Toxicology and Microbiota: How Do Pesticides Influence Gut Microbiota? A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Herbicides
3.1. Glyphosate
3.2. Triazine, 2,4-Dichlorophenoxyacetic Acid
4. Organophosphate Pesticides (OPPs)
4.1. Chlorpyrifos
4.2. Trichlorfon, Diazinon, Monocrotophos, Dichlorvos, Phoxim
5. Organochlorine Pesticides (OCPs)
p, p’-dichlorodiphenyldichloroethylene (p, p’-DDE), Dieldrin, Endosulfan, Indoxacarb, Hexachlorocyclohexane, Malachite Green
6. Insecticides
6.1. Neonicotinoid, Imidacloprid
6.2. Pyrethroid
7. Fungicides
8. Pesticide Mixtures
9. Future Perspectives
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ASD | Autism spectrum disorder |
ATZ | Atrazine |
β-HCH | β-hexachlorocyclohexane |
CBZ | Carbendazim |
CPF | Chlorpyrifos |
DDE | Dichlorodiphenyldichloroethylene |
GLY | Glyphosate |
GM | Gut microbiota |
HCH | Hexachlorocyclohexane |
IL | Interleukine |
IMI | Imidacloprid |
MG | Malachite green |
OCPs | Organochlorine pesticides |
OPPs | Organophosphate pesticides |
PEM | Permethrin |
PM | Propamocarb |
SCFA | Short-chain fatty acid |
TNF | Tumour necrosis factor |
Appendix A
Pesticide | Study Type | Outcomes | Gut Microbiota Perturbation | Authors/Year | |
---|---|---|---|---|---|
Herbicides | Glyphosate | Bees | ↓ Proteobacteria (Snodgrassella alvi), Actinobacteria (Bifidobacterium), Firmicutes (Lactobacillus) | Motta et al., 2018 [32] | |
↓ Proteobacteria ↑ Firmicutes | Blot et al., 2019 [33] | ||||
↑ opportunistic pathogens ↑ mortality | ↓ Proteobacteria (Snodgrassella alvi, Gilliamella), Actinobacteria (Bifidobacterium) | Motta et al., 2020 [34] | |||
rats | ↑ neuroplasticity | ↑ Bacteroidetes ↓ Firmicutes | Dechartres et al., 2019 [35] | ||
mice | ↑ anxiety ↑ depression-like symptoms | ↓ Actinobacteria (Corynebacterium), Firmicutes (Lactobacillus), Bacteroidetes | Aitbali et al., 2018 [36] | ||
rats | ↓ antioxidant efficacy ↑ mRNA expression of IL-1β, IL-6, TNF-α, MAPK3, NF-κB, and Caspase-3 | ↓ Firmicutes | Tang et al., 2020 [37] | ||
mice | ASD-like behaviours ↑ acetic acid in faeces | ↓ Firmicutes (Eubacterium plexicaudatum, Lachnospiraceae, Clostridium tertium) ↑ Bacteroidetes (Butyricimonas virosa), Actinobacteria (Enterorhabdus muris), Firmicutes (Clostridium sp. Clone-1, Clone-46) | Pu et al., 2020 [38] | ||
in vitro (Bioreactor model of pig colonic microbiota) | Not evident effects | Krause et al., 2020 [39] | |||
mussel | ↑ opportunistic pathogens | ↑ Proteobacteria | Iori et al., 2020 [40] | ||
crab | ↓ digestive enzymes | ↑ Bacteroidetes and Proteobacteria | Yang et al., 2019 [42] | ||
quail | ↓ catalase activity | ↓ Firmicutes ↑ Actinobacteria | Ruuskanen et al., 2020 [44] | ||
Triazines mixture (simazine, atrazine, ametryn, terbuthylazine, and metribuzin) | rats | ↓ hepatic enzymes | ↓ Firmicutes, Actinobacteria | Zhan et al., 2018 [45] | |
Atrazine | oysters | ↑ pathogenic bacteria | ↑ Actinobacteria ↓ Proteobacteria, Firmicutes | Britt et al., 2020 [48] | |
2,4-dichlorophenoxyacetic acid | mice | ↑ Bacteroidetes, Chlorobi, Chloroflexi, Spirochaetes and Thermotogae | Tu et al., 2019 [49] |
Pesticide | Study Type | Outcomes | Gut Microbiota Perturbation | Authors/Year | |
---|---|---|---|---|---|
Organophosphate Pesticides | Chlorpyrifos | rats | ↑ proinflammatory cytokines (IL-6, monocyte chemoattractant protein-1, and TNF-α) | ↑ Firmicutes, Actinobacteria ↓ Proteobacteria | Li et al., 2019 [50] |
rat pups | ↓ body weight shorter and thinner intestinal villi ↓ probiotic bacteria | ↑ Firmicutes (Clostridium, Staphylococcus) ↓ Firmicutes (Lactobacillus) | Joly Condette et al., 2015 [24] | ||
mice | ↓ tight junction proteins (occludin, claudin 1, and ZO-1) | ↑ Proteobacteria ↓ Bacteroidetes | Liang et al., 2019 [52] | ||
Alteration in amino acids and short-chain fatty acids metabolism | ↓ Firmicutes ↑ Bacteroidetes | Zhao et al., 2016 [55] | |||
silkworm | ↑ Firmicutes and Actinobacteria ↓ Proteobacteria | Chen et al., 2020 [57] | |||
zebrafish | ↑ Proteobacteria | Wang et al., 2019 [60] | |||
in vitro (SHIME) | ↓ Firmicutes (Lactobacillus) and Actinobacteria (Bifidobacterium) | Réquilé et al., 2018 [62] | |||
↑ Proteobacteria (Enterobacteria), Bacteroidetes (Bacteroides) and Firmicutes (Clostridia) ↓ Actinobacteria (bifidobacterial) | Reygner et al., 2016 [63] | ||||
SHIME and rats | ↑ Firmicutes (Enterococcus) and Bacteroidetes (Bacteroides) ↓ Actinobacteria (bifidobacterial) and Firmicutes (lactobacilli) | Joly et al., 2013 [64] | |||
Trichlorfon | Common carp | ↓ height of intestinal villus ↓ gene expression of tight junction proteins (claudin-2, occludin and ZO-1) ↓ antioxidant enzymes ↑ proinflammatory cytokines | ↓ Fusobacteria ↑ Bacteroidetes | Chang et al., 2020 [65] | |
Diethyl phosphate | rats | ↑ opportunistic pathogens ↓ IL-6 | ↑ Bacteroides, Actinobacteria ↓ Firmicutes | Yang et al., 2019 [66] | |
Diazinon | crucian carp | ↑Bacteroidetes, Fusobacteria and Firmicutes and Patescibacteria | Tang et al., 2021 [67] | ||
Phoxim | silkworms | immunosuppressive effects | ↑ Proteobacteria (Methylobacterium and Aurantimonadaceae) | Li et al., 2020 [71] |
