Determinants of Physical Activity and Screen Time Trajectories in 7th to 9th Grade Adolescents—A Longitudinal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Variable Definitions
2.3.1. Moderate-to-Vigorous Physical Activity
2.3.2. Screen Time Behaviour
2.3.3. Sex, Age, and Anthropometric Data
2.3.4. Migration Background
2.3.5. School Type
2.3.6. Socioeconomic Status
2.3.7. Parental Work Status
2.3.8. Outcomes
2.3.9. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. PA and ST Changes
3.3. PA and ST Trajectories
3.4. Factors Associated with PA and ST Trajectories
4. Discussion
4.1. Main Study Findings and Implications
4.2. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saunders, T.J.; Vallance, J.K. Screen Time and Health Indicators Among Children and Youth: Current Evidence, Limitations and Future Directions. Appl. Health Econ. Health Policy 2017, 15, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Hoare, E.; Milton, K.; Foster, C.; Allender, S. The associations between sedentary behaviour and mental health among adolescents: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braig, S.; Genuneit, J.; Walter, V.; Brandt, S.; Wabitsch, M.; Goldbeck, L.; Brenner, H.; Rothenbacher, D. Screen Time, Physical Activity and Self-Esteem in Children: The Ulm Birth Cohort Study. Int. J. Environ. Res. Public Health 2018, 15, 1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fletcher, E.; Leech, R.; Mcnaughton, S.A.; Dunstan, D.W.; Lacy, K.E.; Salmon, J. Is the relationship between sedentary behaviour and cardiometabolic health in adolescents independent of dietary intake? A systematic review. Obes. Rev. 2015, 16, 795–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristi-Montero, C.; Chillon, P.; Labayen, I.; Casaju, J.A.; Gonzalez-Gross, M.; Vanhelst, J.; Manios, Y.; Moreno, L.A.; Ortega, F.B.; Ruiz, J.R. Cardiometabolic risk through an integrative classification combining physical activity and sedentary behavior in European adolescents: HELENA study er. J. Sport Health Sci. 2019, 8, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Grøntved, A.; Ried-larsen, M.; Møller, N.C.; Kristensen, P.L.; Wedderkopp, N.; Froberg, K.; Hu, F.B.; Ekelund, U.; Andersen, L.B. Youth screen-time behaviour is associated with cardiovascular risk in young adulthood: The European Youth Heart Study. Prev. Cardiol. 2014, 21, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Busschaert, C.; Cardon, G.; Van Cauwenberg, J.; Maes, L.; Van Damme, J.; Hublet, A.; De Bourdeaudhuij, I.; De Cocker, K. Tracking and Predictors of Screen Time From Early Adolescence to Early Adulthood: A 10-Year Follow-up Study. J. Adolesc. Health 2015, 56, 440–448. [Google Scholar] [CrossRef]
- Ortega, F.B.; Konstabel, K.; Pasquali, E.; Ruiz, J.R.; Hurtig-Wennlöf, A.; Mäestu, J.; Löf, M.; Harro, J.; Bellocco, R.; Labayen, I.; et al. Objectively Measured Physical Activity and Sedentary Time during Childhood, Adolescence and Young Adulthood: A Cohort Study. PLoS ONE 2013, 8, e60871. [Google Scholar] [CrossRef] [Green Version]
- American Academy of Pediatrics. American Academy of Pediatrics: Children, Adolescents, and Television. Pediatrics 2001, 107, 423–426. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Recommendations on Physical Activity; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Australian Government Department of Health. Australian 24-Hour Movement Guidelines for Children and Young People (5 to 17 Years); Australian Government Department of Health: Canberra, Australia, 2019. [Google Scholar]
