A Systematic Review with Meta-Analysis of the Effect of Resistance Training on Whole-Body Muscle Growth in Healthy Adult Males
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Sources and Search Profile
2.3. Selection Criteria
2.4. Study Selection and Data Extraction
2.5. Outcomes
2.6. Evaluation of the Methodology of the Studies Selected
2.7. Data Synthesis and Statistical Analysis
Effects of Moderator Variables: Meta-Regression and Sub-Analysis
3. Results
3.1. General Characteristics of Studies
3.1.1. The Participants’ Characteristics
3.1.2. The Resistance Training Characteristics
3.2. Heterogeneity and Risk of Bias
3.3. Meta-Analyses
3.3.1. Effects of Training on Hypertrophy
3.3.2. Subgroup Analysis
3.4. Meta-Regression
4. Discussion
4.1. Participant Characteristics
4.2. Training Characteristics
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Argilés, J.M.; Campos, N.; Lopez-Pedrosa, J.M.; Rueda, R.; Rodriguez-Mañas, L. Skeletal Muscle Regulates Metabolism via Interorgan Crosstalk: Roles in Health and Disease. J. Am. Med. Dir. Assoc. 2016, 17, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Abe, T.; Nahar, V.K.; Young, K.C.; Patterson, K.M.; Stover, C.D.; Lajza, D.G.; Tribby, A.C.; Geddam, D.A.; Ford, M.A.; Bass, M.A.; et al. Skeletal muscle mass, bone mineral density, and walking performance in masters cyclists. Rejuvenation Res. 2014, 17, 291–296. [Google Scholar] [CrossRef]
- Schoenfeld, B. Science and Development of Muscle Hypertrophy; Human Kinetics: Pudsey, UK, 2016. [Google Scholar]
- Hall, K.D. Predicting metabolic adaptation, body weight change, and energy intake in humans. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E449–E466. [Google Scholar] [CrossRef] [Green Version]
- Hall, K.D.; Sacks, G.; Chandramohan, D.; Chow, C.C.; Wang, Y.C.; Gortmaker, S.L.; Swinburn, B.A. Quantification of the effect of energy imbalance on bodyweight. Lancet 2011, 378, 826–837. [Google Scholar] [CrossRef] [Green Version]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.; Trexler, E.T.; Smith-Ryan, A.E.; Reynolds, A. A mathematical model of the effects of resistance exercise-induced muscle hypertrophy on body composition. Eur. J. Appl. Physiol. 2018, 118, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Mangine, G.T.; Hoffman, J.R.; Gonzalez, A.M.; Townsend, J.R.; Wells, A.J.; Jajtner, A.R.; Beyer, K.S.; Boone, C.H.; Miramonti, A.A.; Wang, R.; et al. The effect of training volume and intensity on improvements in muscular strength and size in resistance-trained men. Physiol. Rep. 2015, 3, e12472. [Google Scholar] [CrossRef] [Green Version]
- Nybo, L.; Sundstrup, E.; Jakobsen, M.D.; Mohr, M.; Hornstrup, T.; Simonsen, L.; Bulow, J.; Randers, M.B.; Nielsen, J.J.; Aagaard, P.; et al. High-Intensity Training versus Traditional Exercise Interventions for Promoting Health. Med. Sci. Sports Exerc. 2010, 42, 1951–1958. [Google Scholar] [CrossRef] [Green Version]
- Ahtiainen, J.P.; Walker, S.; Peltonen, H.; Holviala, J.; Sillanpaa, E.; Karavirta, L.; Sallinen, J.; Mikkola, J.; Valkeinen, H.; Mero, A.; et al. Heterogeneity in resistance training-induced muscle strength and mass responses in men and women of different ages. Age 2016, 38, 10. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Bartolomei, S.; Hoffman, J.R.; Stout, J.R.; Merni, F. Effect of Lower-Body Resistance Training on Upper-Body Strength Adaptation in Trained Men. J. Strength Cond. Res. 2018, 32, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Nunes, J.P.; Ribeiro, A.S.; Schoenfeld, B.J.; Tomeleri, C.M.; Avelar, A.; Trindade, M.C.; Nabuco, H.C.; Cavalcante, E.F.; Junior, P.S.; Fernandes, R.R.; et al. Creatine supplementation elicits greater muscle hypertrophy in upper than lower limbs and trunk in resistance-trained men. Nutr. Health 2017, 23, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Smith, R.; Aulet, M.; Bensen, B.; Lichtman, S.; Wang, J.; Pierson, R.N., Jr. Appendicular skeletal muscle mass: Measurement by dual-photon absorptiometry. Am. J. Clin. Nutr. 1990, 52, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Heshka, S.; Gallagher, D.; Kotler, D.P.; Mayer, L.; Albu, J.; Shen, W.; Freda, P.U.; Heymsfield, S.B. Intermuscular adipose tissue-free skeletal muscle mass: Estimation by dual-energy X-ray absorptiometry in adults. J. Appl. Physiol. 2004, 97, 655–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, T.; DeHoyos, D.V.; Pollock, M.L.; Garzarella, L. Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. Eur. J. Appl. Physiol. 2000, 81, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Ahtiainen, J.P.; Hulmi, J.J.; Kraemer, W.J.; Lehti, M.; Nyman, K.; Selanne, H.; Alen, M.; Pakarinen, A.; Komulainen, J.; Kovanen, V.; et al. Heavy resistance exercise training and skeletal muscle androgen receptor expression in younger and older men. Steroids 2011, 76, 183–192. [Google Scholar] [CrossRef]
- Alvarez, M.; Sedano, S.; Cuadrado, G.; Carlos Redondo, J. Effects of an 18-week strength training program on low-handicap golfers’ performance. J. Strength Cond. Res. 2012, 26, 1110–1121. [Google Scholar] [CrossRef]
- Alvehus, M.; Boman, N.; Soderlund, K.; Svensson, M.B.; Buren, J. Metabolic adaptations in skeletal muscle, adipose tissue, and whole-body oxidative capacity in response to resistance training. Eur. J. Appl. Physiol. 2014, 114, 1463–1471. [Google Scholar] [CrossRef]
- Arazi, H.; Rohani, H.; Ghiasi, A.; Keikanloo, N.A. Resistance training & beta-hydroxy-beta-methylbutyrate supplementation on hormones. Rev. Bras. Med. Esporte 2015, 21, 386–389. [Google Scholar]
- Arciero, P.J.; Hannibal, N.S., III; Nindl, B.C.; Gentile, C.L.; Hamed, J.; Vukovich, M.D. Comparison of creatine ingestion and resistance training on energy expenditure and limb blood flow. Metabolism 2001, 50, 1429–1434. [Google Scholar] [CrossRef]
