches through Acceleration, Deceleration and Metabolic Power Measures: A Full-Season Study in Professional Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Monitoring External Workload
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McMillan, K.; Helgerud, J.; Grant, S.; Newell, J.; Wilson, J.; Macdonald, R.; Hoff, J. Lactate threshold responses to a season of professional British youth soccer. Br. J. Sports Med. 2005, 39, 432–436. [Google Scholar] [CrossRef] [Green Version]
- Iaia, F.M.; Ermanno, R.; Bangsbo, J. High-intensity training in football. Int. J. Sports Physiol. Perform. 2009, 4, 291–306. [Google Scholar] [CrossRef]
- Karpowicz, K.; Krych, K.; Karpowicz, M.; Nowak, W.; Gronek, P. The relationship between CA repeat polymorphism of the IGF-1 gene and the structure of motor skills in young athletes. Acta Biochim. Pol. 2018, 65, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Van Winckel, J. Fitness in Soccer: The Science and Practical Application; Moveo Ergo Sum/Klein-Gelmen: Heers, Belgium, 2014. [Google Scholar]
- Dellal, A.; Chamari, K.; Wong, d.P.; Ahmaidi, S.; Keller, D.; Barros, R.; Bisciotti, G.N.; Carling, C. Comparison of physical and technical performance in European soccer match-play: FA Premier League and La Liga. Eur. J. Sport Sci. 2011, 11, 51–59. [Google Scholar] [CrossRef]
- Rampinini, E.; Coutts, A.J.; Castagna, C.; Sassi, R.; Impellizzeri, F. Variation isn top level soccer match performance. Int. J. Sports Med. 2007, 28, 1018–1024. [Google Scholar] [CrossRef] [Green Version]
- Di Salvo, V.; Baron, R.; Tschan, H.; Montero, F.C.; Bachl, N.; Pigozzi, F. Performance characteristics according to playing position in elite soccer. Int. J. Sports Med. 2007, 28, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.J.; Carling, C.; Kiely, J. High-intensity acceleration and deceleration demands in elite team sports competitive match play: A systematic review and meta-analysis of observational studies. Sports Med. 2019, 49, 1923–1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akenhead, R.; Nassis, G.P. Training load and player monitoring in high-level football: Current practice and perceptions. Int. J. Sports Physiol. Perform. 2016, 11, 587–593. [Google Scholar] [CrossRef]
- Abbott, W.; Brickley, G.; Smeeton, N.J.; Mills, S. Individualizing acceleration in English premier league academy soccer players. J. Strength Cond. Res. 2018, 32, 3503–3510. [Google Scholar] [CrossRef] [PubMed]
- Rago, V.; Brito, J.; Figueiredo, P.; Costa, J.; Barreira, D.; Krustrup, P.; Rebelo, A. Methods to collect and interpret external training load using microtechnology incorporating GPS in professional football: A systematic review. Res. Sports Med. 2020, 28, 437–458. [Google Scholar] [CrossRef] [PubMed]