- Canadian Society for Exercise Physiology. Canadian 24-Hour Movement Guidelines for Children and Youth 5–17 Years; Canadian Society for Exercise Physiology: Ottawa, ON, Canada, 2018. [Google Scholar]
- Manz, K.; Schlack, R.; Poethko-Müller, C.; Mensink, G.; Finger, J.; Lampert, T. Physical activity and electronic media use in children and adolescents: Results of the KiGGS study: First follow-up (KiGGS wave 1). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2014, 57, 840–848. [Google Scholar] [CrossRef] [Green Version]
- Bucksch, J.; Sigmundova, D.; Hamrik, Z.; Troped, P.J.; Melkevik, O.; Ahluwalia, N.; Borraccino, A.; Tynjälä, J.; Kalman, M.; Inchley, J. International Trends in Adolescent Screen-Time Behaviors From 2002 to 2010. J. Adolesc. Health 2016, 58, 417–425. [Google Scholar] [CrossRef]
- Elgar, F.J.; Pförtner, T.K.; Moor, I.; De Clercq, B.; Stevens, G.W.J.M.; Currie, C. Socioeconomic inequalities in adolescent health 2002−2010: A time-series analysis of 34 countries participating in the Health Behaviour in School-aged Children study. Lancet 2015, 385, 2088–2095. [Google Scholar] [CrossRef] [Green Version]
- Jongenelis, M.I.; Scully, M.; Morley, B.; Pratt, I.S.; Slevin, T. Physical activity and screen-based recreation: Prevalences and trends over time among adolescents and barriers to recommended engagement. Prev. Med. 2018, 106, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Kalman, M.; Inchley, J.; Sigmundova, D.; Iannotti, R.J.; Tynjä Lä, J.A.; Hamrik, Z.; Haug, E.; Bucksch, J. Secular trends in moderate-to-vigorous physical activity in 32 countries from 2002 to 2010: A cross-national perspective. Eur. J. Public Health 2015, 25, 37–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumith, S.C.; Gigante, D.P.; Domingues, M.R.; Kohl, H.W. Physical activity change during adolescence: A systematic review and a pooled analysis. Int. J. Epidemiol. 2011, 40, 685–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, A.R.; Goodman, A.; Page, A.S.; Sherar, L.B.; Esliger, D.W.; van Sluijs, E.M.F.; Andersen, L.B.; Anderssen, S.; Cardon, G.; Davey, R.; et al. Objectively measured physical activity and sedentary time in youth: The International children’s accelerometry database (ICAD). Int. J. Behav. Nutr. Phys. Act. 2015, 12, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefan, L.; Devrnja, A.; Petric, V.; Misigoj-Durakovic, M. One-year changes in physical activity and sedentary behavior among adolescents: The Croatian Physical Activity in Adolescence Longitudinal Study (CRO-PALS). J. Adolesc. Med. Health 2018. [Google Scholar] [CrossRef]
- Corder, K.; Winpenny, E.; Love, R.; Brown, H.E.; White, M.; Sluijs, E. Van Change in physical activity from adolescence to early adulthood: A systematic review and meta-analysis of longitudinal cohort studies. Br. J. Sports Med. 2017. [Google Scholar] [CrossRef]
- Schwarzfischer, P.; Gruszfeld, D.; Socha, P.; Luque, V.; Closa-Monasterolo, R.; Rousseaux, D.; Moretti, M.; Mariani, B.; Verduci, E.; Koletzko, B.; et al. Longitudinal analysis of physical activity, sedentary behaviour and anthropometric measures from ages 6 to 11 years. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 126. [Google Scholar] [CrossRef]