Pesticide | Study Type | Outcomes | Gut Microbiota Perturbation | Authors/Year | |
---|---|---|---|---|---|
Organochlorine Pesticides | Dichlorodiphenyldichloroethylene | mice | ↑ Bacteroidetes ↓ Proteobacteria, Deferribacteres and Cyanobacteria | Zhan et al., 2019 [72] | |
rats | ↓ Bacteroidetes and Proteobacteria ↑ Firmicutes and Tenericutes | Liang et al., 2020 [73] | |||
Dichlorodiphenyldichloroethylene and β-hexachlorocyclohexane | mice | alteration in hepatic and bile acid metabolism | ↑ Firmicutes and Proteobacteria, ↓ Bacteroidetes, Verrucomicrobia, Actinobacteria and Saccharibacteria | Liu et al., 2017 [74] | |
Dieldrin | zebrafish | ↓ Firmicutes | Hua et al., 2021 [77] | ||
Malachite green | goldfish | ↑ opportunistic pathogens | ↑ Proteobacteria ↓ Bacteroidetes | Li et al., 2019 [78] |
Pesticide | Study Type | Outcomes | Gut Microbiota Perturbation | Authors/Year | |
---|---|---|---|---|---|
Insecticides | Endosulfan sulphate | mice | ↑ Actinobacteria, Proteobacteria, Bacteroidetes ↓ Firmicutes | Yan et al., 2021 [79] | |
Imidacloprid | drosophila melanogaster | ↑ Firmicutes (Lactobacillus) and Proteobacteria (Acetobacter) | Chmiel et al., 2019 [81] | ||
pregnant mice | ↓ liver weights histological alteration of liver Impaired gut barrier function | ↑ Bacteroidetes ↓ Firmicutes, Cyanobacteria, Verrucomicrobia and Saccharibacteria | Yang et al., 2020 [88] | ||
crab | ↑ Bacteroidetes ↓ Proteobacteria | Hong et al., 2020 [89] | |||
Imidacloprid, thiacloprid, nitenpyram, amitraz and dimethoate | bees | ↓ Firmicutes | Rothman et al., 2020 [82]; Alberoni et al., 2021 [83]; Liu et al., 2020 [84]; Zhu et al., 2020 [85]; Yang et al., 2019 [86] | ||
Nitenpyram | pregnant mice | altered lipids metabolism | ↓ Proteobacteria (Desulfovibrionaceae) | Yan et al., 2020 [87] | |
Clothianidin | rats | ↓ body weight | ↓ Firmicutes ↑ Bacteroidetes | Onaru et al., 2020 [90] | |
Permethrin | rats | ↓ Bacteroidetes ((Bacteroides, Prevotella and Porphyromonas) | Nasuti et al., 2016 [91] | ||
Methoprene | mosquitoes | ↑ Proteobacteria (Gammaproteobacteria) | Receveur et al., 2018 [93] | ||
Aldicarb | mice | alteration of lipid profile ↑ oxidative stress DNA damage ↑ susceptibility to bacterial pathogenicity | ↑ Firmicutes (Erysipelotrichaceae, Clostridium) ↓ Firmicutes (Christensenellaceae) | Gao et al., 2019 [96] |
Pesticide | Study Type | Outcomes | Gut Microbiota Perturbation | Authors/Year | |
---|---|---|---|---|---|
Fungicides | Carbendazim | mice | ↑ body weight | ↓ Bacteroidetes and Verrucomicrobia ↑ Actinobacteria | Jin et al., 2018 [97] |
↓ Bacteroidetes ↑ Firmicutes, Proteobacteria and Actinobacteria | Jin et al., 2015 [98] | ||||
zebrafish | ↓ Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and Verrucomicrobia | Bao et al., 2020 [99] | |||
Difenoconazole | zebrafish | ↑ Firmicutes, Proteobacteria (Aeromonas and Enterobacteriaceae) and Bacteroidetes (Bacteroides) | Jiang et al., 2020 [100] | ||
Epoxiconazole | rats | ↓ Firmicutes ↑ Bacteroidetes and Proteobacteria | Xu et al., 2014 [101] | ||
Penconazole | mice | ↓ Proteobacteria ↑ Bacteroidetes, Cyanobacteria and Actinobacteria | Meng et al., 2019 [102] | ||
Azoxystrobin | earthworms | ↑ Proteobacteria | Zhang et al., 2019 [103] | ||
Imazalil | mice | ↓ Bacteroidetes, Firmicutes, and Actinobacteria | Jin et al., 2018 [104] | ||
zebrafish | ↑ Fusobacteria and Firmicutes ↓ Proteobacteria and Bacteroidetes | Jin et al., 2017 [105] | |||
Propamocarb | zebrafish | ↑ Proteobacteria, Bacteroidetes and Firmicutes | Zhang et al., 2018 [106] | ||
mice | ↓ Firmicutes, Proteobacteria, Saccharibacteria, Actinobacteria and Tenericutes ↑ Bacteroidetes, Acidobacteria, Chlorobacteria and Planctomycetes | Wu et al., 2018 [107] | |||
Thiram | chicken | ↑ blood lipid parameters histological alteration of liver | ↓ Firmicutes and Proteobacteria | Kong et al., 2020 [108] | |
Chlorothalonil, procymidone | mice | Impaired gut barrier function histological alteration of liver | ↑ Firmicutes-to-Bacteroides ratio | Wang et al., 2020 [109] |
References
- Peshin, R.; Kranthi, K.R.; Sharma, R. Pesticide use and experiences with integrated pest management programs and bt cotton in India. In Integrated Pest Management: Experiences with Implementation, Global Overview, Volume 4; Springer: Dordrecht, The Netherlands, 2014; pp. 270–306. ISBN 9789400778023. [Google Scholar]