- Bang, H.S.; Seo, D.Y.; Chung, Y.M.; Kim, D.H.; Lee, S.J.; Lee, S.R.; Kwak, H.B.; Kim, T.N.; Kim, M.; Oh, K.M.; et al. Ursolic acid supplementation decreases markers of skeletal muscle damage during resistance training in resistance-trained men: A pilot study. Korean J. Physiol. Pharmacol. 2017, 21, 651–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartolomei, S.; Hoffman, J.R.; Stout, J.R.; Zini, M.; Stefanelli, C.; Merni, F. Comparison of block versus weekly undulating periodization models on endocrine and strength changes in male athletes. Kinesiology 2016, 48, 71–78. [Google Scholar] [CrossRef]
- Bhasin, S.; Storer, T.W.; Berman, N.; Callegari, C.; Clevenger, B.; Phillips, J.; Bunnell, T.J.; Tricker, R.; Shirazi, A.; Casaburi, R. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N. Engl. J. Med. 1996, 335, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Buresh, R.; Berg, K.; French, J. The effect of resistive exercise rest interval on hormonal response, strength, and hypertrophy with training. J. Strength Cond. Res. 2009, 23, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Chromiak, J.A.; Smedley, B.; Carpenter, W.; Brown, R.; Koh, Y.S.; Lamberth, J.G.; Joe, L.A.; Abadie, B.R.; Altorfer, G. Effect of a 10-week strength training program and recovery drink on body composition, muscular strength and endurance, and anaerobic power and capacity. Nutrition 2004, 20, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Colquhoun, R.J.; Gai, C.M.; Walters, J.; Brannon, A.R.; Kilpatrick, M.W.; D’Agostino, D.P.; Campbell, W.I. Comparison of powerlifting performance in trained men using traditional and flexible daily undulating periodization. J. Strength Cond. Res. 2017, 31, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Crewther, B.T.; Heke, T.; Keogh, J.W.L. The effects of a resistance-training program on strength, body composition and baseline hormones in male athletes training concurrently for rugby union 7’s. J. Sports Med. Phys. Fit. 2013, 53, 34–41. [Google Scholar]
- Deruisseau, K.C.; Roberts, L.M.; Kushnick, M.R.; Evans, A.M.; Austin, K.; Haymes, E.M. Iron status of young males and females performing weight-training exercise. Med. Sci. Sports Exerc. 2004, 36, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Karsten, B.; Larumbe-Zabala, E.; Seijo, M.; Naclerio, F. Comparison of Two Equated Resistance Training Weekly Volume Routines Using Different Frequencies on Body Composition and Performance in Trained Males. Appl. Physiol. Nutr. Metab. 2017, 43, 475–481. [Google Scholar]
- Gallagher, P.M.; Carrithers, J.A.; Godard, M.P.; Schulze, K.E.; Trappe, S.W. beta-hydroxy-beta-methylbutyrate ingestion, Part I: Effects on strength and fat free mass. Med. Sci. Sports Exerc. 2000, 32, 2109–2115. [Google Scholar] [CrossRef] [PubMed]
- Garthe, I.; Raastad, T.; Refsnes, P.E.; Sundgot-Borgen, J. Effect of nutritional intervention on body composition and performance in elite athletes. Eur. J. Sport Sci. 2013, 13, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Ghahramanloo, E.; Midgley, A.W.; Bentley, D.J. The Effect of Concurrent Training on Blood Lipid Profile and Anthropometrical Characteristics of Previously Untrained Men. J. Phys. Act. Health 2009, 6, 760–766. [Google Scholar] [CrossRef]
- Hong, A.R.; Hong, S.M.; Shin, Y.A. Effects of Resistance Training on Muscle Strength, Endurance, and Motor Unit According to Ciliary Neurotrophic Factor Polymorphism in Male College Students. J. Sports Sci. Med. 2014, 13, 680–688. [Google Scholar] [PubMed]
- Hu, M.; Finni, T.; Zou, L.; Perhonen, M.; Sedliak, M.; Alen, M.; Cheng, S. Effects of strength training on work capacity and parasympathetic heart rate modulation during exercise in physically inactive men. Int. J. Sports Med. 2009, 30, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Huso, M.E.; Hampl, J.S.; Johnston, C.S.; Swan, P.D. Creatine supplementation influences substrate utilization at rest. J. Appl. Physiol. 2002, 93, 2018–2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, J.; Park, H.Y.; Yoo, C.; Park, Y.; Kim, J.; Lim, K. The synergistic effect of protein complex supplementation combined with 12 weeks of resistance training on isokinetic muscular function in untrained young males. J. Exerc. Nutr. Biochem. 2017, 21, 27–36. [Google Scholar] [CrossRef]
- Joy, J.M.; Gundermann, D.M.; Lowery, R.P.; Jaeger, R.; McCleary, S.A.; Purpura, M.; Roberts, M.D.; Wilson, S.M.C.; Hornberger, T.A.; Wilson, J.M. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. Nutr. Metab. 2014, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.H.; Kim, Y.J.; Lee, S.Y.; Jeong, D.W.; Lee, J.G.; Yi, Y.H.; Cho, Y.H.; Choi, E.J.; Kim, H.J. Interactive effects of an isocaloric high-protein diet and resistance exercise on body composition, ghrelin, and metabolic and hormonal parameters in untrained young men: A randomized clinical trial. J. Diabetes Investig. 2014, 5, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Kon, M.; Ohiwa, N.; Honda, A.; Matsubayashi, T.; Ikeda, T.; Akimoto, T.; Suzuki, Y.; Hirano, Y.; Russell, A.P. Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. Physiol. Rep. 2014, 2, e12033. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Hatfield, D.L.; Volek, J.S.; Fragala, M.S.; Vingren, J.L.; Anderson, J.M.; Spiering, B.A.; Thomas, G.A.; Ho, J.Y.; Quann, E.E.; et al. Effects of amino acids supplement on physiological adaptations to resistance training. Med. Sci. Sports Exerc. 2009, 41, 1111–1121. [Google Scholar] [CrossRef] [Green Version]
- Kreipke, V.C.; Allman, B.R.; Kinsey, A.W.; Moffatt, R.J.; Hickner, R.C.; Ormsbee, M.J. Impact of four weeks of a multi-ingredient performance supplement on muscular strength, body composition, and anabolic hormones in resistance-trained young men. J. Strength Cond. Res. 2015, 29, 3453–3465. [Google Scholar] [CrossRef] [PubMed]