- Delaney, J.; Cummins, C.; Thornton, H.; Duthie, G. Importance, reliability and usefulness of acceleration measures in team sports. J. Strength Cond. Res. 2017, 32, 3485–3493. [Google Scholar] [CrossRef] [Green Version]
- De Hoyo, M.; Cohen, D.D.; Sañudo, B.; Carrasco, L.; Álvarez-Mesa, A.; Del Ojo, J.J.; Domínguez-Cobo, S.; Mañas, V.; Otero-Esquina, C. Influence of football match time–motion parameters on recovery time course of muscle damage and jump ability. J. Sports Sci. 2016, 34, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Johnston, R.J.; Watsford, M.L.; Austin, D.J.; Pine, M.J.; Spurrs, R.W. An examination of the relationship between movement demands and rating of perceived exertion in Australian footballers. J. Strength Cond. Res. 2015, 29, 2026–2033. [Google Scholar] [CrossRef]
- Windt, J.; Zumbo, B.D.; Sporer, B.; MacDonald, K.; Gabbett, T.J. Why do workload spikes cause injuries, and which athletes are at higher risk? Mediators and Moderators in Workload–Injury Investigations. Br. J. Sports Med. 2017, 51, 993–994. [Google Scholar] [CrossRef] [PubMed]
- Osgnach, C.; Poser, S.; Bernardini, R.; Rinaldo, R.; Di Prampero, P.E. Energy cost and metabolic power in elite soccer: A new match analysis approach. Med. Sci. Sports Exerc. 2010, 42, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Murphy, A.J.; Schultz, A.B.; Jeffriess, M.D.; Callaghan, S.J. Influence of sprint acceleration stance kinetics on velocity and step kinematics in field sport athletes. J. Strength Cond. Res. 2013, 27, 2494–2503. [Google Scholar] [CrossRef]
- Nobari, H.; Praça, G.M.; Clemente, F.M.; Pérez-Gómez, J.; Carlos Vivas, J.; Ahmadi, M. Comparisons of new body load and metabolic power average workload indices between starters and non-starters: A full-season study in professional soccer players. Proc. Inst. Mech. Eng. Part. P J. Sports Eng. Technol. 2020. [Google Scholar] [CrossRef]
- Dalen, T.; Jørgen, I.; Gertjan, E.; Havard, H.G.; Ulrik, W. Player load, acceleration, and deceleration during forty-five competitive matches of elite soccer. J. Strength Cond. Res. 2016, 30, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Fatigue in soccer: A brief review. J. Sports Sci. 2005, 23, 593–599. [Google Scholar] [CrossRef]
- Edwards, A.; Clark, N. Thermoregulatory observations in soccer match play: Professional and recreational level applications using an intestinal pill system to measure core temperature. Br. J. Sports Med. 2006, 40, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Hennessy, L.; Jeffreys, I. The current use of GPS, its potential, and limitations in soccer. Strength Cond. J. 2018, 40, 83–94. [Google Scholar] [CrossRef]
- Whitehead, S.; Till, K.; Weaving, D.; Jones, B. The use of microtechnology to quantify the peak match demands of the football codes: A systematic review. Sports Med. 2018, 48, 2549–2575. [Google Scholar] [CrossRef] [Green Version]
