Doctor’s Preference in Providing Medical Service for Patients in the Medical Alliance: A Pilot Discrete Choice Experiment
Abstract
1. Introduction
2. Materials and Methods
2.1. Discrete Choice Experiment
2.2. Setting
2.3. Attributes and Levels
2.4. Experiment Design
2.5. Survey and Data Collection
2.6. Statistical Analysis
ß5* IN 15% +ß6* IN 20% + ß7 * IN 25% + ß8* IN 30% +
ß9* LO Suburb + ß10 * LO Downtown
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Data Availability
References
- Oi, J.C.; Rozelle, S.; Zhou, X. Growing Pains: Tensions and Opportunity in China’s Transformation; Walter, H., Ed.; Shorenstein Asia-Pacific Research Center: Stanford, CA, USA; Baltimore, MD, USA, 2010. [Google Scholar]
- Yip, W.; Fu, H.; Chen, A.T. 10 years of health-care reform in China: Progress and gaps in Universal Health Coverage. Lancet 2019, 394, 1192–1204. [Google Scholar] [CrossRef]
- Yip, W.; Hsiao, W.C. What drove the cycles of Chinese health system reforms? Heal. Syst. Reform 2015, 1, 52–61. [Google Scholar] [CrossRef]
- Cai, Y.; Wen, C.; Tang, L. Exploration and Consideration of the Medical Alliance Modes. Iran J. Public Health 2018, 47, 1160–1165. [Google Scholar] [PubMed]
- Master, R.J. Massachusetts Medicaid and the Community Medical Alliance: A new approach to contracting and care delivery for medicaid-eligible populations with AIDS and severe physical disability. Am. J. Manag. Care 1998, 4, SP90-8. [Google Scholar] [PubMed]
- Granderson, G. The Impacts of Hospital Alliance Membership, Alliance Size, and Repealing Certificate of Need Regulation, on the Cost Efficiency of Non-profit Hospitals. Manag. Decis. Econ. 2011, 32, 159–173. [Google Scholar] [CrossRef]
- Fu, H.; Li, L.; Li, M. An evaluation of systemic reforms of public hospitals: The Sanming model in China. Health Policy Plan 2017, 32, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, X.; Birch, S. People-centred integrated care in urban China/Soins integres axes sur l’etre humain en Chine urbaine/Atencion integrada centrada en las personas en las zonas urbanas de China. (Policy & practice). Bull. World Health Organ 2018, 96, 843. [Google Scholar] [CrossRef]
- Shi, L.; Song, K.; Rane, S. Factors associated with job satisfaction by Chinese primary care providers. Prim Health Care Res Dev. 2014, 15, 46–57. [Google Scholar] [CrossRef]
- The State Council of China. The State of Council’s guidelines on the development of medical alliance. 2017. Available online: http://www.gov.cn/zhengce/content/2017-04/26/content_5189071.htm (accessed on 15 February 2020).
- Lancsar, E.; Louviere, J. Conducting Discrete Choice Experiments to Inform Healthcare Decision Making. Pharmacoeconomics 2008, 26, 661–677. [Google Scholar] [CrossRef]
- Green, C.; Gerard, K. Exploring the social value of health-care interventions: A stated preference discrete choice experiment. Health Econ. 2009, 18, 951–976. [Google Scholar] [CrossRef] [PubMed]
- Arendts, G.; Jan, S.; Beck, M.J.; Howard, K. Preferences for the emergency department or alternatives for older people in aged care: A discrete choice experiment. Age Ageing 2017, 46, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Duane, B.; Mylene, L. A review of the application and contribution of discrete choice experiments to inform human resources policy interventions. Hum. Resour. Health 2009, 7, 62. [Google Scholar] [CrossRef]
- Street, D.J. The Construction of Optimal Stated Choice Experiments: Theory and Methods, 1st ed.; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Zheng, H.; Shao, H.; Zhou, Y. Burnout Among Chinese Adult Reconstructive Surgeons: Incidence, Risk Factors, and Relationship With Intraoperative Irritability. J. Arthroplasty 2018, 33, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- Dolea, C.; Stormont, L.; Braichet, J.-M. Evaluated strategies to increase attraction and retention of health workers in remote and rural areas. Bull. World Health Organ. 2010, 88, 379. [Google Scholar] [CrossRef] [PubMed]