- Lemmer, J.T.; Ivey, F.M.; Ryan, A.S.; Martel, G.F.; Hurlbut, D.E.; Metter, J.E.; Fozard, J.L.; Fleg, J.L.; Hurley, B.F. Effect of strength training on resting metabolic rate and physical activity: Age and gender comparisons. Med. Sci. Sports Exerc. 2001, 33, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, S.J.; Tan, S.C.; Chew, P.L.; Liu, L.; Wang, L.; Wen, L.; Ma, L. The A55T and K153R polymorphisms of MSTN gene are associated with the strength training-induced muscle hypertrophy among Han Chinese men. J. Sports Sci. 2014, 32, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, C.M.; Roberts, M.D.; Dalbo, V.J.; Smith-Ryan, A.E.; Kendall, K.L.; Moon, J.R.; Stout, J.R. Effects of Hydrolyzed Whey versus Other Whey Protein Supplements on the Physiological Response to 8 Weeks of Resistance Exercise in College-Aged Males. J. Am. Coll. Nutr. 2017, 36, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C.; Bolonchuk, W.W.; Siders, W.A.; Milne, D.B. Chromium supplementation and resistance training: Effects on body composition, strength, and trace element status of men. Am. J. Clin. Nutr. 1996, 63, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Mazzetti, S.A.; Kraemer, W.J.; Volek, J.S.; Duncan, N.D.; Ratamess, N.A.; Gomez, A.L.; Newton, R.U.; Hakkinen, K.; Fleck, S.J. The influence of direct supervision of resistance training on strength performance. Med. Sci. Sports Exerc. 2000, 32, 1175–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCartney, N.; Hicks, A.L.; Martin, J.; Webber, C.E. Long-term resistance training in the elderly: Effects on dynamic strength, exercise capacity, muscle, and bone. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1995, 50, B97–B104. [Google Scholar] [CrossRef]
- Naclerio, F.; Larumbe-Zabala, E.; Ashrafi, N.; Seijo, M.; Nielsen, B.; Allgrove, J.; Earnest, C.P. Effects of protein-carbohydrate supplementation on immunity and resistance training outcomes: A double-blind, randomized, controlled clinical trial. Eur. J. Appl. Physiol. 2017, 117, 267–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noonan, D.; Berg, K.; Latin, R.W.; Wagner, J.C.; Reimers, K. Effects of varying dosages of oral creatine relative to fat free body mass on strength and body composition. J. Strength Cond. Res. 1998, 12, 104–108. [Google Scholar]
- Oliver, J.M.; Jagim, A.R.; Sanchez, A.C.; Mardock, M.A.; Kelly, K.A.; Meredith, H.J.; Smith, G.L.; Greenwood, M.; Parker, J.L.; Riechman, S.E.; et al. Greater gains in strength and power with intraset rest intervals in hypertrophic training. J. Strength Cond. Res. 2013, 27, 3116–3131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ormsbee, M.J.; Mandler, W.K.; Thomas, D.D.; Ward, E.G.; Kinsey, A.W.; Simonavice, E.; Panton, L.B.; Kim, J.S. The effects of six weeks of supplementation with multi-ingredient performance supplements and resistance training on anabolic hormones, body composition, strength, and power in resistance-trained men. J. Int. Soc. Sports Nutr. 2012, 9, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ormsbee, M.J.; Thomas, D.D.; Mandler, W.K.; Ward, E.G.; Kinsey, A.W.; Panton, L.B.; Scheett, T.P.; Hooshmand, S.; Simonavice, E.; Kim, J.S. The effects of pre- and post-exercise consumption of multi-ingredient performance supplements on cardiovascular health and body fat in trained men after six weeks of resistance training: A stratified, randomized, double-blind study. Nutr. Metab. 2013, 10, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piirainen, J.M.; Salmi, J.A.; Avela, J.; Linnamo, V. Effect of body composition on the neuromuscular function of finnish conscripts during an 8-week basic training period. J. Strength Cond. Res. 2008, 22, 1916–1925. [Google Scholar] [CrossRef] [PubMed]
- Perez-Gomez, J.; Vicente-Rodriguez, G.; Ara Royo, I.; Martinez-Redondo, D.; Puzo Foncillas, J.; Moreno, L.A.; Diez-Sanchez, C.; Casajus, J.A. Effect of endurance and resistance training on regional fat mass and lipid profile. Nutr. Hosp. 2013, 28, 340–346. [Google Scholar]
- Radaelli, R.; Fleck, S.J.; Leite, T.; Leite, R.D.; Pinto, R.S.; Fernandes, L.; Simao, R. Dose-response of 1, 3, and 5 sets of resistance exercise on strength, local muscular endurance, and hypertrophy. J. Strength Cond. Res. 2015, 29, 1349–1358. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Schoenfeld, B.J.; Silva, D.R.; Pina, F.L.; Guariglia, D.A.; Porto, M.; Maesta, N.; Burini, R.C.; Cyrino, E.S. Effect of Two-Versus Three-Way Split Resistance Training Routines on Body Composition and Muscular Strength in Bodybuilders: A Pilot Study. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 559–565. [Google Scholar] [CrossRef]
- Roberts, M.D.; Iosia, M.; Kerksick, C.M.; Taylor, L.W.; Campbell, B.; Wilborn, C.D.; Harvey, T.; Cooke, M.; Rasmussen, C.; Greenwood, M.; et al. Effects of arachidonic acid supplementation on training adaptations in resistance-trained males. J. Int. Soc. Sports Nutr. 2007, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Rogerson, S.; Riches, C.J.; Jennings, C.; Weatherby, R.P.; Meir, R.A.; Marshall-Gradisnik, S.M. The effect of five weeks of Tribulus terrestris supplementation on muscle strength and body composition during preseason training in elite rugby league players. J. Strength Cond. Res. 2007, 21, 348–353. [Google Scholar]
- Schumann, M.; Kuusmaa, M.; Newton, R.U.; Sirparanta, A.I.; Syvaoja, H.; Hakkinen, A.; Hakkinen, K. Fitness and lean mass increases during combined training independent of loading order. Med. Sci. Sports Exerc. 2014, 46, 1758–1768. [Google Scholar] [CrossRef] [Green Version]
- Shelmadine, B.; Cooke, M.; Buford, T.; Hudson, G.; Redd, L.; Leutholtz, B.; Willoughby, D.S. Effects of 28 days of resistance exercise and consuming a commercially available pre-workout supplement, NO-Shotgun(R), on body composition, muscle strength and mass, markers of satellite cell activation, and clinical safety markers in males. J. Int. Soc. Sports Nutr. 2009, 6, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snijders, T.; Res, P.T.; Smeets, J.S.; van Vliet, S.; van Kranenburg, J.; Maase, K.; Kies, A.K.; Verdijk, L.B.; van Loon, L.J. Protein Ingestion before Sleep Increases Muscle Mass and Strength Gains during Prolonged Resistance-Type Exercise Training in Healthy Young Men. J. Nutr. 2015, 145, 1178–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spence, A.L.; Naylor, L.H.; Carter, H.H.; Buck, C.L.; Dembo, L.; Murray, C.P.; Watson, P.; Oxborough, D.; George, K.P.; Green, D.J. A prospective randomised longitudinal MRI study of left ventricular adaptation to endurance and resistance exercise training in humans. J. Physiol. 2011, 589, 5443–5452. [Google Scholar] [CrossRef] [PubMed]