- Jin, Y.; Chen, R.; Liu, W.; Fu, Z. Effect of endocrine disrupting chemicals on the transcription of genes related to the innate immune system in the early developmental stage of zebrafish (Danio rerio). Fish. Shellfish Immunol. 2010, 28, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Lin, X.; Miao, W.; Wu, T.; Shen, H.; Chen, S.; Li, Y.; Pan, Q.; Fu, Z. Chronic exposure of mice to environmental endocrine-disrupting chemicals disturbs their energy metabolism. Toxicol. Lett. 2014, 225, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Wu, S.; Zeng, Z.; Fu, Z. Effects of environmental pollutants on gut microbiota. Environ. Pollut. 2017, 222, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Foley, K.P.; Zlitni, S.; Denou, E.; Duggan, B.M.; Chan, R.W.; Stearns, J.C.; Schertzer, J.D. Long term but not short term exposure to obesity related microbiota promotes host insulin resistance. Nat. Commun. 2018, 9, 4681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daisley, B.A.; Trinder, M.; McDowell, T.W.; Welle, H.; Dube, J.S.; Ali, S.N.; Leong, H.S.; Sumarah, M.W.; Reid, G. Neonicotinoid-induced pathogen susceptibility is mitigated by Lactobacillus plantarum immune stimulation in a Drosophila melanogaster model. Sci. Rep. 2017, 7, 2703. [Google Scholar] [CrossRef]
- Oliveira, S.E.; Costa, P.M.; Nascimento, S.B.; Castro, W.V.; de Ribeiro, R.I.M.A.; Santos, H.B.; Thomé, R.G. Atrazine promotes immunomodulation by melanomacrophage centre alterations in spleen and vascular disorders in gills from Oreochromis niloticus. Aquat. Toxicol. 2018, 202, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Briguglio, G.; Catanoso, R.; Giambò, F.; Polito, I.; Teodoro, M.; Fenga, C. New perspectives on cytokine pathways modulation by pesticide exposure. Curr. Opin. Toxicol. 2020, 19, 99–104. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Zhu, Z.; Yang, E.; Feng, X.; Fu, Z.; Jin, Y. Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio). Chemosphere 2016, 148, 163–170. [Google Scholar] [CrossRef]
- Hocine, L.; Merzouk, H.; Merzouk, S.A.; Ghorzi, H.; Youbi, M.; Narce, M. The effects of alpha-cypermethrin exposure on biochemical and redox parameters in pregnant rats and their newborns. Pestic. Biochem. Physiol. 2016, 134, 49–54. [Google Scholar] [CrossRef]
- Samtani, R.; Sharma, N.; Garg, D. Effects of Endocrine-Disrupting Chemicals and Epigenetic Modifications in Ovarian Cancer: A Review. Reprod. Sci. 2018, 25, 7–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VoPham, T.; Bertrand, K.A.; Hart, J.E.; Laden, F.; Brooks, M.M.; Yuan, J.M.; Talbott, E.O.; Ruddell, D.; Chang, C.C.H.; Weissfeld, J.L. Pesticide exposure and liver cancer: A review. Cancer Causes Control. 2017, 28, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Vivarelli, S.; Salemi, R.; Candido, S.; Falzone, L.; Santagati, M.; Stefani, S.; Torino, F.; Banna, G.; Tonini, G.; Libra, M. Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers 2019, 11, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, C.; Briguglio, G.; Giambò, F.; Catanoso, R.; Teodoro, M.; Caccamo, D.; Fenga, C. Association between oxidative stress biomarkers and PON and GST polymorphisms as a predictor for susceptibility to the effects of pesticides. Int. J. Mol. Med. 2020, 45, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Miozzi, E.; Teodoro, M.; Fenga, C. Influence of genetic polymorphism on pesticide-induced oxidative stress. Curr. Opin. Toxicol. 2019, 13, 1–7. [Google Scholar] [CrossRef]
- Costa, C.; Teodoro, M.; Rugolo, C.A.; Alibrando, C.; Giambò, F.; Briguglio, G.; Fenga, C. MicroRNAs alteration as early biomarkers for cancer and neurodegenerative diseases: New challenges in pesticides exposure. Toxicol. Rep. 2020, 7, 759–767. [Google Scholar] [CrossRef]
- Fang, B.; Li, J.W.; Zhang, M.; Ren, F.Z.; Pang, G.F. Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats. Food Chem. Toxicol. 2018, 111, 144–152. [Google Scholar] [CrossRef]
- Defois, C.; Ratel, J.; Garrait, G.; Denis, S.; Le Goff, O.; Talvas, J.; Mosoni, P.; Engel, E.; Peyret, P. Food Chemicals Disrupt Human Gut Microbiota Activity and Impact Intestinal Homeostasis as Revealed by In Vitro Systems. Sci. Rep. 2018, 8, 11006. [Google Scholar] [CrossRef] [Green Version]
- Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef] [Green Version]
- Bäckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science 2005, 307, 1915–1920. [Google Scholar] [CrossRef] [Green Version]
- Walter, J.; Ley, R. The human gut microbiome: Ecology and recent evolutionary changes. Annu. Rev. Microbiol. 2011, 65, 411–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariat, D.; Firmesse, O.; Levenez, F.; Guimarǎes, V.D.; Sokol, H.; Doré, J.; Corthier, G.; Furet, J.P. The firmicutes/bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, M.C.; Finlay, B.B. The commensal microbiota drives immune homeostasis. Front. Immunol. 2012, 3. [Google Scholar] [CrossRef] [Green Version]
- Joly Condette, C.; Bach, V.; Mayeur, C.; Gay-Quéheillard, J.; Khorsi-Cauet, H. Chlorpyrifos Exposure during Perinatal Period Affects Intestinal Microbiota Associated with Delay of Maturation of Digestive Tract in Rats. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Lobionda, S.; Sittipo, P.; Kwon, H.Y.; Lee, Y.K. The role of gut microbiota in intestinal inflammation with respect to diet and extrinsic stressors. Microorganisms 2019, 7, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grochowska, M.; Laskus, T.; Radkowski, M. Gut Microbiota in Neurological Disorders. Arch. Immunol. Ther. Exp. 2019, 67, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Banna, G.L.; Torino, F.; Marletta, F.; Santagati, M.; Salemi, R.; Cannarozzo, E.; Falzone, L.; Ferraù, F.; Libra, M. Lactobacillus rhamnosus GG: An Overview to Explore the Rationale of Its Use in Cancer. Front. Pharmacol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Syromyatnikov, M.Y.; Isuwa, M.M.; Savinkova, O.V.; Derevshchikova, M.I.; Popov, V.N. The effect of pesticides on the microbiome of animals. Agriculture 2020, 10, 79. [Google Scholar] [CrossRef] [Green Version]