- Chambers, R.; Gabbett, T.J.; Cole, M.H.; Beard, A. The use of wearable microsensors to quantify sport-specific movements. Sports Med. 2015, 45, 1065–1081. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, P.T.; Clemente, F.M.; van der Linden, C.M.; Rosemann, T.; Knechtle, B. Validity and reliability of 10-Hz global positioning system to assess in-line movement and change of direction. Front. Physiol. 2018, 9, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, P.S.; Di Mascio, M.; Peart, D.; Olsen, P.; Sheldon, B. High-intensity activity profiles of elite soccer players at different performance levels. J. Strength Cond. Res. 2010, 24, 2343–2351. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Sparkes, W.; Northeast, J.; Cook, C.J.; Love, T.D.; Bracken, R.M.; Kilduff, L.P. Changes in acceleration and deceleration capacity throughout professional soccer match-play. J. Strength Cond. Res. 2016, 30, 2839–2844. [Google Scholar] [CrossRef] [Green Version]
- Scott, M.T.; Scott, T.J.; Kelly, V.G. The validity and reliability of global positioning systems in team sport: A brief review. J. Strength Cond. Res. 2016, 30, 1470–1490. [Google Scholar] [CrossRef] [PubMed]
- Nobari, H.; Oliveira, R.; Brito, J.P.; Pérez-Gómez, J.; Clemente, F.M.; Ardigò, L.P. Comparison of Running Distance Variables and Body Load in Competitions Based on Their Results: A Full-Season Study of Professional Soccer Players. Int. J. Environ. Res. Public Health 2021, 18, 2077. [Google Scholar] [CrossRef]
- Nobari, H.; Oliveira, R.; Clemente, F.M.; Adsuar, J.C.; Pérez-Gómez, J.; Carlos-Vivas, J.; Brito, J.P. Comparisons of Accelerometer Variables Training Monotony and Strain of Starters and Non-Starters: A Full-Season Study in Professional Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 6547. [Google Scholar] [CrossRef]
- Clemente, F.M.; Silva, R.; Chen, Y.-S.; Aquino, R.; Praça, G.M.; Castellano, J.; Nobari, H.; Mendes, B.; Rosemann, T.; Knechtle, B. Accelerometry-Workload Indices Concerning Different Levels of Participation during Congested Fixture Periods in Professional Soccer: A Pilot Study Conducted over a Full Season. Int. J. Environ. Res. Public Health 2021, 18, 1137. [Google Scholar] [CrossRef]
- Nobari, H.; Castillo, D.; Clemente, F.M.; Carlos-Vivas, J.; Pérez-Gómez, J. Acute, chronic and acute/chronic ratio between starters and non-starters professional soccer players across a competitive season. Proc. Inst. Mech. Eng. Part. P J. Sports Eng. Technol. 2021. [Google Scholar] [CrossRef]
- Hopkins, W.G. Spreadsheets for analysis of controlled trials, with adjustment for a subject characteristic. Sportscience 2006, 10, 46–50. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Akenhead, R.; Hayes, P.R.; Thompson, K.G.; French, D. Diminutions of acceleration and deceleration output during professional football match play. J. Sci. Med. Sport 2013, 16, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, M.; Botelho, G.; Lago, C.; Maças, V.; Sampaio, J. A review on the effects of soccer small-sided games. J. Hum. Kinet. 2012, 33, 103–113. [Google Scholar] [CrossRef]