- Spillane, M.; Schoch, R.; Cooke, M.; Harvey, T.; Greenwood, M.; Kreider, R.; Willoughby, D.S. The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels. J. Int. Soc. Sports Nutr. 2009, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Spillane, M.; Schwarz, N.; Leddy, S.; Correa, T.; Minter, M.; Longoria, V.; Willoughby, D.S. Effects of 28 days of resistance exercise while consuming commercially available pre- and post-workout supplements, NO-Shotgun (R) and NO-Synthesize (R) on body composition, muscle strength and mass, markers of protein synthesis, and clinical safety markers in males. Nutr. Metab. 2011, 8, 78. [Google Scholar]
- Terzis, G.; Georgiadis, G.; Stratakos, G.; Vogiatzis, I.; Kavouras, S.; Manta, P.; Mascher, H.; Blomstrand, E. Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur. J. Appl. Physiol. 2008, 102, 145–152. [Google Scholar] [CrossRef]
- Terzis, G.; Stratakos, G.; Manta, P.; Georgiadis, G. Throwing performance after resistance training and detraining. J. Strength Cond. Res. 2008, 22, 1198–1204. [Google Scholar] [CrossRef]
- Thomson, J.S.; Watson, P.E.; Rowlands, D.S. Effects of nine weeks of beta-HYDROXY-beta-METHYLBUTYRATE supplementation on strength and body composition in resistance trained men. J. Strength Cond. Res. 2009, 23, 827–835. [Google Scholar] [CrossRef]
- Tomljanovic, M.; Spasic, M.; Gabrilo, G.; Uljevic, O.; Foretic, N. Effects of five weeks of functional vs. Traditional resistance training on anthropometric and motor performance variables. Kinesiology 2011, 43, 145–154. [Google Scholar]
- Wilborn, C.; Taylor, L.; Poole, C.; Foster, C.; Willoughby, D.; Kreider, R. Effects of a Purported Aromatase and 5 alpha-Reductase Inhibitor on Hormone Profiles in College-Age Men. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 457–465. [Google Scholar] [CrossRef]
- Willoughby, D.S.; Spillane, M.; Schwarz, N. Heavy Resistance Training and Supplementation with the Alleged Testosterone Booster NMDA Has No Effect on Body Composition, Muscle Performance, and Serum Hormones Associated with the Hypothalamo-Pituitary-Gonadal Axis in Resistance-Trained Males. J. Sports Sci. Med. 2014, 13, 192–199. [Google Scholar] [PubMed]
- Willoughby, D.S.; Stout, J.R.; Wilborn, C.D. Effects of resistance training and protein plus amino acid supplementation on muscle anabolism, mass, and strength. Amino Acids 2007, 32, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Joy, J.M.; Lowery, R.P.; Roberts, M.D.; Lockwood, C.M.; Manninen, A.H.; Fuller, J.C., Jr.; De Souza, E.O.; Baier, S.M.; Wilson, S.M.C.; et al. Effects of oral adenosine-5′-triphosphate supplementation on athletic performance, skeletal muscle hypertrophy and recovery in resistance-trained men. Nutr. Metab. 2013, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, J.M.; Lowery, R.P.; Joy, J.M.; Andersen, J.C.; Wilson, S.M.; Stout, J.R.; Duncan, N.; Fuller, J.C.; Baier, S.M.; Naimo, M.A.; et al. The effects of 12 weeks of beta-hydroxy-beta-methylbutyrate free acid supplementation on muscle mass, strength, and power in resistance-trained individuals: A randomized, double-blind, placebo-controlled study. Eur. J. Appl. Physiol. 2014, 114, 1217–1227. [Google Scholar] [CrossRef] [Green Version]
- Zamani, M.; Peeri, M. The Effect of Body Part-dependent Resistance Training on Lipid Profiles and Hormonal Levels in Young Males. Ann. Appl. Sport Sci. 2017, 5, 51–58. [Google Scholar] [CrossRef]
- Alcaraz, P.E.; Perez-Gomez, J.; Chavarrias, M.; Blazevich, A.J. Similarity in adaptations to high-resistance circuit vs. traditional strength training in resistance-trained men. J. Strength Cond. Res. 2011, 25, 2519–2527. [Google Scholar] [CrossRef]
- Andre, T.L.; Gann, J.J.; McKinley-Barnard, S.K.; Song, J.J.; Willoughby, D.S. Eight Weeks of Phosphatidic Acid Supplementation in Conjunction with Resistance Training Does Not Differentially Affect Body Composition and Muscle Strength in Resistance-Trained Men. J. Sports Sci. Med. 2016, 15, 532–539. [Google Scholar]
- Ara, I.; Perez-Gomez, J.; Vicente-Rodriguez, G.; Chavarren, J.; Dorado, C.; Calbet, J.A.L. Serum free testosterone, leptin and soluble leptin receptor changes in a 6-week strength-training programme. Br. J. Nutr. 2007, 96, 1053–1059. [Google Scholar] [CrossRef] [Green Version]
- Bemben, M.G.; Bemben, D.A.; Loftiss, D.D.; Knehans, A.W. Creatine supplementation during resistance training in college football athletes. Med. Sci. Sports Exerc. 2001, 33, 1667–1673. [Google Scholar] [CrossRef]
- Brown, G.A.; Vukovich, M.D.; Sharp, R.L.; Reifenrath, T.A.; Parsons, K.A.; King, D.S. Effect of oral DHEA on serum testosterone and adaptations to resistance training in young men. J. Appl. Physiol. 1999, 87, 2274–2283. [Google Scholar] [CrossRef] [Green Version]
- Burke, D.G.; Chilibeck, P.D.; Davison, K.S.; Candow, D.G.; Farthing, J.; Smith-Palmer, T. The effect of whey protein supplementation with and without creatine monohydrate combined with resistance training on lean tissue mass and muscle strength. Int. J. Sport Nutr. Exerc. Metab. 2001, 11, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Caldow, M.K.; Thomas, E.E.; Dale, M.J.; Tomkinson, G.R.; Buckley, J.D.; Cameron-Smith, D. Early myogenic responses to acute exercise before and after resistance training in young men. Physiol. Rep. 2015, 3, e12511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chycki, J.; Czuba, M.; Golas, A.; Zajac, A.; Fidos-Czuba, O.; Mlynarz, A.; Smolka, W. Neuroendocrine Responses and Body Composition Changes Following Resistance Training Under Normobaric Hypoxia. J. Hum. Kinet. 2016, 53, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deyssig, R.; Frisch, H.; Blum, W.F.; Waldhor, T. Effect of growth hormone treatment on hormonal parameters, body composition and strength in athletes. Eur. J. Endocrinol. 1993, 128, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Escalante, G.; Alencar, M.; Haddock, B.; Harvey, P. The effects of phosphatidic acid supplementation on strength, body composition, muscular endurance, power, agility, and vertical jump in resistance trained men. J. Int. Soc. Sports Nutr. 2016, 13, 24. [Google Scholar] [CrossRef] [Green Version]