- Iguacel, I.; Fernandez-Alvira, J.M.; Bammann, K.; Chadjigerorgiou, C.; De Henauw, S.; Heidinger-Felsö, R.; Lissner, L.; Michels, N.; Page, A.; Reisch, L.A.; et al. Social vulnerability as a predictor of physical activity and screen time in European children. Int. J. Public Health 2018, 63, 283–295. [Google Scholar] [CrossRef] [Green Version]
- Corder, K.; van Sluijs, E.M.F.; Ekelund, U.; Jones, A.P.; Griffin, S.J. Changes in Children’s Physical Activity Over 12 Months: Longitudinal Results From the SPEEDY Study. Pediatrics 2010, 126, e926–e935. [Google Scholar] [CrossRef]
- Czerwinski, F.; Finne, E.; Kolip, P.; Bucksch, J.; Group, S. Individual and school level correlates of moderate to vigorous physical activity among school-children in Germany—A multi-level analysis. BMC Public Health 2015, 15, 393. [Google Scholar] [CrossRef] [Green Version]
- Lange, D.; Plachta-Danielzik, S.; Landsberg, B.; Müller, M.J. Soziale Ungleichheit, Migrationshintergrund, Lebenswelten und Übergewicht bei Kindern und Jugendlichen. Bundesgesundheitsblatt 2010, 53, 707–715. [Google Scholar] [CrossRef]
- Poulain, T.; Peschel, T.; Vogel, M.; Jurkutat, A.; Kiess, W. Cross-sectional and longitudinal associations of screen time and physical activity with school performance at different types of secondary school. BMC Public Health 2018, 18, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krist, L.; Bürger, C.; Ströbele-benschop, N.; Roll, S.; Lotz, F.; Rieckmann, N.; Müller-nordhorn, J.; Willich, S.N. Association of individual and neighbourhood socioeconomic status with physical activity and screen time in seventh-grade boys and girls in Berlin, Germany: A cross-sectional study. BMJ Open 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lounassalo, I.; Salin, K.; Kankaanpaä, A.; Hirvensalo, M.; Palomäki, S.; Tolvanen, A.; Yang, X.; Tammelin, T.H. Distinct trajectories of physical activity and related factors during the life course in the general population: A systematic review. BMC Public Health 2019, 19, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zook, K.R.; Saksvig, B.I.; Wu, T.T.; Young, D.R. Physical Activity Trajectories and Multilevel Factors Among Adolescent Girls. J. Adolesc. Health 2014, 54, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Rangul, V.; Holmen, T.L.; Bauman, A.; Bratberg, G.H.; Kurtze, N.; Midthjell, K. Factors predicting changes in physical activity through adolescence: The young-HUNT study, Norway. J. Adolesc. Health 2011, 48, 616–624. [Google Scholar] [CrossRef]
- Krist, L.; Lotz, F.; Bürger, C.; Ströbele-Benschop, N.; Roll, S.; Rieckmann, N.; M??ller-Nordhorn, J.; Willich, S.N.; Müller-Riemenschneider, F. Long-term effectiveness of a combined student-parent and a student-only smoking prevention intervention among 7th grade school children in Berlin, Germany. Addiction 2016, 111, 2219–2229. [Google Scholar] [CrossRef]
- Müller-Riemenschneider, F.; Krist, L.; Bürger, C.; Ströbele-Benschop, N.; Roll, S.; Rieckmann, N.; Müller-Nordhorn, J.; Willich, S.N. Berlin evaluates school tobacco prevention - BEST prevention: Study design and methodology. BMC Public Health 2014, 14, 871. [Google Scholar] [CrossRef] [Green Version]
