Monitoring of Airborne Mercury: Comparison of Different Techniques in the Monte Amiata District, Southern Tuscany, Italy
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Obrist, D.; Kirk, J.L.; Zhang, L.; Sunderland, E.M.; Jiskra, M.; Selin, N.E. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 2018, 47, 116–140. [Google Scholar] [CrossRef]
- Selin, N.E. Global biogeochemical cycling of mercury: A review. Ann. Rev. Environ. Resour. 2009, 34, 43–63. [Google Scholar] [CrossRef]
- Pirrone, N.; Aas, W.; Cinnirella, S.; Ebinghaus, R.; Hedgecock, I.M.; Pacyna, J.; Sprovieri, F.; Sunderland, E.M. Toward the next generation of air quality monitoring: Mercury. Atmos. Environ. 2013, 80, 599–611. [Google Scholar] [CrossRef]
- Edner, H.; Ragnarson, P.; Svanberg, S.; Wallinder, E.; Ferrara, R.; Maserti, B.E.; Bargagli, R. Atmospheric mercury mapping in a cinnabar mining area. Sci. Total Environ. 1993, 133, 1–15. [Google Scholar] [CrossRef]
- Global Mercury Observation System, Standard Operational Procedure, Methods for the Determination of TGM and GEM. Available online: www.gmos.eu (accessed on 6 November 2019).
- McLagan, D.S.; Monaci, F.; Huang, H.; Lei, Y.D.; Mitchell, C.P.J.; Wania, F. Characterization and Quantification of Atmospheric Mercury Sources Using Passive Air Samplers. J. Geophys. Res. Atmos. 2019, 124, 2351–2362. [Google Scholar] [CrossRef]
- Klapstein, S.J.; Walker, A.K.; Saunders, C.H.; Cameron, R.P.; Murimboh, J.D.; O’Driscoll, N.J. Spatial distribution of mercury and other potentially toxic elements using epiphytic lichens in Nova Scotia. Chemosphere 2020, 241, 125064. [Google Scholar] [CrossRef]
- Lodenius, M. Use of plants for biomonitoring of airborne mercury in contaminated areas. Environ. Res. 2013, 125, 113–123. [Google Scholar] [CrossRef]
- Haskins, D.L.; Gogal, R.M.; Tuberville, T.D. Snakes as Novel Biomarkers of Mercury Contamination: A Review. Rev. Environ. Contam. Toxicol. 2020, 249, 133–152. [Google Scholar]
- Baldi, F. Mercury pollution in the soil and mosses around a geothermal plant. Water Air Soil Pollut. 1998, 38, 111–119. [Google Scholar] [CrossRef]
- Bargagli, R.; Barghigiani, C. Lichen biomonitoring of mercury emission and deposition in mining, geothermal and volcanic areas of Italy. Environ. Monit. Assess. 1991, 16, 265–275. [Google Scholar] [CrossRef]
- Vannini, A.; Nicolardi, V.; Bargagli, R.; Loppi, S. Estimating atmospheric mercury concentrations with lichens. Environ. Sci. Technol. 2014, 48, 8754–8759. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, L.; Candotto Carniel, F.; Capozzi, F.; Tretiach, M. Congruence Evaluation of Mercury Pollution Patterns Around a Waste Incinerator over a 16-Year-Long Period Using Different Biomonitors. Atmosphere 2019, 10, 183. [Google Scholar] [CrossRef]
- Loppi, S.; Nelli, L.; Ancora, S.; Bargagli, R. Accumulation of Trace Elements in the Peripheral and Central Parts of a Foliose Lichen Thallus. Bryologist 1997, 100, 251–253. [Google Scholar] [CrossRef]