- Fahey, T.D.; Brown, C.H. Effects of an anabolic steroid on strength, body composition, and endurance of college males when accompanied by a weight training-program. Med. Sci. Sports Exerc. 1973, 5, 272–276. [Google Scholar] [CrossRef]
- Falk, D.J.; Heelan, K.A.; Thyfault, J.P.; Koch, A.J. Effects of effervescent creatine, ribose, and glutamine supplementation on muscular strength, muscular endurance, and body composition. J. Strength Cond. Res. 2003, 17, 810–816. [Google Scholar]
- Fyfe, J.J.; Bartlett, J.D.; Hanson, E.D.; Stepto, N.K.; Bishop, D.J. Endurance Training Intensity Does Not Mediate Interference to Maximal Lower-Body Strength Gain during Short-Term Concurrent Training. Front. Physiol. 2016, 7, 487. [Google Scholar] [CrossRef] [Green Version]
- Glowacki, S.P.; Martin, S.E.; Maurer, A.N.N.; Baek, W.; Green, J.S.; Crouse, S.F. Effects of Resistance, Endurance, and Concurrent Exercise on Training Outcomes in Men. Med. Sci. Sports Exerc. 2004, 36, 2119–2127. [Google Scholar] [CrossRef] [Green Version]
- Gobbo, L.A.; Ritti-Dias, R.M.; Avelar, A.; Silva, A.M.; Coelho-e-Silva, M.J.; Cyrino, E.S. Changes in skeletal muscle mass assessed by anthropometric equations after resistance training. Int. J. Sports Med. 2013, 34, 28–33. [Google Scholar] [CrossRef]
- Harber, M.P.; Fry, A.C.; Rubin, M.R.; Smith, J.C.; Weiss, L.W. Skeletal muscle and hormonal adaptations to circuit weight training in untrained men. Scand. J. Med. Sci. Sports 2004, 14, 176–185. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Ratamess, N.A.; Tranchina, C.P.; Rashti, S.L.; Kang, J.; Faigenbaum, A.D. Effect of Protein-Supplement Timing on Strength, Power, and Body-Composition Changes in Resistance-Trained Men. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Stout, J.R.; Williams, D.R.; Wells, A.J.; Fragala, M.S.; Mangine, G.T.; Gonzalez, A.M.; Emerson, N.S.; McCormack, W.P.; Scanlon, T.C.; et al. Efficacy of phosphatidic acid ingestion on lean body mass, muscle thickness and strength gains in resistance-trained men. J. Int. Soc. Sports Nutr. 2012, 9, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ihalainen, J.K.; Peltonen, H.; Paulsen, G.; Ahtiainen, J.P.; Taipale, R.S.; Hamalainen, M.; Moilanen, E.; Mero, A.A. Inflammation status of healthy young men: Initial and specific responses to resistance training. Appl. Physiol. Nutr. Metab. 2018, 43, 252–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joy, J.M.; Vogel, R.M.; Moon, J.R.; Falcone, P.H.; Mosman, M.M.; Kim, M.P. Twelve weeks supplementation with an extended-release caffeine and ATP-enhancing supplement may improve body composition without affecting hematology in resistance-trained men. J. Int. Soc. Sports Nutr. 2016, 13, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, V.G.; Jenkins, D.G. Effect of oral creatine supplementation on near-maximal strength and repeated sets of high-intensity bench press exercise. J. Strength Cond. Res. 1998, 12, 109–115. [Google Scholar]
- Kerksick, C.M.; Wilborn, C.D.; Campbell, W.I.; Harvey, T.M.; Marcello, B.M.; Roberts, M.D.; Parker, A.G.; Byars, A.G.; Greenwood, L.D.; Almada, A.L.; et al. The effects of creatine monohydrate supplementation with and without D-Pinitol on resistance training adaptations. J. Strength Cond. Res. 2009, 23, 2673–2682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerksick, C.M.; Rasmussen, C.J.; Lancaster, S.L.; Magu, B.; Smith, P.; Melton, C.; Greenwood, M.; Almada, A.L.; Earnest, C.P.; Kreider, R.B. The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training. J. Strength Cond. Res. 2006, 20, 643–653. [Google Scholar]
- King, D.S.; Sharp, R.L.; Vukovich, M.D.; Brown, G.A.; Reifenrath, T.A.; Uhl, N.L.; Parsons, K.A. Effect of oral androstenedione on serum testosterone and adaptations to resistance training in young men: A randomized controlled trial. JAMA 1999, 281, 2020–2028. [Google Scholar] [CrossRef] [Green Version]
- Ko, I.G.; Choi, P.B. Regular exercise modulates obesity factors and body composition in sturdy men. J. Exerc. Rehabil. 2013, 9, 256–262. [Google Scholar] [CrossRef]
- Kreider, R.B.; Ferreira, M.P.; Greenwood, M.; Wilson, M.; Almada, A.L. Effects of conjugated linoleic acid supplementation during resistance training on body composition, bone density, strength, and selected hematological markers. J. Strength Cond. Res. 2002, 16, 325–334. [Google Scholar] [PubMed]
- Lemon, P.W.; Tarnopolsky, M.A.; MacDougall, J.D.; Atkinson, S.A. Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. J. Appl. Physiol. 1992, 73, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Lo, M.S.; Lin, L.L.C.; Yao, W.J.; Ma, M.C. Training and detraining effects of the Resistance vs Endurance program on body composition, body size, and physical performance in young men. J. Strength Cond. Res. 2011, 25, 2246–2254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowery, R.P.; Joy, J.M.; Loenneke, J.P.; de Souza, E.O.; Machado, M.; Dudeck, J.E.; Wilson, J.M. Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme. Clin. Physiol. Funct. Imaging 2014, 34, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Mangine, G.T.; Ratamess, N.A.; Hoffman, J.R.; Faigenbaum, A.D.; Kang, J.; Chilakos, A. The effects of combined ballistic and heavy resistance training on maximal lower- and upper-body strength in recreationally trained men. J. Strength Cond. Res. 2008, 22, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, D.L.; Kim, J.S.; Cross, J.M.; Ferrando, A.A.; Bamman, M.M. Translational signaling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans. J. Appl. Physiol. 2009, 107, 1655–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, W.J.; Sherman, W.M.; Ivy, J.L. Effect of strength training on glucose tolerance and post-glucose insulin response. Med. Sci. Sports Exerc. 1984, 16, 539–543. [Google Scholar] [CrossRef]