- Claus, S.P.; Guillou, H.; Ellero-Simatos, S. The gut microbiota: A major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes 2016, 2, 1–11. [Google Scholar] [CrossRef]
- Utembe, W.; Kamng’ona, A.W. Gut microbiota-mediated pesticide toxicity in humans: Methodological issues and challenges in risk assessment of pesticides. Chemosphere 2021, 271, 129817. [Google Scholar] [CrossRef]
- Agostini, L.P.; Dettogni, R.S.; dos Reis, R.S.; Stur, E.; dos Santos, E.V.W.; Ventorim, D.P.; Garcia, F.M.; Cardoso, R.C.; Graceli, J.B.; Louro, I.D. Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. Sci. Total Environ. 2020, 705, 135808. [Google Scholar] [CrossRef]
- Motta, E.V.S.; Raymann, K.; Moran, N.A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci. USA 2018, 115, 10305–10310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blot, N.; Veillat, L.; Rouzé, R.; Delatte, H. Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota. PLoS ONE 2019, 14, e0215466. [Google Scholar] [CrossRef]
- Motta, E.V.S.; Mak, M.; De Jong, T.K.; Powell, J.E.; O’Donnell, A.; Suhr, K.J.; Riddington, I.M.; Moran, N.A. Oral or topical exposure to glyphosate in herbicide formulation impacts the gut microbiota and survival rates of honey bees. Appl. Environ. Microbiol. 2020, 86. [Google Scholar] [CrossRef] [PubMed]
- Dechartres, J.; Pawluski, J.L.; Gueguen, M.M.; Jablaoui, A.; Maguin, E.; Rhimi, M.; Charlier, T.D. Glyphosate and glyphosate-based herbicide exposure during the peripartum period affects maternal brain plasticity, maternal behaviour and microbiome. J. Neuroendocrinol. 2019, 31, e12731. [Google Scholar] [CrossRef] [PubMed]
- Aitbali, Y.; Ba-M’hamed, S.; Elhidar, N.; Nafis, A.; Soraa, N.; Bennis, M. Glyphosate based- herbicide exposure affects gut microbiota, anxiety and depression-like behaviors in mice. Neurotoxicol. Teratol. 2018, 67, 44–49. [Google Scholar] [CrossRef]
- Tang, Q.; Tang, J.; Ren, X.; Li, C. Glyphosate exposure induces inflammatory responses in the small intestine and alters gut microbial composition in rats. Environ. Pollut. 2020, 261, 114129. [Google Scholar] [CrossRef]
- Pu, Y.; Yang, J.; Chang, L.; Qu, Y.; Wang, S.; Zhang, K.; Xiong, Z.; Zhang, J.; Tan, Y.; Wang, X.; et al. Maternal glyphosate exposure causes autism-like behaviors in offspring through increased expression of soluble epoxide hydrolase. Proc. Natl. Acad. Sci. USA 2020, 117, 11753–11759. [Google Scholar] [CrossRef]
- Krause, J.L.; Haange, S.B.; Schäpe, S.S.; Engelmann, B.; Rolle-Kampczyk, U.; Fritz-Wallace, K.; Wang, Z.; Jehmlich, N.; Türkowsky, D.; Schubert, K.; et al. The glyphosate formulation Roundup® LB plus influences the global metabolome of pig gut microbiota in vitro. Sci. Total Environ. 2020, 745, 140932. [Google Scholar] [CrossRef]
- Iori, S.; Rovere, G.D.; Ezzat, L.; Smits, M.; Ferraresso, S.S.; Babbucci, M.; Marin, M.G.; Masiero, L.; Fabrello, J.; Garro, E.; et al. The effects of glyphosate and AMPA on the mediterranean mussel Mytilus galloprovincialis and its microbiota. Environ. Res. 2020, 182, 108984. [Google Scholar] [CrossRef]
- Mesnage, R.; Teixeira, M.; Mandrioli, D.; Falcioni, L.; Ducarmon, Q.R.; Zwittink, R.D.; Mazzacuva, F.; Caldwell, A.; Halket, J.; Amiel, C.; et al. Use of Shotgun Metagenomics and Metabolomics to Evaluate the Impact of Glyphosate or Roundup MON 52276 on the Gut Microbiota and Serum Metabolome of Sprague-Dawley Rats. Environ. Health Perspect. 2021, 129, 017005. [Google Scholar] [CrossRef]
- Yang, X.; Song, Y.; Zhang, C.; Pang, Y.; Song, X.; Wu, M.; Cheng, Y. Effects of the glyphosate-based herbicide roundup on the survival, immune response, digestive activities and gut microbiota of the Chinese mitten crab, Eriocheir sinensis. Aquat. Toxicol. 2019, 214, 105243. [Google Scholar] [CrossRef] [PubMed]
- Kittle, R.P.; McDermid, K.J.; Muehlstein, L.; Balazs, G.H. Effects of glyphosate herbicide on the gastrointestinal microflora of Hawaiian green turtles (Chelonia mydas) Linnaeus. Mar. Pollut. Bull. 2018, 127, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Ruuskanen, S.; Rainio, M.J.; Gómez-Gallego, C.; Selenius, O.; Salminen, S.; Collado, M.C.; Saikkonen, K.; Saloniemi, I.; Helander, M. Glyphosate-based herbicides influence antioxidants, reproductive hormones and gut microbiome but not reproduction: A long-term experiment in an avian model. Environ. Pollut. 2020, 266, 115108. [Google Scholar] [CrossRef]
- Zhan, J.; Liang, Y.; Liu, D.; Ma, X.; Li, P.; Liu, C.; Liu, X.; Wang, P.; Zhou, Z. Antibiotics may increase triazine herbicide exposure risk via disturbing gut microbiota. Microbiome 2018, 6, 224. [Google Scholar] [CrossRef]