- Roberts, C.; Freeman, J.; Samdal, O.; Schnohr, C.W.; de Looze, M.E.; Nic Gabhainn, S.; Iannotti, R.; Rasmussen, M. The Health Behaviour in School-aged Children (HBSC) study: Methodological developments and current tensions. Int. J. Public Health 2009, 54, 140–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Booth, M.L.; Okely, A.D.; Chey, T.; Bauman, A. The reliability and validity of the physical activity questions in the WHO health behaviour in schoolchildren (HBSC) survey: A population study. Br. J. Sports Med. 2001, 35, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, M.; Tynjälä, J.; Lv, Y.; Villberg, J.; Zhang, Z.; Kannas, L. Test-retest reliability of selected items of health behaviour in school-aged children (HBSC) survey questionnaire in Beijing, China. BMC Med. Res. Methodol. 2010, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Cole, T.J.; Flegal, K.M.; Nicholls, D.; Jackson, A.A. Body mass index cut offs to define thinness in children and adolescents: International survey. BMJ 2007, 335, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bundesministerium der Justiz. Verordnung zur Erhebung der Merkmale des Migrationshintergrundes (Migrationshintergrund- Erhebungsverordnung—MighEV) [Regulation for the Assessment of Migration Status]; Bundesministerium der Justiz: Berlin, Germany, 2010. [Google Scholar]
- Institut für Schulqualität der Länder Berlin und Brandenburg. Bildung in Berlin und Brandenburg 2010; Autorengruppe Regionale Bildungsberichterstattung Berlin-Brandenburg: Berlin, Germany, 2010. [Google Scholar]
- Senatsverwaltung für Bildung Jugend und Wissenschaft. Berliner Schulwegweiser; SenBJW: Berlin, Germany, 2018. [Google Scholar]
- Unfallkasse Berlin und Senatsverwaltung für Bildung Wissenschaft und Forschung. Keine Angst im Schulsport; Unfallkasse Berlin und Senatsverwaltung für Bildung Wissenschaft und Forschung: Berlin, Germany, 2007. [Google Scholar]
- Landesinstitut für Schule und Medien (LISUM) Berlin. Rahmenlehrpläne Kompakt. Themen und Inhalte des Berliner Unterrichts in der Grundschule; SenBJW: Berlin, Germany, 2012. [Google Scholar]
- Currie, C.; Gabhainn, A.; Godeau, E.; Roberts, C.; Smith, R.; Currie, D.; Picket, W.; Richter, M.; Morgan, A.; Barnekow, V. Health Policy for Children and Adolescents, No. 5—Inequalities in Young People’s Health; The WHO Regional Office for Europe: Copenhagen, Denmark, 2006. [Google Scholar]
- Harding, S.K.; Page, A.S.; Falconer, C.; Cooper, A.R. Longitudinal changes in sedentary time and physical activity during adolescence. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, J.A.; Pate, R.R.; Dowda, M.; Mattocks, C.; Riddoch, C.; Ness, A.R.; Blair, S.N. A Prospective Study of Sedentary Behavior in a Large Cohort of Youth. Med. Sci. Sports Exerc. 2012, 44, 1081–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalene, K.E.; Anderssen, S.A.; Andersen, L.B.; Steene-Hohannessen, J.; Ekelund, U.; Hansen, B.H.; Kolle, E. Secular and Longitudinal Physical Activity Changes in Population-BAsed Samples of Children and Adolescents. Scand. J. Med. Sci. Sports 2017, 28, 161–171. [Google Scholar] [CrossRef]
- Reilly, J.J. When does it all go wrong? Longitudinal studies of changes in moderate-to-vigorous-intensity physical activity across childhood and adolescence. J. Exerc. Sci. Fit. 2016, 14, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Langlois, K.A.; Birkett, N.; Garner, R.; O’Loughlin, J. Trajectories of Physical Activity in Montreal Adolescents from Age 12 to 17 Years. J. Phys. Act. Health 2016, 9, 1146–1154. [Google Scholar] [CrossRef]
- Senatsverwaltung für Gesundheit Umwelt und Verbraucherschutz. Grundauswertung der Einschulungsdaten in Berlin 2010; SenGesUmV: Berlin, Germany, 2010. [Google Scholar]