- Godinho, R.M.; Verburg, T.G.; Freitas, M.C.; Wolterbeek, H.T. Accumulation of trace elements in the peripheral and central parts of two species of epiphytic lichens transplanted to a polluted site in Portugal. Environ. Pollut. 2009, 157, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Chiarantini, L.; Rimondi, V.; Benvenuti, M.; Beutel, M.W.; Costagliola, P.; Gonnelli, C.; Lattanzi, P.; Paolieri, M. Black pine (Pinus nigra) barks as biomonitors of airborne mercury pollution. Sci. Total Environ. 2016, 569–570, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yanai, R.D.; Driscoll, C.T.; Montesdeoca, M.; Smith, K.T. Concentrations and content of mercury in bark, wood, and leaves in hardwoods and conifers in four forested sites in the northeastern USA. PLoS ONE 2018, 13, e0196293. [Google Scholar] [CrossRef]
- Pirzadah, T.B.; Malik, B.; Tahir, I.; Irfan, Q.M.; Rehman, R.U. Characterization of mercury-induced stress biomarkers in Fagopyrum tataricum plants. Int. J. Phytoremediat. 2018, 20, 225–236. [Google Scholar] [CrossRef]
- McLagan, D.S.; Mitchell, C.P.J.; Huang, H.; Lei, Y.D.; Cole, A.S.; Steffen, A.; Hung, H.; Wania, F. A high-precision passive air sampler for gaseous mercury. Environ. Sci. Technol. Lett. 2016, 3, 24–29. [Google Scholar] [CrossRef]
- Gjengedal, E.; Steinnes, E. The mobility of metals in the soil-plant system in manipulated catchments: Plant species suitable for biomonitoring of Cd, Pb, Zn, and Rb. Ecol. Eng. 1994, 3, 267–278. [Google Scholar] [CrossRef]
- Eid, E.; Shaltout, K. Monthly variations of trace elements accumulation and distribution in above- and below-ground biomass of Phragmites australis (Cav.) Trin. ex Steudel in Lake Burullus (Egypt): A biomonitoring application. Ecol. Eng. 2014, 73, 17–25. [Google Scholar] [CrossRef]
- Al-Alam, J.; Chbani, A.; Faljoun, Z.; Millet, M. The use of vegetation, bees, and snails as important tools for the biomonitoring of atmospheric pollution—A review. Environ. Sci. Pollut. Res. 2019, 26, 9391–9408. [Google Scholar] [CrossRef] [PubMed]
- Loppi, S.; Bonini, I. Lichens and mosses as biomonitors of trace elements in areas with thermal springs and fumarole activity (Mt. Amiata, central Italy). Chemosphere 2000, 41, 1333–1336. [Google Scholar] [CrossRef]
- Bargagli, R.; Monaci, F.; Borghini, F.; Bravi, F.; Agnorelli, C. Mosses and lichens as biomonitors of trace metals. A comparison study on Hypnum cupressiforme and Parmelia caperata in a former mining district in Italy. Environ. Pollut. 2002, 116, 279–287. [Google Scholar] [CrossRef]
- Szczepaniak, K.; Biziuk, M. Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environ. Res. 2003, 93, 221–230. [Google Scholar] [CrossRef]
- Solberg, Y. Studies on the chemistry of lichens, XX. The element concentration of the lichen species Alectoria fremontii and its associated bark substrate of Pinus silvestris. Z. Für Nat. C 1979, 34, 1275–1277. [Google Scholar] [CrossRef]
- Zhang, L.; Planas, D.; Qian, J. Mercury concentrations in black spruce (Picea mariana Mill. B.S.P.) and lichens in boreal Quebec, Canada. Water Air Soil Pollut. 1995, 81, 153–161. [Google Scholar] [CrossRef]
- Trüe, A.; Panichev, N.; Okonkwo, J.; Forbes, P.B.C. Determination of the mercury content of lichens and comparison to atmospheric mercury levels in the South African Highveld region. Clean Air J. 2012, 21, 19–25. [Google Scholar]