- Wang, G.H.; Berdy, B.M.; Velasquez, O.; Jovanovic, N.; Alkhalifa, S.; Minbiole, K.P.C.; Brucker, R.M. Changes in Microbiome Confer Multigenerational Host Resistance after Sub-toxic Pesticide Exposure. Cell Host Microbe 2020, 27, 213–224.e7. [Google Scholar] [CrossRef] [PubMed]
- Knutie, S.A.; Gabor, C.R.; Kohl, K.D.; Rohr, J.R. Do host-associated gut microbiota mediate the effect of an herbicide on disease risk in frogs? J. Anim. Ecol. 2018, 87, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Britt, A.; Bernini, M.; McSweeney, B.; Dalapati, S.; Duchin, S.; Cavanna, K.; Santos, N.; Donovan, G.; O’Byrne, K.; Noyes, S.; et al. The effects of atrazine on the microbiome of the eastern oyster: Crassostrea virginica. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Tu, P.; Gao, B.; Chi, L.; Lai, Y.; Bian, X.; Ru, H.; Lu, K. Subchronic low-dose 2,4-D exposure changed plasma acylcarnitine levels and induced gut microbiome perturbations in mice. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef]
- Li, J.W.; Fang, B.; Pang, G.F.; Zhang, M.; Ren, F.Z. Age- and diet-specific effects of chronic exposure to chlorpyrifos on hormones, inflammation and gut microbiota in rats. Pestic. Biochem. Physiol. 2019, 159, 68–79. [Google Scholar] [CrossRef]
- Perez-Fernandez, C.; Morales-Navas, M.; Aguilera-Sáez, L.M.; Abreu, A.C.; Guardia-Escote, L.; Fernández, I.; Garrido-Cárdenas, J.A.; Colomina, M.T.; Giménez, E.; Sánchez-Santed, F. Medium and long-term effects of low doses of Chlorpyrifos during the postnatal, preweaning developmental stage on sociability, dominance, gut microbiota and plasma metabolites. Environ. Res. 2020, 184, 109341. [Google Scholar] [CrossRef]
- Liang, Y.; Zhan, J.; Liu, D.; Luo, M.; Han, J.; Liu, X.; Liu, C.; Cheng, Z.; Zhou, Z.; Wang, P. Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota. Microbiome 2019, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Fernandez, C.; Morales-Navas, M.; Guardia-Escote, L.; Garrido-Cárdenas, J.A.; Colomina, M.T.; Giménez, E.; Sánchez-Santed, F. Long-term effects of low doses of Chlorpyrifos exposure at the preweaning developmental stage: A locomotor, pharmacological, brain gene expression and gut microbiome analysis. Food Chem. Toxicol. 2020, 135, 110865. [Google Scholar] [CrossRef] [PubMed]
- Guardia-Escote, L.; Basaure, P.; Biosca-Brull, J.; Cabré, M.; Blanco, J.; Pérez-Fernández, C.; Sánchez-Santed, F.; Domingo, J.L.; Colomina, M.T. APOE genotype and postnatal chlorpyrifos exposure modulate gut microbiota and cerebral short-chain fatty acids in preweaning mice. Food Chem. Toxicol. 2020, 135, 110872. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, Y.; Wang, G.; Han, R.; Xie, X. Effects of chlorpyrifos on the gut microbiome and urine metabolome in mouse (Mus musculus). Chemosphere 2016, 153, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Zheng, D.; Zhong, H.; Qin, B.; Gurr, G.M.; Vasseur, L.; Lin, H.; Bai, J.; He, W.; You, M. DNA Sequencing Reveals the Midgut Microbiota of Diamondback Moth, Plutella xylostella (L.) and a Possible Relationship with Insecticide Resistance. PLoS ONE 2013, 8, e68852. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, N.; Xie, S.; Zhang, X.; He, J.; Muhammad, A.; Sun, C.; Lu, X.; Shao, Y. Gut bacteria of the silkworm Bombyx mori facilitate host resistance against the toxic effects of organophosphate insecticides. Environ. Int. 2020, 143, 105886. [Google Scholar] [CrossRef]
- Juma, E.O.; Allan, B.F.; Kim, C.H.; Stone, C.; Dunlap, C.; Muturi, E.J. Effect of life stage and pesticide exposure on the gut microbiota of Aedes albopictus and Culex pipiens L. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Daisley, B.A.; Trinder, M.; McDowell, T.W.; Collins, S.L.; Sumarah, M.W.; Reid, G. Microbiota-mediated modulation of organophosphate insecticide toxicity by species-dependent interactions with lactobacilli in a Drosophila melanogaster insect model. Appl. Environ. Microbiol. 2018, 84, 2820–2837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Shen, M.; Zhou, J.; Jin, Y. Chlorpyrifos disturbs hepatic metabolism associated with oxidative stress and gut microbiota dysbiosis in adult zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 216, 19–28. [Google Scholar] [CrossRef]
- Wang, D.; Ren, J.; Tan, Z.; You, J. Gut Microbial Profiles in Nereis succinea and Their Contribution to the Degradation of Organic Pollutants. Environ. Sci. Technol. 2020, 54, 6235–6243. [Google Scholar] [CrossRef]
- Réquilé, M.; Gonzàlez Alvarez, D.O.; Delanaud, S.; Rhazi, L.; Bach, V.; Depeint, F.; Khorsi-Cauet, H. Use of a combination of in vitro models to investigate the impact of chlorpyrifos and inulin on the intestinal microbiota and the permeability of the intestinal mucosa. Environ. Sci. Pollut. Res. 2018, 25, 22529–22540. [Google Scholar] [CrossRef]
- Reygner, J.; Condette, C.J.; Bruneau, A.; Delanaud, S.; Rhazi, L.; Depeint, F.; Abdennebi-Najar, L.; Bach, V.; Mayeur, C.; Khorsi-Cauet, H. Changes in composition and function of human intestinal microbiota exposed to chlorpyrifos in oil as assessed by the SHIME® model. Int. J. Environ. Res. Public Health 2016, 13, 1088. [Google Scholar] [CrossRef] [Green Version]