- Reimann, S.; Alfermann, D. Female Doctors in Conflict: How Gendering Processes in German Hospitals Influence Female Physicians’ Careers. Gender Issues 2018, 35, 52–70. [Google Scholar] [CrossRef]
- Mushfiqur, R.; Mordi, C.; Oruh, E.; Nwagbara, U.; Mordi, T.; Turner, I.M. The impacts of work-life-balance (WLB) challenges on social sustainability: The experience of Nigerian female medical doctors. Empl. Relat. 2018, 40, 868–888. [Google Scholar] [CrossRef]
- Mcclelland, L.; Holland, J.; Lomas, J.-P.; Redfern, N.; Plunkett, E. A national survey of the effects of fatigue on trainees in anaesthesia in the UK. Anaesthesia 2017, 72, 1069–1077. [Google Scholar] [CrossRef]
- Quine, S.; Bernard, D.; Booth, M.; Kang, M.; Usherwood, T.; Alperstein, G.; Bennett, D. Health and access issues among Australian adolescents: A rural-urban comparison. Rural Remote Health 2003, 3, 245. [Google Scholar] [CrossRef]
- Yang, M.; Li, L.; Bian, Y. Gender differences in job quality and job satisfaction among doctors in rural western China. BMC Health Serv. Res. 2017, 17. [Google Scholar] [CrossRef]
- Mcgowan, Y.; Humphries, N.; Burke, H.; Conry, M.; Morgan, K. Through doctors’ eyes: A qualitative study of hospital doctor perspectives on their working conditions. Br. J. Health Psychol. 2013, 18, 874–891. [Google Scholar] [CrossRef]
- Ono, T.; Schoenstein, M.; Buchan, J. Geographic Imbalances in Doctor Supply and Policy Responses; OECD Health Working Papers, No. 69; OECD Publishing: Paris, France, 2014. [Google Scholar] [CrossRef]
- Akhigbe, A.O.; Omuemu, V.O. Knowledge, attitudes and practice of breast cancer screening among female health workers in a Nigerian urban city. BMC Cancer 2009, 9, 203. [Google Scholar] [CrossRef] [PubMed]
- Mcgrail, M.R.; Russell, D.J. Australia’s rural medical workforce: Supply from its medical schools against career stage, gender and rural-origin. Aust. J. Rural Health 2017, 25, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.M.; Li, S.; Yang, R.; Liu, T.; Chen, G. Job preferences for medical students in China A discrete choice experiment. Med. 2018, 97. [Google Scholar] [CrossRef]
- Rechel, B.; Džakula, A.; Duran, A.; Fattore, G.; Edwards, N.; Grignon, M.; Ricciardi, W. Hospitals in rural or remote areas: An exploratory review of policies in 8 high-income countries. Health Policy (New York) 2016, 120, 758–769. [Google Scholar] [CrossRef]
- Reed Johnson, F.; Lancsar, E.; Marshall, D.; Kilambi, V.; Mühlbacher, A.; Regier, D.A.; Bridges, J.F. Constructing Experimental Designs for Discrete-Choice Experiments: Report of the ISPOR Conjoint Analysis Experimental Design Good Research Practices Task Force. Value Heal. 2013, 16, 3–13. [Google Scholar] [CrossRef]
- Kleij, K.-S.; Tangermann, U.; Amelung, V.E.; Krauth, C. Patients’ preferences for primary health care—A systematic literature review of discrete choice experiments. (Report). BMC Health Serv. Res. 2017, 17. [Google Scholar] [CrossRef]
- McFadden, D. Conditional logit analysis of qualitative choice behavior. In Frontiers in Economics; Academic Press: New York, NY, USA, 1974; pp. 105–142. [Google Scholar] [CrossRef]
- Hauber, A.B.; Gonzalez, J.; Groothuis-Oudshoorn, C.; Prior, T.; Marshall, D.A.; Cunningham, C.; Bridges, J.F. Statistical Methods for the Analysis of Discrete Choice Experiments: A Report of the ISPOR Conjoint Analysis Good Research Practices Task Force. Value Heal. 2016, 19, 300–315. [Google Scholar] [CrossRef]
- Annual doctor report in China. 2018. Available online: https://file.medtrib.cn/pdf/1bb75dd4-1f21-4784-8f36-18547c9576b1/ (accessed on 15 February 2020).