- Navrátil, T.; Nováková, T.; Roll, M.; Shanley, J.B.; Kopáček, J.; Rohovec, J.; Kaňa, J.; Cudlín, P. Decreasing litterfall mercury deposition in central European coniferous forests and effects of bark beetle infestation. Sci. Total Environ. 2019, 682, 213–225. [Google Scholar] [CrossRef]
- Rimondi, V.; Chiarantini, L.; Lattanzi, P.; Benvenuti, M.; Beutel, M.W.; Colica, A.; Costagliola, P.; Di Benedetto, F.; Gabbani, G.; Gray, J.E.; et al. Metallogeny, exploitation and environmental impact of the Mt. Amiata mercury ore district (Southern Tuscany, Italy). Ital. J. Geosci. 2015, 134, 75–88. [Google Scholar] [CrossRef]
- Strappa, O. Storia delle miniere di mercurio del Monte Amiata. L’Industria Mineraria XXVIII 1997, 4, 252–259. 5, 336–348; 6, 433–439. (in Italian). [Google Scholar]
- Rimondi, V.; Costagliola, P.; Benesperi, R.; Benvenuti, M.; Beutel, M.W. Black pine (Pinus nigra) bark samples as biomonitors of airborne Hg: Assessment of some sampling parameters toward a standardized sampling protocol. Ecol. Ind. 2020, 112, 106110. [Google Scholar] [CrossRef]
- Nimis, P.L.; Martellos, S. ITALIC—The Information System on Italian Lichens; Version 5.0. 2017; Department of Biology, University of Trieste: Trieste, Italy, 2017; Available online: http://dryades.units.it/italic (accessed on 6 November 2019).
- Bargagli, R.; Iosco, F.P.; Barghigiani, C. Assessment of mercury dispersal in an abandoned mining area by soil and lichen analysis. Water Air Soil Pollut. 1987, 36, 219–225. [Google Scholar] [CrossRef]
- Bargagli, R.; Barghigiani, C.; Siegel, B.Z.; Siegel, S.M. Accumulation of mercury and other metals by the lichen Parmelia sulcata at an Italian mine site and a volcanic area. Water Air Soil Pollut. 1989, 45, 315–327. [Google Scholar] [CrossRef]
- Loppi, S.; Giomarelli, B.; Bargagli, R. Lichens and mosses as biomonitors of trace elements in a geothermal area (Mt. Amiata, central Italy). Cryptogam. Mycol. 1999, 20, 119–126. [Google Scholar] [CrossRef]
- Loppi, S.; Paoli, L.; Gaggi, C. Diversity of epiphytic lichens and Hg contents of Xanthoria parietina thalli as monitors of geothermal air pollution in the Mt. Amiata area (central Italy). J. Atm. Chem. 2006, 53, 93–105. [Google Scholar] [CrossRef]
- Berdonces, M.A.L.; Higueras, P.L.; Fernández-Pascual, M.; Borreguero, A.M.; Carmona, M. The role of native lichens in the biomonitoring of gaseous mercury at contaminated sites. J. Environ. Manag. 2017, 186, 207–213. [Google Scholar] [CrossRef]
- Bargagli, R. Moss and lichen biomonitoring of atmospheric mercury: A review. Sci. Total Environ. 2016, 572, 216–231. [Google Scholar] [CrossRef]
- Chiarantini, L.; Rimondi, V.; Bardelli, F.; Benvenuti, M.; Cosio, C.; Costagliola, P.; Di Benedetto, F.; Lattanzi, P.; Sarret, G. Mercury speciation in Pinus nigra barks from Monte Amiata (Italy): An X-ray absorption spectroscopy study. Environ. Pollut. 2017, 227, 83–88. [Google Scholar] [CrossRef]