- Freitas, C.G.; Aoki, M.S.; Arruda, A.F.; Franciscon, C.; Moreira, A. Monitoring salivary immunoglobulin a responses to official and simulated matches in elite young soccer players. J. Hum. Kinet. 2016, 53, 107–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazem, G.; Sharifi, G.R.; Taghian, F.; Jourkesh, M.; Ostojic, S.M.; Calleja-Gonzalez, J.; Keikhai, B.M. The effects of successive official competitions on salivary cortisol and immunogolobulin responses in women handballers. Serb. J. Sports Sci. 2011, 5, 67–73. [Google Scholar]
- Ferraz, R.; Gonçalves, B.; Van Den Tillaar, R.; Jimenez Saiz, S.; Sampaio, J.; Marques, M.C. Effects of knowing the task duration on players’ pacing patterns during soccer small-sided games. J. Sports Sci. 2018, 36, 116–122. [Google Scholar] [CrossRef]
- Mullen, T.; Twist, C.; Highton, J.M. Knowledge of task end-point influences pacing and performance during simulated rugby league match-play. Int. J. Sports Physiol. Perform. 2017, 12, 1192–1198. [Google Scholar]
- Burgess, D.; Naughton, G.; Norton, K. Profile of movement demands of national football players in Australia. J. Sci. Med. Sport 2006, 9, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sports Sci. 2003, 21, 519–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, P.S.; Noakes, T.D. Match running performance fluctuations in elite soccer: Indicative of fatigue, pacing or situational influences? J. Sports Sci. 2013, 31, 1627–1638. [Google Scholar] [CrossRef] [PubMed]
- Dalen, T.; Lorås, H.; Hjelde, G.H.; Kjøsnes, T.N.; Wisløff, U. Accelerations–a new approach to quantify physical performance decline in male elite soccer? Eur. J. Sport Sci. 2019, 19, 1015–1023. [Google Scholar] [CrossRef] [PubMed]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef] [PubMed]
Players | Official Matches Duration (min) | Friendly Matches Duration (min) | HSRD (m) of Official Matches | HSRD (m) of Friendly Matches | Total Sprint Distance (m) of Official Matches | Total Sprint Distance (m) of Friendly Matches |
---|---|---|---|---|---|---|
1 | 97.2 ± 5.5 | 88.3 ± 23.7 | 113.5 ± 73.7 | 109.95 ± 89.3 | 21.4 ± 14.8 | 11.47 ± 6.1 |
2 | 65.6 ± 8.9 | 84.8 ± 27.4 | 280.5 ± 77.9 | 337.32 ± 135.4 | 25.1 ± 17.7 | 20.37 ± 14.9 |
3 | 96.2 ± 2.9 | 92.0 ± 1.9 | 192.1 ± 12.5 | 222.94 ± 71.0 | 40.9 ± 17.9 | 4.79 ± 28.8 |
4 | 92.0 ± 20.5 | 88.2 ± 16.3 | 264.4 ± 62.2 | 205.81 ± 173.3 | 17.4 ± 3.7 | 36.48 ± 15.1 |
5 | 97.5 ± 3.5 | 90.0 ± 28.6 | 121.8 ± 82.7 | 100.34 ± 100.6 | 10.6 ± 0 | 11.02 ± 0 |
6 | 86.5 ± 17.3 | 83.8 ± 25.5 | 333.6 ± 131.7 | 213.43 ± 143.4 | 49.4 ± 29.8 | 23.11 ± 25.6 |
7 | 89.5 ± 14.5 | 84.9 ± 13.8 | 285.5 ± 120.3 | 279.18 ± 174.5 | 16.4 ± 13.9 | 42.17 ± 13.2 |