- Kwon, S.; Lee, J.; Carnethon, M.R. Developmental trajectories of physical activity and television viewing during adolescence among girls: National Growth and Health Cohort Study. BMC Public Health 2015, 15, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pate, R.R.; Schenkelberg, M.A.; Dowda, M.; McIver, K.L. Group-based physical activity trajectories in children transitioning from elementary to high school. BMC Public Health 2019, 19, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freudenthaler, H.H.; Spinath, B.; Neubauer, A.C. Predicting School Achievement in Boys and Girls. Eur. J. Pers. 2008, 22, 231–245. [Google Scholar] [CrossRef]
- Dany, L.; Moreau, L.; Guillet, C.; Franchina, C. Video Games, Internet and Social Networks: A Study among French School students TT—Pratiques des jeux vidéo, d’internet et des réseaux sociaux chez des collégiens français. Sante Publique 2016, 28, 569–579. [Google Scholar] [CrossRef]
- Willoughby, T. A Short-Term Longitudinal Study of Internet and Computer Game Use by Adolescent Boys and Girls: Prevalence, Frequency of Use, and Psychosocial Predictors. Dev. Psychol. 2008, 44, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Straatmann, V.S.; Oliveira, A.J.; Rostila, M.; Lopes, C.S. Changes in physical activity and screen time related to psychological well-being in early adolescence: Findings from longitudinal study ELANA. BMC Public Health 2016, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Määttä, S.; Kaukonen, R.; Vepsäläinen, H.; Lehto, E.; Ylönen, A.; Ray, C.; Erkkola, M.; Roos, E. The mediating role of the home environment in relation to parental educational level and preschool children’s screen time: A cross-sectional study. BMC Public Health 2017, 17, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lizandra, J.; Devís-Devís, J.; Valencia-Peris, A.; Tomás, J.M.; Peiró-Velert, C. Screen time and moderate-to-vigorous physical activity changes and displacement in adolescence: A prospective cohort study. Eur. J. Sport Sci. 2019, 19, 686–695. [Google Scholar] [CrossRef]
- Borde, R.; Smith, J.J.; Sutherland, R.; Nathan, N.; Lubans, D.R. Methodological considerations and impact of school-based interventions on objectively measured physical activity in adolescents: A systematic review and meta-analysis. Obes. Rev. 2017, 18, 476–490. [Google Scholar] [CrossRef]
- Hanewinkel, R. ‘Be smart—Don’t start’. Ergebnisse des nichtraucherwettbewerbs in Deutschland 1997–2007. Gesundheitswesen 2007, 69, 38–44. [Google Scholar] [CrossRef]
- Vik, F.N.; Lien, N.; Berntsen, S.; De Bourdeaudhuij, I.; Grillenberger, M.; Manios, Y.; Kovacs, E.; Chinapaw, M.J.M.; Brug, J.; Bere, E. Evaluation of the UP4FUN intervention: A cluster randomized trial to reduce and break up sitting time in European 10–12-year-old children. PLoS ONE 2015, 10, e0122612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobel, S.; Wirt, T.; Schreiber, A.; Kesztyüs, F.; Kettner, S.; Erkelenz, N.; Wartha, O.; Lämmle, C.; Dreyhaupt, J.; Steinacker, J.M. Intervention Effects of a School-Based Health Promotion Programme on Obesity Related Behavioural Outcomes. J. Obes. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Demetriou, Y.; Bachner, J. A school-based intervention based on self-determination theory to promote girls’ physical activity: Study protocol of the CReActivity cluster randomised controlled trial. BMC Public Health 2019, 19, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Prohl, R.; Breuer, C.; Rittner, V.; Brettschneider, W.-D.; Heim, W.S.; Gesamtleitung, H.A.; Brettschneider, W. Die SPRINT-Studie Eine Untersuchung zur Situation des Schulsports in Deutschland; University Paderborn: Paderborn, Germany, 2006. [Google Scholar]