- Moore, D.R.; Del Bel, N.C.; Nizi, K.I.; Hartman, J.W.; Tang, J.E.; Armstrong, D.; Phillips, S.M. Resistance training reduces fasted- and fed-state leucine turnover and increases dietary nitrogen retention in previously untrained young men. J. Nutr. 2007, 137, 985–991. [Google Scholar] [CrossRef] [Green Version]
- Paoli, A.; Gentil, P.; Moro, T.; Marcolin, G.; Bianco, A. Resistance Training with Single vs. Multi-joint Exercises at Equal Total Load Volume: Effects on Body Composition, Cardiorespiratory Fitness, and Muscle Strength. Front. Physiol. 2017, 8, 1105. [Google Scholar] [CrossRef] [Green Version]
- Peeters, B.M.; Lantz, C.D.; Mayhew, J.L. Effect of oral creatine monohydrate and creatine phosphate supplementation on maximal strength indices, body composition, and blood pressure. J. Strength Cond. Res. 1999, 13, 3–9. [Google Scholar]
- Peronnet, F.; Thibault, G.; Perrault, H.; Cousineau, D. Sympathetic response to maximal bicycle exercise before and after leg strength training. Eur. J. Appl. Physiol. Occup. Physiol. 1986, 55, 1–4. [Google Scholar] [CrossRef]
- Saremi, A.; Gharakhanloo, R.; Sharghi, S.; Gharaati, M.R.; Larijani, B.; Omidfar, K. Effects of oral creatine and resistance training on serum myostatin and GASP-1. Mol. Cell Endocrinol. 2010, 317, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.M.; Amonette, W.E.; Blazine, K.; Bentley, J.; Lee, S.M.; Loehr, J.A.; Moore, A.D., Jr.; Rapley, M.; Mulder, E.R.; Smith, S.M. Training with the International Space Station interim resistive exercise device. Med. Sci. Sports Exerc. 2003, 35, 1935–1945. [Google Scholar] [CrossRef] [PubMed]
- Slater, G.; Jenkins, D.; Logan, P.; Lee, H.; Vukovich, M.; Rathmacher, J.A.; Hahn, A.G. beta-hydroxy-beta-methylbutyrate (HMB) supplementation does not affect changes in strength or body composition during resistance training in trained men. Int. J. Sport Nutr. Exerc. Metab. 2001, 11, 384–396. [Google Scholar] [CrossRef] [PubMed]
- Spillane, M.; Willoughby, D.S. Daily Overfeeding from Protein and/or Carbohydrate Supplementation for Eight Weeks in Conjunction with Resistance Training Does not Improve Body Composition and Muscle Strength or Increase Markers Indicative of Muscle Protein Synthesis and Myogenesis in Resistance-Trained Males. J. Sports Sci. Med. 2016, 15, 17–25. [Google Scholar] [PubMed]
- Taylor, L.; Poole, C.; Pena, E.; Lewing, M.; Kreider, R.; Foster, C.; Wilborn, C. Effects of combined creatine plus fenugreek extract vs. creatine plus carbohydrate supplementation on resistance training adaptations. J. Sports Sci. Med. 2011, 10, 254–260. [Google Scholar] [PubMed]
- Thorstensson, A.; Hulten, B.; von Dobeln, W.; Karlsson, J. Effect of strength training on enzyme activities and fibre characteristics in human skeletal muscle. Acta Physiol. Scand. 1976, 96, 392–398. [Google Scholar] [CrossRef]
- Tinsley, G.M.; Urbina, S.; Mullins, J.; Outlaw, J.; Hayward, S.; Stone, M.; Foster, C.; Wilborn, C.; Taylor, L. Influence of A Thermogenic Dietary Supplement on Safety Markers, Body Composition, Energy Expenditure, Muscular Performance and Hormone Concentrations: A Randomized, Placebo-Controlled, Double-Blind Trial. J. Sports Sci. Med. 2017, 16, 459–467. [Google Scholar]
- Volek, J.S.; Ratamess, N.A.; Rubin, M.R.; Gomez, A.L.; French, D.N.; McGuigan, M.M.; Scheett, T.P.; Sharman, M.J.; Hakkinen, K.; Kraemer, W.J. The effects of creatine supplementation on muscular performance and body composition responses to short-term resistance training overreaching. Eur. J. Appl. Physiol. 2004, 91, 628–637. [Google Scholar] [CrossRef]
- Yan, B.; Lai, X.; Yi, L.; Wang, Y.; Hu, Y. Effects of five-week resistance training in hypoxia on hormones and muscle strength. J. Strength Cond. Res. 2016, 30, 184–193. [Google Scholar] [CrossRef]
- Cermak, N.M.; Res, P.T.; de Groot, L.C.; Saris, W.H.; van Loon, L.J. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: A meta-analysis. Am. J. Clin. Nutr. 2012, 96, 1454–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, R.W.; Carson, B.P.; Jakeman, P.M. The Effect of Whey Protein Supplementation on the Temporal Recovery of Muscle Function Following Resistance Training: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finger, D.; Goltz, F.R.; Umpierre, D.; Meyer, E.; Rosa, L.H.; Schneider, C.D. Effects of protein supplementation in older adults undergoing resistance training: A systematic review and meta-analysis. Sports Med. 2015, 45, 245–255. [Google Scholar] [CrossRef]
- Miller, P.E.; Alexander, D.D.; Perez, V. Effects of whey protein and resistance exercise on body composition: A meta-analysis of randomized controlled trials. J. Am. Coll. Nutr. 2014, 33, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Naclerio, F.; Larumbe-Zabala, E. Effects of Whey Protein Alone or as Part of a Multi-ingredient Formulation on Strength, Fat-Free Mass, or Lean Body Mass in Resistance-Trained Individuals: A Meta-analysis. Sports Med. 2016, 46, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.L.; Sharp, R.L. Effect of dietary supplements on lean mass and strength gains with resistance exercise: A meta-analysis. J. Appl. Physiol. 2003, 94, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Aragon, A.A.; Krieger, J.W. The effect of protein timing on muscle strength and hypertrophy: A meta-analysis. J. Int. Soc. Sports Nutr. 2013, 10, 53. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.K.; Quinn, M.A.; Saunders, D.H.; Greig, C.A. Protein Supplementation Does Not Significantly Augment the Effects of Resistance Exercise Training in Older Adults: A Systematic Review. J. Am. Med. Dir. Assoc. 2016, 17, 959.e1–959.e9. [Google Scholar] [CrossRef] [Green Version]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Effects of Resistance Training Frequency on Measures of Muscle Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 1689–1697. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Grgic, J.; Krieger, J. How many times per week should a muscle be trained to maximize muscle hypertrophy? A systematic review and meta-analysis of studies examining the effects of resistance training frequency. J. Sports Sci. 2018, 1–10. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Contreras, B.; Krieger, J.; Grgic, J.; Delcastillo, K.; Belliard, R.; Alto, A. Resistance Training Volume Enhances Muscle Hypertrophy but Not Strength in Trained Men. Med. Sci. Sports Exerc. 2019, 51, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Mikulic, P.; Podnar, H.; Pedisic, Z. Effects of linear and daily undulating periodized resistance training programs on measures of muscle hypertrophy: A systematic review and meta-analysis. PeerJ 2017, 5, e3695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lexell, J.; Taylor, C.C.; Sjostrom, M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J. Neurol. Sci. 1988, 84, 275–294. [Google Scholar] [CrossRef]