- Catinon, M.; Ayrault, S.; Boudouma, O.; Asta, J.; Tissut, M.; Ravanel, P. Atmospheric element deposit on tree barks: The opposite effects of rain and transpiration. Ecol. Indic. 2012, 14, 170–177. [Google Scholar] [CrossRef]
- Hanson, P.J.; Lindberg, S.E.; Tabberer, T.A.; Owens, J.G.; Kim, K.-H. Foliar exchange of mercury vapor: Evidence for a compensation point. Water Air Soil Pollut. 1995, 80, 373–382. [Google Scholar] [CrossRef]
- Hanson, P.J.; Tabberer, T.A.; Lindberg, S.E. Emissions of mercury vapor from tree bark. Atmos. Environ. 1997, 31, 777–780. [Google Scholar] [CrossRef]
- Liu, G.; Cai, Y.; O’Driscoll, N. (Eds.) Overview of mercury in the environment. In Environmental Chemistry and Toxicology of Mercury, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 1–12. [Google Scholar]



| Site | Hg in lichens (ng/g) | Hg in bark 1 (ng/g) | Hg in soil 1 (mg/kg) | Hg in air (ng/m3) 2 | ||
|---|---|---|---|---|---|---|
| Parmelia saxatilis | Xanthoria parietina | Flavoparmelia caperata | Range | |||
| A3 | 480 ± 110 | - | - | 1700 ± 400 | 3.7 ± 0.1 | 1.68–1.84 |
| A19 | - | 1200 ± 280 | - | 15,700 ± 4200 | 66 ± 0.4 | 3.82–4.24 |
| A33 | - | 920 ± 300 | - | 850 ± 280 | 4.1 ± 0.4 | 2.67–3.26 |
| A37 | 180 ± 50 | - | - | 920 ± 330 | 1.1 ± 0.1 | 1.86–2.07 |
| A48 | - | - | 290 ± 50 | 230 ± 110 | 1.5 ± 0.1 | 2.03–3.03 |
| a11 | - | 2000 ± 450 | - | 7500 ± 980 | 480 ± 1 | 9.86–15.7 |
| a13 | 1800 ± 150 | 3600 ± 820 | 3200 ± 430 | 19,500 ± 2700 | 186 ± 1 | 16–17.9 |
| a21 | 1600 ± 300 | - | 1400 ± 230 | 7600 ± 500 | 97 ± 1 | 11.6–17.8 |
| a22 | - | - | 1500 ± 130 | 7300 ± 1300 | 66 ± 3 | 7.48–14.8 |
| a49 | - | 1500 ± 120 | 2400 ± 330 | 10,700 ± 700 | 163 ± 1 | 24.7–116 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rimondi, V.; Benesperi, R.; Beutel, M.W.; Chiarantini, L.; Costagliola, P.; Lattanzi, P.; Medas, D.; Morelli, G. Monitoring of Airborne Mercury: Comparison of Different Techniques in the Monte Amiata District, Southern Tuscany, Italy. Int. J. Environ. Res. Public Health 2020, 17, 2353. https://doi.org/10.3390/ijerph17072353
Rimondi V, Benesperi R, Beutel MW, Chiarantini L, Costagliola P, Lattanzi P, Medas D, Morelli G. Monitoring of Airborne Mercury: Comparison of Different Techniques in the Monte Amiata District, Southern Tuscany, Italy. International Journal of Environmental Research and Public Health. 2020; 17(7):2353. https://doi.org/10.3390/ijerph17072353
Chicago/Turabian StyleRimondi, Valentina, Renato Benesperi, Marc W. Beutel, Laura Chiarantini, Pilario Costagliola, Pierfranco Lattanzi, Daniela Medas, and Guia Morelli. 2020. "Monitoring of Airborne Mercury: Comparison of Different Techniques in the Monte Amiata District, Southern Tuscany, Italy" International Journal of Environmental Research and Public Health 17, no. 7: 2353. https://doi.org/10.3390/ijerph17072353
APA StyleRimondi, V., Benesperi, R., Beutel, M. W., Chiarantini, L., Costagliola, P., Lattanzi, P., Medas, D., & Morelli, G. (2020). Monitoring of Airborne Mercury: Comparison of Different Techniques in the Monte Amiata District, Southern Tuscany, Italy. International Journal of Environmental Research and Public Health, 17(7), 2353. https://doi.org/10.3390/ijerph17072353