- Ottova, V.; Hillebrandt, D.; Kolip, P.; Hoffarth, K.; Bucksch, J.; Melzer, W.; Klocke, A.; Richter, M.; Ravens-Sieberer, U. The HBSC Study in Germany—Study Design and Methodology. Gesundheitswesen 2012, 74, S8–S14. [Google Scholar]
Trajectory | Baseline | 24-Month Follow-Up | Trajectory |
---|---|---|---|
Moderate-to-vigorous physical activity (PA) (h per week) | |||
Consistently high | ≥5 | ≥5 | Positive PA trajectory |
Increasing | <5 | ≥5 1 | |
Decreasing | ≥5 | <5 1 | Negative PA trajectory |
Consistently low | <5 | <5 | |
Screen time (ST) (h per week) | |||
Consistently low | ≤14 | ≤14 | Positive ST trajectory |
Decreasing | >14 | ≤14 2 | |
Increasing | ≤14 | >14 2 | Negative ST trajectory |
Consistently high | >14 | >14 |
Boys | Girls | Total | |
---|---|---|---|
N (%) or Mean ± Standard Deviation (SD) | |||
Students | |||
Number | 1057 (49.8) | 1065 (50.2) | 2122 |
Age (years) | 12.6 ± 0.7 | 12.5 ± 0.6 | 12.5 ± 0.7 |
Anthropometric data (N = 1895) | |||
BMI 1 (kg/m2) | 19.0 ± 3.1 | 18.3 ± 2.8 | 18.7 ± 3.0 |
Underweight (BMI < 10th percentile) 2 | 104 (11.0) | 186 (19.6) | 290 (15.3) |
Normal weight (BMI 10th–<90th) percentile) 2 | 686 (72.5) | 677 (71.3) | 1363 (71.9) |
Overweight (BMI 90th–<97th percentile) 2 | 136 (14.4) | 79 (8.3) | 215 (11.3) |
Obesity (BMI ≥ 97th percentile) 2 | 20 (2.1) | 7 (0.7) | 27 (1.4) |
Migration background (N = 1984) | |||
no | 657 (66.2) | 649 (65.4) | 1306 (65.8) |
yes | 335 (33.8) | 343 (34.6) | 678 (34.2) |
School type | |||
High school 3 students | 417 (39.5) | 502 (47.1) | 919 (43.3) |
Integrated secondary school 4 students | 640 (60.5) | 563 (52.9) | 1203 (56.7) |
Socioeconomic status (SES) | |||
Family affluence scale (FAS) (N = 1781) | 5.3 ± 1.4 | 5.1 ± 1.4 | 5.2 ± 1.4 |
high (FAS 6–7) | 471 (53.2) | 404 (45.1) | 875 (49.1) |
moderate (FAS 4–5) | 311 (35.1) | 374 (41.7) | 685 (38.5) |
low (FAS 0–3) | 103 (11.6) | 118 (13.2) | 221 (12.4) |
Parent’s working status (N = 1994) | |||
Both parents work | 678 (68.3) | 666 (66.5) | 1344 (67.4) |
One parent works | 284 (28.6) | 302 (30.1) | 586 (29.4) |
No parent works | 30 (3.1) | 34 (3.4) | 64 (3.2) |
Boys | Girls | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
N 1 | Baseline | 24-month Follow-Up | N 1 | Baseline | 24-month Follow-Up | N 1 | Baseline | 24-month Follow-Up | |
Physical activity | (mean ± SD or %) | (mean ± SD or %) | (mean ± SD or %) | ||||||
PA at least 60 min/day 2 | 854 | 16.5 | 12.8 | 837 | 10.0 | 6.1 | 1735 | 13.2 | 9.4 |
PA frequency | 859 | 869 | 1728 | ||||||
About every day | 25.0 | 21.9 | 17.8 | 10.1 | 21.4 | 16.0 | |||
About 3−5/week | 45.8 | 42.8 | 36.6 | 31.5 | 41.1 | 37.2 | |||
About 1−2/week | 23.9 | 27.0 | 36.5 | 42.3 | 30.2 | 34.7 | |||
About 1−2/month | 3.6 | 5.6 | 6.4 | 11.2 | 5.0 | 8.4 | |||
Never | 1.7 | 2.7 | 2.6 | 4.8 | 2.2 | 3.8 | |||
PA duration Hours per week | 742 | 768 | 1510 | ||||||
6.3 ± 5.9 | 6.4 ± 5.6 | 4.6 ± 4.3 | 4.5 ± 5.0 | 5.4 ± 5.2 | 5.4 ± 5.4 | ||||
Difference between baseline and 24-month follow-up | 0.03 ± 7.4 | –0.06 ± 5.2 | 0.015 ± 6.4 | ||||||
Screen time | (mean ± SD or %) | (mean ± SD or %) | (mean ± SD or %) | ||||||