- Cappuccio, F.P. Optimising rotas, not doctors’ behaviour, will improve safety. BMJ 2018, 361. [Google Scholar] [CrossRef]
- China Hospital Association. The ‘brain drain’ of medical talents in county-level hospitals in China. Available online: http://www.cha.org.cn/plus/view.php?aid=10261 (accessed on 15 February 2020).
- Hoyal, F.M.D. Retensions of rural doctors. Aust. J. Rural Health 1995, 3, 2–9. [Google Scholar] [CrossRef]
- Rémuzat, C.; Toumi, M. Health care system inefficiencies related to medicines: Any potential room for improvement? Value Heal. 2016, 19, A497. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed17&NEWS=N&AN=613234755 (accessed on 15 February 2020).
- Soekhai, V.; Bekker-Grob, E.; Ellis, A.; Vass, C.M. Discrete Choice Experiments in Health Economics: Past, Present and Future. Pharmacoeconomics 2019, 37, 201–226. [Google Scholar] [CrossRef] [PubMed]
Attribute | Level |
---|---|
Increment in working time per week |
|
Increment in the income per month |
|
Location of working hospital |
|
Plan A* | Plan B | |
---|---|---|
Increment in working time per week | 5 h more | 2 h more |
Increment in the income per month | 30% more | 15% more |
The location of working hospital | suburb | downtown |
WHICH PLAN YOU PREFER | □ | □ |
n = 311 | % = 100 | Questionnaire | ||||
---|---|---|---|---|---|---|
Ver1 | Ver2 | χ2/F-Value | p-Value | |||
Sex | ||||||
Male | 190 | 61.09 | 83 | 107 | 1.04 | 0.309 |
Female | 121 | 38.91 | 60 | 61 | ||
Educational level | ||||||
Bachelor | 149 | 48.38 | 71 | 78 | 5.98 | 0.051 |
Master | 105 | 34.09 | 54 | 51 | ||
Ph.D | 54 | 17.53 | 17 | 37 | ||
Medical career grades | ||||||
Resident | 90 | 28.94 | 48 | 42 | 6.26 | 0.1 |
Resident specialist | 105 | 33.76 | 52 | 53 | ||
Associate consultant | 80 | 25.72 | 29 | 51 | ||
Consultant | 36 | 11.58 | 14 | 22 | ||
Ward’s leader | ||||||
Yes | 132 | 43.28 | 53 | 79 | 3.09 | 0.08 |
No | 173 | 56.72 | 87 | 86 | ||
Income | ||||||
Lower than average | 148 | 47.59 | 72 | 76 | 0.85 | 0.65 |
Equal to average | 139 | 44.69 | 61 | 78 | ||
Higher than average | 24 | 7.72 | 10 | 14 | ||
Age (mean, sd) | 38.86 | 8.83 | 36.03 | 37.57 | 2.35 | 0.126 |
Working years (mean, sd) | 11.91 | 8.82 | 11.34 | 12.37 | 0.96 | 0.328 |
Attribute Levels | Beta | Std. Err. | OR | 95% C.I. | p-Value |
---|---|---|---|---|---|
Constant (ß0) | −0.27 | 0.04 | <0.001 | ||
Working time | |||||
4 h (ß1) | 0.46 | 0.09 | 1.58 | 1.32, 1.88 | <0.001 |
3 h (ß2) | 0.70 | 0.08 | 2.02 | 1.72, 2.39 | <0.001 |
2 h (ß3) | 1.01 | 0.09 | 2.75 | 2.23, 3.32 | <0.001 |
1 h (ß4) | 1.40 | 0.09 | 4.07 | 3.42, 4.85 | <0.001 |
Monthly income increment | |||||
15% (ß5) | 0.29 | 0.07 | 1.33 | 1.16, 1.54 | <0.001 |
20% (ß6) | 0.80 | 0.08 | 2.29 | 1.9, 2.64 | <0.001 |