8 | 74.7 ± 29.4 | 79.1 ± 13.5 | 211.6 ± 61.3 | 234.71 ± 120.5 | 25.0 ± 0 | 16.48 ± 5.6 |
9 | 94.5 ± 9.5 | 79.6 ± 11.6 | 382.0 ± 110.8 | 248.49 ± 181.2 | 47.6 ± 31.7 | 10.38 ± 19.4 |
10 | 97.4 ± 3.4 | 83.1 ± 24.3 | 304.8 ± 107.1 | 262.90 ± 102.7 | 37.5 ± 36.6 | 33.37 ± 23.95 |
11 | 69.1 ± 37.4 | 85.9 ± 9.9 | 231.4 ± 86.2 | 301.03 ± 148.4 | 24.6 ± 17.8 | 33.42 ± 21.0 |
12 | 94.8 ± 1.9 | 90.1 ± 13.1 | 178.7 ± 88.0 | 130.38 ± 76.5 | 39.0 ± 27.6 | 26.52 ± 12.1 |
Full match | Official Matches (CI, 95%) | Friendly Matches (CI, 95%) | p | CI (95%) | Effect Size |
---|---|---|---|---|---|
Duration (min) | 87.9 ± 11.6 (80.5–95.3) | 85.8 ± 4.1 (83.2–88.4) | 0.514 | −4.7, 8.9 | 0.24 (−0.57, 1.04) |
Metabolic power (W·kg−1), | 18.4 ± 2.0 (17.2–19.7) | 19.5 ± 1.7 (18.4–20.5) | 0.029 * | −2.0, −0.1 | −0.59 (−1.39, 0.24) |
AccZ1 (m·s−2) | 126.1 ± 19.6 (113.6–138.5) | 129.5 ± 22.4 (115.3–143.8) | 0.616 | −18.4, 11.4 | −0.16 (−0.96, 0.65) |
AccZ2 (m·s−2) | 35.2 ± 6.4 (35.1–39.3) | 36.7 ± 7.2 (32.1–41.3) | 0.510 | −6.1, 3.2 | −0.41 (−1.20, 0.41) |
AccZ3 (m·s−2) | 4.4 ± 1.2 (3.6–5.2) | 4.3 ± 1.2 (3.5–5.1) | 0.849 | −0.8, 1.0 | −0.67 (−1.46, 0.18) |
DecZ1 (m·s−2) | 62.4 ± 10.5 (55.7–69.1) | 62.2 ± 11.0 (55.2–69.2) | 0.950 | −6.0, 6.4 | <0.001 (−0.80, 0.80) |
DecZ2 (m·s−2) | 23.2 ± 3.7 (20.8–25.5) | 21.9 ± 6.3 (17.9–26.0) | 0.490 | −2.6, 5.0 | −0.10 (0.89, 0.71) |
DecZ3 (m·s−2) | 8.4 ± 1.6 (7.5–9.5) | 8.7 ± 2.2 (7.3–10.1) | 0.753 | −1.5, 1.1 | −1.35 (−2.19, −0.42) |
1st half | Official Matches (CI, 95%) | Friendly Matches (CI, 95%) | p | CI (95%) | Effect Size |
Duration (min) | 47.1 ± 1.8 (45.9–48.2) | 47.2 ± 2.7 (45.5–48.9) | 0.872 | −1.9, 1.6 | <0.001 (−0.80, 0.80) |
Metabolic power (W·kg−1), | 9.7 ± 0.8 (9.2–10.2) | 9.8 ± 0.9 (9.3–10.4) | 0.585 | −0.5, 0.3 | −1.06 (−1.87, −0.17) |
AccZ1 (m·s−2) | 71.1 ± 11.6 (63.7–78.4) | 71.8 ± 12.8 (63.7–79.9) | 0.837 | −8.0, 6.6 | −0.01 (−0.81, 0.79) |
AccZ2 (m·s−2) | 19.8 ± 4.4 (17.1–22.6) | 19.4 ± 4.7 (16.4–22.5) | 0.750 | −2.3, 3.0 | −0.26 (−1.06, 0.55) |
AccZ3 (m·s−2) | 2.5 ± 0.8 (1.9–3.0) | 2.5 ± 0.9 (2.0–3.0) | 0.847 | −0.5, 0.5 | −0.35 (−1.15, 0.47) |
DecZ1 (m·s−2) | 34.4 ± 6.8 (30.1–38.8) | 34.3 ± 6.6 (30.1–38.4) | 0.896 | −2.7, 3.0 | −0.01 (−0.81, 0.79) |
DecZ2 (m·s−2) | 13.0 ± 2.6 (11.3–14.6) | 12.4 ± 4.7 (9.4–15.4) | 0.604 | −1.7, 2.9 | 0.05 (−0.75, 0.85) |
DecZ3 (m·s−2) | 4.7 ± 1.5 (3.7–5.7) | 4.5 ± 1.6 (3.5–5.6) | 0.769 | −1.1, 1.4 | −1.35 (−2.19, −0.43) |
2nd half | Official Matches (CI, 95%) | Friendly Matches (CI, 95%) | p | CI (95%) | Effect Size |
Duration (min), | 43.4 ± 6.2 (39.4–47.3) | 38.6 ± 4.2 (35.9–41.3) | 0.016 * | 1.1, 8.4 | 0.91 (0.04, 1.71) |
Metabolic power (W·kg−1), | 9.3 ± 1.1 (8.5–10.0) | 9.6 ± 1.0 (9.0–10.3) | 0.136 | −0.9, 0.1 | <0.001 (−0.80, 0.80) |
AccZ1 (m·s−2) | 58.9 ± 7.6 (54.1–63.7) | 57.8 ± 12.0 (50.1–53.0) | 0.771 | −7.4, 9.7 | 0.01 (−0.79, 0.81) |