- Joly, C.; Gay-Quéheillard, J.; Léké, A.; Chardon, K.; Delanaud, S.; Bach, V.; Khorsi-Cauet, H. Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) and in the rat. Environ. Sci. Pollut. Res. 2013, 20, 2726–2734. [Google Scholar] [CrossRef]
- Chang, X.; Wang, X.; Feng, J.; Su, X.; Liang, J.; Li, H.; Zhang, J. Impact of chronic exposure to trichlorfon on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in common carp (Cyprinus carpio L.). Environ. Pollut. 2020, 259, 113846. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Li, J.; Pang, G.; Ren, F.; Fang, B. Effects of diethyl phosphate, a non-specific metabolite of organophosphorus pesticides, on serum lipid, hormones, inflammation, and gut microbiota. Molecules 2019, 24, 2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Wang, W.; Jiang, Y.; Chu, W. Diazinon exposure produces histological damage, oxidative stress, immune disorders and gut microbiota dysbiosis in crucian carp (Carassius auratus gibelio). Environ. Pollut. 2021, 269, 116129. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, V.; Anandhan, R.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Almanaa, T.N.; Govindarajan, M. Impact of pesticide monocrotophos on microbial populations and histology of intestine in the Indian earthworm Lampito mauritii (Kinberg). Microb. Pathog. 2020, 139, 103893. [Google Scholar] [CrossRef]
- Akami, M.; Njintang, N.Y.; Gbaye, O.A.; Andongma, A.A.; Rashid, M.A.; Niu, C.Y.; Nukenine, E.N. Gut bacteria of the cowpea beetle mediate its resistance to dichlorvos and susceptibility to Lippia adoensis essential oil. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Dada, N.; Sheth, M.; Liebman, K.; Pinto, J.; Lenhart, A. Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Li, F.; Li, M.; Mao, T.; Wang, H.; Chen, J.; Lu, Z.; Qu, J.; Fang, Y.; Gu, Z.; Li, B. Effects of phoxim exposure on gut microbial composition in the silkworm, Bombyx mori. Ecotoxicol. Environ. Saf. 2020, 189, 110011. [Google Scholar] [CrossRef]
- Zhan, J.; Liang, Y.; Liu, D.; Ma, X.; Li, P.; Zhai, W.; Zhou, Z.; Wang, P. Pectin reduces environmental pollutant-induced obesity in mice through regulating gut microbiota: A case study of p,p″-DDE. Environ. Int. 2019, 130, 104861. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, D.; Zhan, J.; Luo, M.; Han, J.; Wang, P.; Zhou, Z. New insight into the mechanism of POP-induced obesity: Evidence from DDE-altered microbiota. Chemosphere 2020, 244, 125123. [Google Scholar] [CrossRef]
- Liu, Q.; Shao, W.; Zhang, C.; Xu, C.; Wang, Q.; Liu, H.; Sun, H.; Jiang, Z.; Gu, A. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice. Environ. Pollut. 2017, 226, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Xu, C.; Chen, K.; Yan, Q.; Mao, W.; Liu, W.; Ritz, B. Hexachlorocyclohexane exposure alters the microbiome of colostrum in Chinese breastfeeding mothers. Environ. Pollut. 2019, 254, 112900. [Google Scholar] [CrossRef] [PubMed]
- Iszatt, N.; Janssen, S.; Lenters, V.; Dahl, C.; Stigum, H.; Knight, R.; Mandal, S.; Peddada, S.; González, A.; Midtvedt, T.; et al. Environmental toxicants in breast milk of Norwegian mothers and gut bacteria composition and metabolites in their infants at 1 month. Microbiome 2019, 7, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, Q.; Adamovsky, O.; Vespalcova, H.; Boyda, J.; Schmidt, J.T.; Kozuch, M.; Craft, S.L.M.; Ginn, P.E.; Smatana, S.; Budinska, E.; et al. Microbiome analysis and predicted relative metabolomic turnover suggest bacterial heme and selenium metabolism are altered in the gastrointestinal system of zebrafish (Danio rerio) exposed to the organochlorine dieldrin. Environ. Pollut. 2021, 268. [Google Scholar] [CrossRef]
- Li, T.; Tian, D.; Zhu, Z.; Jin, W.; Wu, S.; Li, H. The gut microbiota: A new perspective on the toxicity of malachite green (MG). Appl. Microbiol. Biotechnol. 2019, 103, 9723–9737. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wang, D.; Meng, Z.; Yan, S.; Teng, M.; Jia, M.; Li, R.; Tian, S.; Weiss, C.; Zhou, Z.; et al. Effects of incremental endosulfan sulfate exposure and high fat diet on lipid metabolism, glucose homeostasis and gut microbiota in mice. Environ. Pollut. 2021, 268, 115697. [Google Scholar] [CrossRef] [PubMed]
- Pietri, J.E.; Tiffany, C.; Liang, D. Disruption of the microbiota affects physiological and evolutionary aspects of insecticide resistance in the German cockroach, an important urban pest. PLoS ONE 2018, 13, e0207985. [Google Scholar] [CrossRef] [Green Version]
- Chmiel, J.A.; Daisley, B.A.; Burton, J.P.; Reid, G. Deleterious Effects of Neonicotinoid Pesticides on Drosophila melanogaster Immune Pathways. MBio 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Rothman, J.A.; Russell, K.A.; Leger, L.; McFrederick, Q.S.; Graystock, P. The direct and indirect effects of environmental toxicants on the health of bumblebees and their microbiomes. Proc. R. Soc. B Biol. Sci. 2020, 287, 20200980. [Google Scholar] [CrossRef] [PubMed]