25% (ß7) | 0.89 | 0.07 | 2.44 | 2.1, 2.83 | <0.001 |
30% (ß8) | 1.19 | 0.11 | 3.30 | 2.64, 4.14 | <0.001 |
Working place | |||||
Suburb (ß9) | 0.31 | 0.08 | 1.36 | 1.16, 1.58 | <0.001 |
Downtown (ß10) | 0.75 | 0.09 | 2.11 | 1.73, 2.56 | <0.001 |
Scenario Description (Attributes/Levels) | ||||||
---|---|---|---|---|---|---|
Ranked by Probability | Time Increment | Income Increment | Working Place | Utility | Probability (%) | Cumulative Probability (%) |
1 | 1 h | 30% | Downtown | 3.07 | 5.37 | 5.37 |
2 | 1 h | 25% | Downtown | 2.77 | 3.98 | 9.35 |
3 | 1 h | 20% | Downtown | 2.68 | 3.64 | 12.99 |
4 | 2 h | 30% | Downtown | 2.68 | 3.64 | 16.63 |
5 | 1 h | 30% | Suburb | 2.63 | 3.46 | 20.09 |
6 | 2 h | 25% | Downtown | 2.38 | 2.69 | 22.78 |
7 | 3 h | 30% | Downtown | 2.37 | 2.67 | 25.45 |
8 | 1 h | 25% | Suburb | 2.33 | 2.56 | 28.02 |
9 | 1 h | 30% | County | 2.32 | 2.54 | 30.55 |
10 | 2 h | 20% | Downtown | 2.29 | 2.46 | 33.02 |
66 | 5 h | 20% | County | 0.53 | 0.42 | 97.05 |
67 | 4 h | 10% | Suburb | 0.5 | 0.41 | 97.46 |
68 | 4 h | 15% | County | 0.48 | 0.4 | 97.86 |
69 | 5 h | 10% | Downtown | 0.48 | 0.4 | 98.26 |
70 | 3 h | 10% | County | 0.43 | 0.38 | 98.65 |
71 | 5 h | 15% | Suburb | 0.33 | 0.35 | 98.99 |
72 | 4 h | 10% | County | 0.19 | 0.3 | 99.30 |
73 | 5 h | 10% | Suburb | 0.04 | 0.26 | 99.56 |
74 | 5 h | 15% | County | 0.02 | 0.25 | 99.81 |
75 | 5 h | 10% | County | -0.27 | 0.19 | 100.00 |
Attribute Levels | Beta | Std. Err. | OR | 95%C.I. | p-Value |
---|---|---|---|---|---|
Male | |||||
Constant (ß0) | −0.28 | 0.06 | <0.001 | ||
Working time | |||||
4 h (ß1) | 0.27 | 0.11 | 1.31 | 1.05, 1.65 | 0.017 |
3 h (ß2) | 0.46 | 0.11 | 1.59 | 1.3, 1.95 | <0.001 |
2 h (ß3) | 0.74 | 0.12 | 2.11 | 1.67, 2.66 | <0.001 |
1 h (ß4) | 1.13 | 0.11 | 3.10 | 2.48, 3.86 | <0.001 |
Monthly income increment | |||||
15% (ß5) | 0.29 | 0.09 | 1.28 | 1.07, 1.54 | <0.001 |
20% (ß6) | 0.77 | 0.11 | 2.15 | 1.75, 2.66 | <0.001 |
25% (ß7) | 0.91 | 0.09 | 2.49 | 2.05, 3.03 | <0.001 |
30% (ß8) | 1.16 | 0.15 | 3.19 | 2.41, 4.26 | <0.001 |
Working place | |||||
Suburb (ß9) | 0.15 | 0.09 | 1.16 | 0.96, 1.42 | 0.124 |
Downtown (ß10) | 0.43 | 0.12 | 1.53 | 1.21, 1.95 | <0.001 |
Female | |||||
Constant (ß0) | −0.27 | 0.07 | <0.001 | ||
Working time | |||||
4 h (ß1) | 0.76 | 0.15 | 2.13 | 1.6, 2.83 | <0.001 |
3 h (ß2) | 1.10 | 0.16 | 3.02 | 2.32, 3.94 | <0.001 |
2 h (ß3) | 1.48 | 0.14 | 4.37 | 3.22, 5.93 | <0.001 |
1 h (ß4) | 1.89 | 0.15 | 6.63 | 4.9, 8.94 | <0.001 |
Monthly income increment | |||||
15% (ß5) | 0.35 | 0.12 | 1.42 | 1.13, 1.79 | 0.003 |
20% (ß6) | 0.89 | 0.14 | 2.43 | 1.84, 3.22 | <0.001 |
25% (ß7) | 0.90 | 0.13 | 2.47 | 1.93, 3.16 | <0.001 |
30% (ß8) | 1.30 | 0.19 | 3.67 | 2.53, 5.31 | <0.001 |
Working place | |||||