AccZ2 (m·s−2) | 16.6 ± 3.1 (14.7–18.6) | 17.2 ± 3.8 (14.8–19.6) | 0.625 | −3.2, 2.0 | −1.27 (−2.10, −0.35) |
AccZ3 (m·s−2) | 2.0 ± 0.5 (1.7–2.3) | 1.8 ± 0.6 (1.4–2.2) | 0.272 | −0.2, 0.6 | −1.27 (−2.10, −0.35) |
DecZ1 (m·s−2) | 30.0 ± 4.2 (27.4–32.7) | 27.9 ± 5.2 (24.6–31.3) | 0.168 | −1.0, 5.2 | −0.02 (−0.82, 0.78) |
DecZ2 (m·s−2) | 11.0 ± 1.5 (10.0–11.9) | 9.5 ± 2.3 (8.0–11.0) | 0.070 | −0.1, 3.1 | −0.52 (−1.31, 0.32) |
DecZ3 (m·s−2) | 4.1 ± 0.8 (3.6–4.7) | 4.1 ± 1.1 (3.4–4.9) | 0.982 | −0.6, 0.6 | −0.83 (−1.63, 0.03) |
Official Matches | p (1st half vs. 2nd half) | Confidence Interval (95%) | Effect Size |
---|---|---|---|
Duration (min), n = 10 | 0.034 * | 0.3, 7.1 | −1.38 (−2.22, −0.45) |
Metabolic power (W·kg−1), | 0.027 * | 0.1, 0.8 | 0.42 (−0.41, 1.21) |
AccZ1 (m·s−2) | 0.002 * | 5.4, 19.0 | 1.24 (0.33, 2.07) |
AccZ2 (m·s−2) | 0.016 * | 0.7, 5.7 | 0.84 (−0.02, 1.64) |
AccZ3 (m·s−2) | 0.021 * | 0.1, 0.8 | 0.75 (−0.10, 1.55) |
DecZ1 (m·s−2) | 0.022 * | 0.8, 8.1 | 0.78 (−0.08, 1.58) |
DecZ2 (m·s−2) | 0.015 * | 0.5, 3.5 | 0.94 (0.07, 1.75) |
DecZ3 (m·s−2) | 0.215 | −0.4, 1.5 | 0.50 (−0.33, 1.29) |
Friendly Matches | p(1st half vs. 2nd half) | Confidence Interval (95%) | Effect Size |
Duration (min), n = 13 | <0.001 * | 4.9, 12.3 | 2.44 (1.31, 3.39) |
Metabolic power (W·kg−1), | 0.463 | −0.3, 0.7 | <0.001 (−0.80, 0.80) |
AccZ1 (m·s−2) | 0.001 * | 7.3, 20.7 | 1.13 (0.23, 1.95) |
AccZ2 (m·s−2) | 0.127 | −0.7, 5.2 | <0.001 (−0.80, 0.80) |
AccZ3 (m·s−2) | 0.023 * | 0.1, 1.3 | 0.92 (0.05, 1.72) |
DecZ1 (m·s−2) | 0.001 * | 3.5, 9.2 | <0.001 (−0.80, 0.80) |
DecZ2 (m·s−2) | 0.023 * | 0.5, 5.3 | 0.78 (−0.07, 1.59) |
DecZ3 (m·s−2) | 0.424 | −0.6, 1.4 | <0.001 (−0.80, 0.80) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nobari, H.; Khalili, S.M.; Oliveira, R.; Castillo-Rodríguez, A.; Pérez-Gómez, J.; Ardigò, L.P. Comparison of Official and Friendly Matches through Acceleration, Deceleration and Metabolic Power Measures: A Full-Season Study in Professional Soccer Players. Int. J. Environ. Res. Public Health 2021, 18, 5980. https://doi.org/10.3390/ijerph18115980
Nobari H, Khalili SM, Oliveira R, Castillo-Rodríguez A, Pérez-Gómez J, Ardigò LP. Comparison of Official and Friendly Matches through Acceleration, Deceleration and Metabolic Power Measures: A Full-Season Study in Professional Soccer Players. International Journal of Environmental Research and Public Health. 2021; 18(11):5980. https://doi.org/10.3390/ijerph18115980
Chicago/Turabian StyleNobari, Hadi, Sara Mahmoudzadeh Khalili, Rafael Oliveira, Alfonso Castillo-Rodríguez, Jorge Pérez-Gómez, and Luca Paolo Ardigò. 2021. "Comparison of Official and Friendly Matches through Acceleration, Deceleration and Metabolic Power Measures: A Full-Season Study in Professional Soccer Players" International Journal of Environmental Research and Public Health 18, no. 11: 5980. https://doi.org/10.3390/ijerph18115980