- Akima, H.; Kano, Y.; Enomoto, Y.; Ishizu, M.; Okada, M.; Oishi, Y.; Katsuta, S.; Kuno, S. Muscle function in 164 men and women aged 20–84 yr. Med. Sci. Sports Exerc. 2001, 33, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R.; Churchward-Venne, T.A.; Witard, O.; Breen, L.; Burd, N.A.; Tipton, K.D.; Phillips, S.M. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J. Gerontol. Ser. A Biol. Sci. Med Sci. 2015, 70, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Ogasawara, R.; Yasuda, T.; Ishii, N.; Abe, T. Comparison of muscle hypertrophy following 6-month of continuous and periodic strength training. Eur. J. Appl. Physiol. 2013, 113, 975–985. [Google Scholar] [CrossRef]
- Alway, S.E.; Grumbt, W.H.; Stray-Gundersen, J.; Gonyea, W.J. Effects of resistance training on elbow flexors of highly competitive bodybuilders. J. Appl. Physiol. 1992, 72, 1512–1521. [Google Scholar] [CrossRef]
- Bycura, D.; Feito, Y.; Prather, C. Motivational Factors in CrossFit® Training Participation. Health Behav. Policy Rev. 2017, 4, 539–550. [Google Scholar] [CrossRef]
- Wikstrom-Frisen, L.; Boraxbekk, C.J.; Henriksson-Larsen, K. Effects on power, strength and lean body mass of menstrual/oral contraceptive cycle based resistance training. J. Sports Med. Phys. Fit. 2017, 57, 43–52. [Google Scholar]
- Sung, E.; Han, A.; Hinrichs, T.; Vorgerd, M.; Manchado, C.; Platen, P. Effects of follicular versus luteal phase-based strength training in young women. Springerplus 2014, 3, 668. [Google Scholar] [CrossRef] [Green Version]
- Krieger, J.W. Single vs. multiple sets of resistance exercise for muscle hypertrophy: A meta-analysis. J. Strength Cond. Res. 2010, 24, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J. Beware the Meta-Analysis: Is Multiple Set Training Really Better than Single Set Training for Muscle Hypertrophy? J. Exerc. Physiol. Online 2012, 15, 23–30. [Google Scholar]
- Burd, N.A.; Holwerda, A.M.; Selby, K.C.; West, D.W.; Staples, A.W.; Cain, N.E.; Cashaback, J.G.; Potvin, J.R.; Baker, S.K.; Phillips, S.M. Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J. Physiol. 2010, 588, 3119–3130. [Google Scholar] [CrossRef]
- Dankel, S.J.; Mattocks, K.T.; Jessee, M.B.; Buckner, S.L.; Mouser, J.G.; Counts, B.R.; Laurentino, G.C.; Loenneke, J.P. Frequency: The Overlooked Resistance Training Variable for Inducing Muscle Hypertrophy? Sports Med. 2017, 47, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Kojima, K.; Kearns, C.F.; Yohena, H.; Fukuda, J. Whole body muscle hypertrophy from resistance training: Distribution and total mass. Br. J. Sports Med. 2003, 37, 543–545. [Google Scholar] [CrossRef] [Green Version]
- Cupeiro, C.; Rubio-arias, J.A.; Ramos-campo, D.; Alcaraz, P.E.; Benito, P.J. Comparison of different measurement techniques for quantifying whole body muscle hypertrophy in men. In Book of Abstracts of the 24th Annual Congress of the European College of Sport Science; Bunc, V., Tsolakidis, E., Eds.; ECSS: Prague, Czech Republic, 2019. [Google Scholar]
Study/Group/Year/Reference | Post-Training | Pre-Training | Weight | Mean Difference | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | n | Mean | SD | n | Random, 95% IC | ||
Fat Free Mass (FFM) | ||||||||
Abe et al., 2000 [17] | 62.7 | 5.3 | 17 | 61.1 | 5.1 | 17 | 0.90% | 1.60 [−1.90, 5.10] |
Ahtiainen et al., 2011 [18] | 68.0 | 4.1 | 7 | 65.0 | 4.0 | 7 | 0.60% | 3.00 [−1.24, 7.24] |
Álvarez, et al., 2012_1 [19] | 60.0 | 6.6 | 5 | 56.9 | 7.3 | 5 | 0.10% | 3.10 [−5.53, 11.73] |
Álvarez, et al., 2012_2 [19] | 59.2 | 6.8 | 5 | 58.2 | 7.0 | 5 | 0.20% | 1.00 [−7.55, 9.55] |
Alvehus et al., 2014 [20] | 65.5 | 7.0 | 17 | 63.2 | 6.4 | 17 | 0.50% | 2.30 [−2.21, 6.81] |
Arazi et al., 2015_1 [21] | 63.6 | 6.5 | 10 | 61.7 | 6.2 | 10 | 0.40% | 1.90 [−3.67, 7.47] |
Arciero et al., 2001_1 [22] | 64.7 | 3.6 | 10 | 63.0 | 2.8 | 10 | 1.40% | 1.70 [−1.13, 4.53] |
Arciero et al., 2001_2 [22] | 62.5 | 6.5 | 10 | 62.3 | 6.5 | 10 | 0.30% | 0.20 [−5.50, 5.90] |
Bang et al., 2017_1 [23] | 70.9 | 10.2 | 8 | 70.5 | 10.8 | 8 | 0.10% | 0.40 [−9.89, 10.69] |
Bartolomei et al., 2016_1 [24] | 73.8 | 7.5 | 10 | 72.0 | 7.6 | 10 | 0.30% | 1.80 [−4.82, 8.42] |
Bartolomei et al., 2016_2 [24] | 70.6 | 9.4 | 8 | 69.4 | 8.8 | 8 | 0.10% | 1.21 [−7.71, 10.13] |
Bartolomei et al., 2018_1 [12] | 75.4 | 7.5 | 9 | 73.7 | 8.6 | 9 | 0.20% | 1.70 [−5.76, 9.16] |
Bartolomei et al., 2018_2 [12] | 73.5 | 7.7 | 11 | 72.8 | 7.7 | 11 | 0.30% | 0.70 [−5.74, 7.14] |
Bhasin et al., 1996_1 [25] | 74.1 | 2.2 | 9 | 72.1 | 2.3 | 9 | 2.50% | 2.00 [−0.08, 4.08] |
Buresh et al., 2009_1 [26] | 74.7 | 3.7 | 6 | 72.4 | 3.6 | 6 | 0.60% | 2.30 [−1.83, 6.43] |
Buresh et al., 2009_2 [26] | 65.6 | 7.9 | 6 | 64.4 | 6.7 | 6 | 0.20% | 1.20 [−7.09, 9.49] |
Chromiak et al., 2004_1 [27] | 71.4 | 9.5 | 18 | 68.0 | 9.8 | 18 | 0.30% | 3.40 [−2.91, 9.71] |
Chromiak et al., 2004_2 [27] | 68.3 | 9.9 | 15 | 66.8 | 9.8 | 15 | 0.20% | 1.50 [−5.55, 8.55] |
Colquhoun et al., 2017_1 [28] | 72.2 | 5.4 | 11 | 71.4 | 5.9 | 11 | 0.50% | 0.80 [−3.93, 5.53] |
Crewther et al., 2013 [29] | 77.7 | 5.2 | 12 | 76.7 | 5.5 | 12 | 0.60% | 1.00 [−3.28, 5.28] |
Deruisseau et al., 2004 [30] | 64.5 | 8.6 | 13 | 63.1 | 9.0 | 13 | 0.20% | 1.40 [−5.37, 8.17] |
Fu et al., 2017_1 [31] | 63.4 | 9.8 | 9 | 62.2 | 8.7 | 9 | 0.10% | 1.19 [−7.37, 9.75] |