- Alberoni, D.; Favaro, R.; Baffoni, L.; Angeli, S.; Di Gioia, D. Neonicotinoids in the agroecosystem: In-field long-term assessment on honeybee colony strength and microbiome. Sci. Total Environ. 2021, 762, 144116. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Qiao, N.H.; Diao, Q.Y.; Jing, Z.; Vukanti, R.; Dai, P.L.; Ge, Y. Thiacloprid exposure perturbs the gut microbiota and reduces the survival status in honeybees. J. Hazard. Mater. 2020, 389, 121818. [Google Scholar] [CrossRef]
- Zhu, L.; Qi, S.; Xue, X.; Niu, X.; Wu, L. Nitenpyram disturbs gut microbiota and influences metabolic homeostasis and immunity in honey bee (Apis mellifera L.). Environ. Pollut. 2020, 258, 113671. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, S.; Yan, Z.; Liu, F.; Diao, Q.; Dai, P. Effects of three common pesticides on survival, food consumption and midgut bacterial communities of adult workers Apis cerana and Apis mellifera. Environ. Pollut. 2019, 249, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Tian, S.; Meng, Z.; Yan, J.; Jia, M.; Li, R.; Zhou, Z.; Zhu, W. Imbalance of gut microbiota and fecal metabolites in offspring female mice induced by nitenpyram exposure during pregnancy. Chemosphere 2020, 260, 127506. [Google Scholar] [CrossRef]
- Yang, G.; Yuan, X.; Jin, C.; Wang, D.; Wang, Y.; Miao, W.; Jin, Y. Imidacloprid disturbed the gut barrier function and interfered with bile acids metabolism in mice. Environ. Pollut. 2020, 266, 115290. [Google Scholar] [CrossRef]
- Hong, Y.; Huang, Y.; Wu, S.; Yang, X.; Dong, Y.; Xu, D.; Huang, Z. Effects of imidacloprid on the oxidative stress, detoxification and gut microbiota of Chinese mitten crab, Eriocheir sinensis. Sci. Total Environ. 2020, 729, 138276. [Google Scholar] [CrossRef]
- Onaru, K.; Ohno, S.; Kubo, S.; Nakanishi, S.; Hirano, T.; Mantani, Y.; Yokoyama, T.; Hoshi, N. Immunotoxicity evaluation by subchronic oral administration of clothianidin in sprague-dawley rats. J. Vet. Med. Sci. 2020, 82, 360–372. [Google Scholar] [CrossRef] [Green Version]
- Nasuti, C.; Coman, M.M.; Olek, R.A.; Fiorini, D.; Verdenelli, M.C.; Cecchini, C.; Silvi, S.; Fedeli, D.; Gabbianelli, R. Changes on fecal microbiota in rats exposed to permethrin during postnatal development. Environ. Sci. Pollut. Res. 2016, 23, 10930–10937. [Google Scholar] [CrossRef]
- Dada, N.; Lol, J.C.; Benedict, A.C.; López, F.; Sheth, M.; Dzuris, N.; Padilla, N.; Lenhart, A. Pyrethroid exposure alters internal and cuticle surface bacterial communities in Anopheles albimanus. ISME J. 2019, 13, 2447–2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Receveur, J.P.; Pechal, J.L.; Benbow, M.E.; Donato, G.; Rainey, T.; Wallace, J.R. Changes in Larval Mosquito Microbiota Reveal Non-target Effects of Insecticide Treatments in Hurricane-Created Habitats. Microb. Ecol. 2018, 76, 719–728. [Google Scholar] [CrossRef]
- Del Fernández, M.M.; Meeus, I.; Billiet, A.; Van Nieuwerburgh, F.; Deforce, D.; Vandamme, P.; Viñuela, E.; Smagghe, G. Influence of microbiota in the susceptibility of parasitic wasps to abamectin insecticide: Deep sequencing, esterase and toxicity tests. Pest. Manag. Sci. 2019, 75, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouzé, R.; Moné, A.; Delbac, F.; Belzunces, L.; Blot, N. The honeybee gut microbiota is altered after chronic exposure to different families of insecticides and infection by Nosema ceranae. Microbes Environ. 2019, 34, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Chi, L.; Tu, P.; Gao, N.; Lu, K. The Carbamate Aldicarb Altered the Gut Microbiome, Metabolome, and Lipidome of C57BL/6J Mice. Chem. Res. Toxicol. 2019, 32, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Zeng, Z.; Wang, C.; Luo, T.; Wang, S.; Zhou, J.; Ni, Y.; Fu, Z.; Jin, Y. Insights into a possible mechanism underlying the connection of carbendazim-induced lipid metabolism disorder and gut microbiota dysbiosis in mice. Toxicol. Sci. 2018, 166, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zeng, Z.; Wu, Y.; Zhang, S.; Fu, Z. Oral exposure of mice to carbendazim induces hepatic lipid metabolism disorder and gut microbiota dysbiosis. Toxicol. Sci. 2015, 147, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Bao, Z.; Zhao, Y.; Wu, A.; Lou, Z.; Lu, H.; Yu, Q.; Fu, Z.; Jin, Y. Sub-chronic carbendazim exposure induces hepatic glycolipid metabolism disorder accompanied by gut microbiota dysbiosis in adult zebrafish (Daino rerio). Sci. Total Environ. 2020, 739, 140081. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, L.; Wu, S.; Lv, L.; Liu, X.; Wang, Q.; Zhao, X. Effects of difenoconazole on hepatotoxicity, lipid metabolism and gut microbiota in zebrafish (Danio rerio). Environ. Pollut. 2020, 265, 114844. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Q.; Huan, F.; Qu, J.; Liu, W.; Gu, A.; Wang, Y.; Jiang, Z. Changes in gut microbiota may be early signs of liver toxicity induced by epoxiconazole in rats. Chemotherapy 2014, 60, 135–142. [Google Scholar] [CrossRef]