Suburb (ß9) | 0.61 | 0.14 | 1.84 | 1.4, 2.41 | <0.001 |
Downtown (ß10) | 1.33 | 0.17 | 3.78 | 2.69, 5.26 | <0.001 |
Attribute Levels | Beta | Std. Err. | OR | 95% C.I. | p-Value |
---|---|---|---|---|---|
Junior staff | |||||
Constant (ß0) | −0.24 | 0.05 | <0.001 | ||
Working time | |||||
4 h (ß1) | 0.54 | 0.11 | 1.72 | 1.38, 2.16 | <0.001 |
3 h (ß2) | 0.86 | 0.10 | 2.21 | 1.8, 2.69 | <0.001 |
2 h (ß3) | 1.02 | 0.12 | 2.76 | 2.2, 3.49 | <0.001 |
1 h (ß4) | 1.35 | 0.11 | 3.87 | 3.1, 4.81 | <0.001 |
Monthly income increment | |||||
15% (ß5) | 0.25 | 0.09 | 1.28 | 1.08, 1.52 | 0.005 |
20% (ß6) | 0.73 | 0.11 | 2.08 | 1.68, 2.59 | <0.001 |
25% (ß7) | 0.86 | 0.09 | 2.35 | 1.95, 2.83 | <0.001 |
30% (ß8) | 1.09 | 0.14 | 2.98 | 2.25, 3.97 | <0.001 |
Working place | |||||
Suburb (ß9) | 0.21 | 0.10 | 1.24 | 1.01, 1.51 | 0.036 |
Downtown (ß10) | 0.72 | 0.12 | 2.05 | 1.6, 2.64 | 0.001 |
Senior staff | |||||
Constant (ß0) | −0.29 | 0.07 | <0.001 | ||
Working time | |||||
4 h (ß1) | 0.33 | 0.15 | 1.39 | 1.03, 1.86 | 0.032 |
3 h (ß2) | 0.57 | 0.14 | 1.76 | 1.34, 2.34 | <0.001 |
2 h (ß3) | 1.02 | 0.16 | 2.78 | 2.03, 3.82 | <0.001 |
1 h (ß4) | 1.49 | 0.15 | 4.46 | 3.32, 5.99 | <0.001 |
Monthly income increment | |||||
15% (ß5) | 0.34 | 0.12 | 1.41 | 1.11, 1.79 | 0.005 |
20% (ß6) | 0.93 | 0.14 | 2.54 | 1.93, 3.35 | <0.001 |
25% (ß7) | 0.97 | 0.13 | 2.63 | 2.03, 3.42 | <0.001 |
30% (ß8) | 1.39 | 0.29 | 4.04 | 2.77, 5.87 | <0.001 |
Working place | |||||
Suburb (ß9) | 0.47 | 0.13 | 1.60 | 1.25, 2.05 | <0.001 |
Downtown (ß10) | 0.79 | 0.16 | 2.22 | 1.63, 3 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.H.; Zhou, L.; Li, Y.; Wang, D. Doctor’s Preference in Providing Medical Service for Patients in the Medical Alliance: A Pilot Discrete Choice Experiment. Int. J. Environ. Res. Public Health 2020, 17, 2215. https://doi.org/10.3390/ijerph17072215
Xu RH, Zhou L, Li Y, Wang D. Doctor’s Preference in Providing Medical Service for Patients in the Medical Alliance: A Pilot Discrete Choice Experiment. International Journal of Environmental Research and Public Health. 2020; 17(7):2215. https://doi.org/10.3390/ijerph17072215
Chicago/Turabian StyleXu, Richard Huan, Lingming Zhou, Yong Li, and Dong Wang. 2020. "Doctor’s Preference in Providing Medical Service for Patients in the Medical Alliance: A Pilot Discrete Choice Experiment" International Journal of Environmental Research and Public Health 17, no. 7: 2215. https://doi.org/10.3390/ijerph17072215
APA StyleXu, R. H., Zhou, L., Li, Y., & Wang, D. (2020). Doctor’s Preference in Providing Medical Service for Patients in the Medical Alliance: A Pilot Discrete Choice Experiment. International Journal of Environmental Research and Public Health, 17(7), 2215. https://doi.org/10.3390/ijerph17072215