ST ≤ 2 h/day 3 | 853 | 17.8 | 12.0 | 877 | 31.9 | 26.6 | 1730 | 25.0 | 19.4 |
TV (hours/week) | 873 | 17.7 ± 12.3 | 17.5 ± 12.1 | 887 | 15.8 ± 11.7 | 16.6 ± 11.3 | 1760 | 16.8 ± 12.0 | 17.0 ± 11.7 |
Computer (hours/week) | 862 | 14.8 ± 12.3 | 18.8 ± 12.9 | 887 | 10.5 ± 11.9 | 10.9 ± 13.6 | 1749 | 12.6 ± 12.3 | 14.8 ± 13.9 |
Total screen time Hours/week | 853 | 877 | 1730 | ||||||
31.9 ± 19.5 | 35.6 ± 18.7 | 25.9 ± 19.0 | 27.1 ± 19.1 | 28.9 ± 19.5 | 31.3 ± 19.4 | ||||
Difference between baseline and 24-month follow-up | 3.7 ± 19.8 | 1.2 ± 19.2 | 2.4 ± 19.5 |
PA Trajectories 1 (N = 1510) | ST Trajectories 1 (N = 1730) | |||
---|---|---|---|---|
Positive | Negative | Positive | Negative | |
Baseline Variables | % | |||
Students | 44.1 | 55.9 | 20.5 | 79.5 |
Sex | ||||
Boys | 62.9 | 38.3 | 29.9 | 54.3 |
Girls | 37.1 | 61.7 | 70.1 | 45.7 |
BMI 2 categories | (N = 1373) | (N = 1557) | ||
Underweight (BMI < 10th percentile)3 | 13.5 | 16.5 | 21.1 | 13.5 |
Normal weight (BMI 10th–<90th percentile) 3 | 75.0 | 71.6 | 69.9 | 73.4 |
Overweight (BMI 90th–<97th percentile) 3 | 10.4 | 10.3 | 8.3 | 11.5 |
Obesity (BMI ≥ 97th percentile) 3 | 1.1 | 1.6 | 0.6 | 1.6 |
Migrant background | (N = 1434) | (N = 1640) | ||
yes | 28.6 | 33.8 | 27.6 | 34.0 |
School type | ||||
High school students 4 | 46.8 | 49.9 | 59.6 | 42.7 |
Integrated secondary school students 5 | 53.2 | 50.1 | 40.4 | 57.3 |
Socioeconomic status (SES) | ||||
Individual SES (family affluence scale; FAS) | (N = 1501) | (N = 1721) | ||
high (FAS 6−7) | 55.4 | 47.5 | 61.3 | 46.2 |
moderate (FAS 4−5) | 33.3 | 40.3 | 31.1 | 40.0 |
low (FAS 0−3) | 11.3 | 12.2 | 7.7 | 13.8 |
Parents’ working status | (N = 1441) | (N = 1649) | ||
Both parents work | 72.4 | 69.1 | 71.5 | 68.2 |
One parent works | 24.9 | 27.7 | 25.3 | 28.6 |
No parent works | 2.7 | 3.2 | 3.2 | 3.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krist, L.; Roll, S.; Stroebele-Benschop, N.; Rieckmann, N.; Müller-Nordhorn, J.; Bürger, C.; Willich, S.N.; Müller-Riemenschneider, F. Determinants of Physical Activity and Screen Time Trajectories in 7th to 9th Grade Adolescents—A Longitudinal Study. Int. J. Environ. Res. Public Health 2020, 17, 1401. https://doi.org/10.3390/ijerph17041401
Krist L, Roll S, Stroebele-Benschop N, Rieckmann N, Müller-Nordhorn J, Bürger C, Willich SN, Müller-Riemenschneider F. Determinants of Physical Activity and Screen Time Trajectories in 7th to 9th Grade Adolescents—A Longitudinal Study. International Journal of Environmental Research and Public Health. 2020; 17(4):1401. https://doi.org/10.3390/ijerph17041401
Chicago/Turabian StyleKrist, Lilian, Stephanie Roll, Nanette Stroebele-Benschop, Nina Rieckmann, Jacqueline Müller-Nordhorn, Christin Bürger, Stefan N. Willich, and Falk Müller-Riemenschneider. 2020. "Determinants of Physical Activity and Screen Time Trajectories in 7th to 9th Grade Adolescents—A Longitudinal Study" International Journal of Environmental Research and Public Health 17, no. 4: 1401. https://doi.org/10.3390/ijerph17041401
APA StyleKrist, L., Roll, S., Stroebele-Benschop, N., Rieckmann, N., Müller-Nordhorn, J., Bürger, C., Willich, S. N., & Müller-Riemenschneider, F. (2020). Determinants of Physical Activity and Screen Time Trajectories in 7th to 9th Grade Adolescents—A Longitudinal Study. International Journal of Environmental Research and Public Health, 17(4), 1401. https://doi.org/10.3390/ijerph17041401