- Meng, Z.; Liu, L.; Jia, M.; Li, R.; Yan, S.; Tian, S.; Sun, W.; Zhou, Z.; Zhu, W. Impacts of penconazole and its enantiomers exposure on gut microbiota and metabolic profiles in mice. J. Agric. Food Chem. 2019, 67, 8303–8311. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, D.; Ding, J.; Zheng, F.; Zhou, S.; Lu, T.; Zhu, Y.G.; Qian, H. The fungicide azoxystrobin perturbs the gut microbiota community and enriches antibiotic resistance genes in Enchytraeus crypticus. Environ. Int. 2019, 131, 104965. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Xia, J.; Wu, S.; Tu, W.; Pan, Z.; Fu, Z.; Wang, Y.; Jin, Y. Insights Into a Possible Influence on Gut Microbiota and Intestinal Barrier Function During Chronic Exposure of Mice to Imazalil. Toxicol. Sci. 2018, 162, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Luo, T.; Zhu, Z.; Pan, Z.; Yang, J.; Wang, W.; Fu, Z.; Jin, Y. Imazalil exposure induces gut microbiota dysbiosis and hepatic metabolism disorder in zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2017, 202, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Pan, Z.; Wang, X.; Shen, M.; Zhou, J.; Fu, Z.; Jin, Y. Short-term propamocarb exposure induces hepatic metabolism disorder associated with gut microbiota dysbiosis in adult male zebrafish. Acta Biochim. Biophys. Sin. 2018, 51, 88–96. [Google Scholar] [CrossRef]
- Wu, S.; Jin, C.; Wang, Y.; Fu, Z.; Jin, Y. Exposure to the fungicide propamocarb causes gut microbiota dysbiosis and metabolic disorder in mice. Environ. Pollut. 2018, 237, 775–783. [Google Scholar] [CrossRef]
- Kong, A.; Zhang, C.; Cao, Y.; Cao, Q.; Liu, F.; Yang, Y.; Tong, Z.; Rehman, M.U.; Wang, X.; Huang, S. The fungicide thiram perturbs gut microbiota community and causes lipid metabolism disorder in chickens. Ecotoxicol. Environ. Saf. 2020, 206, 111400. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, C.; Wang, D.; Zhou, J.; Yang, G.; Shao, K.; Wang, Q.; Jin, Y. Effects of chlorothalonil, prochloraz and the combination on intestinal barrier function and glucolipid metabolism in the liver of mice. J. Hazard. Mater. 2020, 124639. [Google Scholar] [CrossRef]
- Lukowicz, C.; Simatos, S.E.; Régnier, M.; Polizzi, A.; Lasserre, F.; Montagner, A.; Lippi, Y.; Jamin, E.L.; Martin, J.F.; Naylies, C.; et al. Metabolic effects of achronic dietaryexposure to a low-dose pesticide cocktail in mice: Sexual dimorphism and role of the constitutive and rostane receptor. Environ. Health Perspect. 2018, 126. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Klément, W.; Dopavogui, L.; de Bock, F.; Lasserre, F.; Barretto, S.; Lukowicz, C.; Fougerat, A.; Polizzi, A.; Schaal, B.; et al. Perinatal exposure to a dietary pesticide cocktail does not increase susceptibility to high-fat diet-induced metabolic perturbations at adulthood but modifies urinary and fecal metabolic fingerprints in C57Bl6/J mice. Environ. Int. 2020, 144, 106010. [Google Scholar] [CrossRef]
- Jokanović, M. Neurotoxic effects of organophosphorus pesticides and possible association with neurodegenerative diseases in man: A review. Toxicology 2018, 410, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Fenga, C.; Gangemi, S.; Di Salvatore, V.; Falzone, L.; Libra, M. Immunological effects of occupational exposure to lead. Mol. Med. Rep. 2017, 15, 3355–3360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapisarda, V.; Ledda, C.; Matera, S.; Fago, L.; Arrabito, G.; Falzone, L.; Marconi, A.; Libra, M.; Loreto, C. Absence of t(14;18) chromosome translocation in agricultural workers after short-term exposure to pesticides. Mol. Med. Rep. 2017, 15, 3379–3382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falzone, L.; Marconi, A.; Loreto, C.; Franco, S.; Spandidos, D.A.; Libra, M. Occupational exposure to carcinogens: Benzene, pesticides and fibers. Mol. Med. Rep. 2016, 14, 4467–4474. [Google Scholar] [CrossRef] [Green Version]
- Mokarizadeh, A.; Faryabi, M.R.; Rezvanfar, M.A.; Abdollahi, M. A comprehensive review of pesticides and the immune dysregulation: Mechanisms, evidence and consequences. Toxicol. Mech. Methods 2015, 25, 258–278. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giambò, F.; Teodoro, M.; Costa, C.; Fenga, C. Toxicology and Microbiota: How Do Pesticides Influence Gut Microbiota? A Review. Int. J. Environ. Res. Public Health 2021, 18, 5510. https://doi.org/10.3390/ijerph18115510
Giambò F, Teodoro M, Costa C, Fenga C. Toxicology and Microbiota: How Do Pesticides Influence Gut Microbiota? A Review. International Journal of Environmental Research and Public Health. 2021; 18(11):5510. https://doi.org/10.3390/ijerph18115510
Chicago/Turabian StyleGiambò, Federica, Michele Teodoro, Chiara Costa, and Concettina Fenga. 2021. "Toxicology and Microbiota: How Do Pesticides Influence Gut Microbiota? A Review" International Journal of Environmental Research and Public Health 18, no. 11: 5510. https://doi.org/10.3390/ijerph18115510
APA StyleGiambò, F., Teodoro, M., Costa, C., & Fenga, C. (2021). Toxicology and Microbiota: How Do Pesticides Influence Gut Microbiota? A Review. International Journal of Environmental Research and Public Health, 18(11), 5510. https://doi.org/10.3390/ijerph18115510