Fu et al., 2017_2 [31] | 62.8 | 7.7 | 9 | 61.5 | 7.8 | 9 | 0.20% | 1.35 [−5.85, 8.55] |
Gallagher et al., 2000_1 [32] | 65.3 | 2.2 | 14 | 65.3 | 2.5 | 14 | 3.60% | 0.00 [−1.74, 1.74] |
Gallagher et al., 2000_2 [32] | 66.3 | 1.6 | 12 | 64.4 | 1.6 | 12 | 6.70% | 1.90 [0.62, 3.18] |
Garthe et al., 2013_1 [33] | 65.0 | 8.7 | 21 | 63.4 | 8.7 | 21 | 0.40% | 1.60 [−3.67, 6.87] |
Garthe et al., 2013_2 [33] | 65.6 | 6.2 | 18 | 64.6 | 6.3 | 18 | 0.70% | 1.00 [−3.07, 5.07] |
Ghahramanloo et al., 2009 [34] | 57.1 | 6.1 | 9 | 55.2 | 6.4 | 9 | 0.30% | 1.90 [−3.88, 7.68] |
Hong et al., 2014_1 [35] | 64.7 | 7.6 | 8 | 62.0 | 6.3 | 8 | 0.20% | 2.66 [−4.15, 9.47] |
Hong et al., 2014_2 [35] | 63.8 | 8.1 | 10 | 60.0 | 7.2 | 10 | 0.20% | 3.80 [−2.93, 10.53] |
Hu et al., 2009 [36] | 66.5 | 6.7 | 48 | 65.3 | 7.0 | 48 | 1.50% | 1.20 [−1.54, 3.94] |
Huso et al., 2002_2 [37] | 65.4 | 1.8 | 10 | 63.2 | 1.4 | 10 | 5.50% | 2.20 [0.79, 3.61] |
Jang et al., 2017_1 [38] | 60.3 | 6.2 | 8 | 58.9 | 6.7 | 8 | 0.30% | 1.40 [−4.93, 7.73] |
Joy et al., 2014_1 [39] | 60.7 | 4.7 | 14 | 59.5 | 4.7 | 14 | 0.90% | 1.20 [−2.29, 4.69] |
Kim et al., 2014 [40] | 52.7 | 4.1 | 9 | 51.5 | 4.6 | 9 | 0.70% | 1.20 [−2.83, 5.23] |
Kon et al., 2014 [41] | 55.8 | 7.9 | 7 | 53.8 | 6.9 | 7 | 0.20% | 2.00 [−5.78, 9.78] |
Kramer et al., 2009_2 [42] | 61.6 | 6.8 | 9 | 57.7 | 6.5 | 9 | 0.30% | 3.90 [−2.23, 10.03] |
Kreipke et al., 2015_1 [43] | 62.9 | 4.9 | 13 | 61.8 | 4.8 | 13 | 0.80% | 1.10 [−2.63, 4.83] |
Lemmer et al., 2001 [44] | 64.9 | 7.1 | 10 | 62.9 | 7.1 | 10 | 0.30% | 2.00 [−4.23, 8.23] |
Li et al., 2014 [45] | 71.7 | 2.8 | 13 | 70.6 | 8.2 | 13 | 0.50% | 1.04 [−3.69, 5.77] |
Lockwood et al., 2017_1 [46] | 61.7 | 8.5 | 15 | 60.4 | 8.5 | 15 | 0.30% | 1.30 [−4.79, 7.39] |
Lukaski et al., 1996_1 [47] | 67.3 | 2.2 | 12 | 65.9 | 2.2 | 12 | 3.50% | 1.40 [−0.36, 3.16] |
Lukaski et al., 1996_2 [47] | 65.9 | 1.5 | 12 | 64.0 | 1.2 | 12 | 9.30% | 1.90 [0.81, 2.99] |
Lukaski et al., 1996_3 [47] | 66.1 | 2.6 | 12 | 64.2 | 2.6 | 12 | 2.50% | 1.90 [−0.18, 3.98] |
Mazzetti et al., 2000_1 [48] | 69.6 | 2.6 | 10 | 68.2 | 2.6 | 10 | 2.10% | 1.38 [−0.89, 3.65] |
Mazzetti et al., 2000_2 [48] | 68.4 | 1.5 | 8 | 68.2 | 1.5 | 8 | 5.20% | 0.25 [−1.20, 1.70] |
McCarthy et al., 1995 [49] | 68.1 | 2.3 | 10 | 65.9 | 2.1 | 10 | 3.00% | 2.20 [0.27, 4.13] |
Nacleiro et al., 2017_1 [50] | 64.2 | 7.3 | 8 | 64.2 | 7.3 | 8 | 0.20% | 0.08 [−7.05, 7.21] |
Noonan et al., 1998_1 [51] | 88.3 | 10.4 | 13 | 85.1 | 9.5 | 13 | 0.20% | 3.20 [−4.46, 10.86] |
Oliver et al., 2013_1 [52] | 71.9 | 9.8 | 11 | 70.0 | 9.6 | 11 | 0.20% | 1.90 [−6.21, 10.01] |
Oliver et al., 2013_2 [52] | 72.3 | 9.9 | 11 | 71.9 | 9.8 | 11 | 0.20% | 0.40 [−7.83, 8.63] |
Ormsbee et al., 2012_1 [53] | 64.7 | 5.9 | 11 | 63.5 | 5.2 | 11 | 0.50% | 1.20 [−3.45, 5.85] |
Ormsbee et al., 2013_1 [54] | 68.2 | 6.0 | 11 | 66.9 | 5.3 | 11 | 0.50% | 1.30 [−3.43, 6.03] |
Piirainen et al., 2008_1 [55] | 65.9 | 6.6 | 6 | 65.3 | 8.1 | 6 | 0.20% | 0.60 [−7.76, 8.96] |
Piirainen et al., 2008_2 [55] | 64.3 | 9.4 | 6 | 63.8 | 8.6 | 6 | 0.10% | 0.50 [−9.69, 10.69] |
Pérez-Gómez et al., 2013 [56] | 59.7 | 7.7 | 8 | 58.6 | 7.5 | 8 | 0.20% | 1.09 [−6.35, 8.53] |
Radaelli et al., 2015_1 [57] | 67.7 | 6.5 | 12 | 67.2 | 8.3 | 12 | 0.30% | 0.46 [−5.49, 6.41] |
Radaelli et al., 2015_2 [57] | 66.0 | 5.2 | 13 | 63.0 | 4.4 | 13 | 0.80% | 2.98 [−0.71, 6.67] |
Radaelli et al., 2015_3 [57] | 74.7 | 5.0 | 13 | 71.4 | 5.9 | 13 | 0.60% | 3.32 [−0.89, 7.53] |
Ribeiro et al., 2015_1 [58] | 75.0 | 6.4 | 5 | 72.1 | 6.6 | 5 | 0.20% | 2.90 [−5.16, 10.96] |
Ribeiro et al., 2015_2 [58] | 76.5 | 9.9 | 5 | 73.0 | 9.1 | 5 | 0.10% | 3.50 [−8.29, 15.29] |
Roberts et al., 2007_2 [59] | 64.9 | 8.0 | 16 | 63.9 | 8.4 | 16 | 0.30% | 1.00 [−4.68, 6.68] |
Rogerson et al., 2007_2 [60] | 78.0 | 8.4 | 11 | 76.8 | 8.4 | 11 | 0.20% | 1.20 [−5.82, 8.22] |
Schumann et al., 2014_1 [61] | 62.9 | 2.6 | 16 | 60.9 | 2.8 | 16 | 3.10% | 2.00 [0.13, 3.87] |
Schumann et al., 2014_2 [61] | 60.7 | 3.6 | 18 | 59.3 | 3.5 | 18 | 2.00% | 1.40 [−0.92, 3.72] |
Shelmadine et al., 2009_2 [62] | 55.8 | 6.8 | 9 | 54.9 | 6.4 | 9 | 0.30% | 0.95 [−5.16, 7.06] |
Snijders et al., 2015_1 [63] | 64.8 | 6.1 | 19 | 62.9 | 5.7 | 19 | 0.80% | 1.90 [−1.85, 5.65] |
Spence et al., 2011 [64] | 65.5 | 9.7 | 13 | 63.1 | 9.0 | 13 | 0.20% | 2.40 [−4.79, 9.59] |
Spillane et al., 2009_3 [65] | 56.3 | 10.2 | 10 | 54.6 | 10.1 | 10 | 0.10% | 1.70 [−7.18, 10.58] |
Spillane et al., 2011_1 [66] | 57.0 | 9.9 | 19 | 56.4 | 10.3 | 19 | 0.30% | 0.59 [−5.83, 7.01] |
Terzis et al., 2008 [67] | 65.4 | 9.6 | 8 | 65.0 | 9.6 | 8 | 0.10% | 0.40 [−9.01, 9.81] |
Terzis et al., 2008b [68] | 62.6 | 6.6 | 11 | 62.2 | 6.6 | 11 | 0.40% | 0.44 [−5.08, 5.96] |
Thomson et al., 2009_2 [69] | 61.8 | 5.4 | 17 | 61.4 | 6.1 | 17 | 0.70% | 0.40 [−3.47, 4.27] |
Tomljanović et al., 2011 [70] | 69.2 | 10.4 | 23 | 68.3 | 10.6 | 23 | 0.30% | 0.92 [−5.15, 6.99] |
Wilborn, et al., 2010_2 [71] | 69.6 | 8.1 | 13 | 67.9 | 8.3 | 13 | 0.30% | 1.64 [−4.64, 7.92] |
Willoughby et al., 2007_2 [72] | 68.8 | 10.3 | 10 | 63.2 | 9.4 | 10 | 0.10% | 5.62 [−3.02, 14.26] |
Willoughby et al., 2014_1 [73] | 63.9 | 11.9 | 9 | 61.2 | 10.6 | 9 | 0.10% | 2.70 [−7.69, 13.09] |
Wilson et al., 2013_1 [74] | 70.5 | 7.6 | 10 | 68.5 | 8.2 | 10 | 0.20% | 2.00 [−4.93, 8.93] |
Wilson et al., 2014_1 [75] | 69.2 | 1.1 | 9 | 67.1 | 1.1 | 9 | 10.60% | 2.10 [1.08, 3.12] |
Zamani et al., 2017_1 [76] | 56.2 | 1.3 | 10 | 54.9 | 1.3 | 10 | 8.30% | 1.26 [0.11, 2.41] |
Zamani et al., 2017_2 [76] | 54.6 | 1.6 | 10 | 53.7 | 1.2 | 10 | 6.90% | 0.91 [−0.35, 2.17] |
Zamani et al., 2017_3 [76] | 50.5 | 5.9 | 10 | 49.8 | 6.3 | 10 | 0.40% | 0.72 [−4.63, 6.07] |
Total (95% CI) | 951 | 951 | 100.00% | 1.56 [1.23, 1.89] | ||||
Heterogeneity: Tau² = 0.00; Chi² = 18.14, df = 81 (p = 1.00); I² = 0% | Test for overall effect: Z = 9.22 (p < 0.00001) | |||||||
Lean Muscle Mass (LMM) | ||||||||
Alcaraz et al., 2011_1 [77] | 56.4 | 5.3 | 11 | 55.2 | 5.9 | 11 | 0.5% | 1.20 [−3.49, 5.89] |
Alcaraz et al., 2011_2 [77] | 60.3 | 5.2 | 15 | 58.8 | 4.6 | 15 | 1.0% | 1.50 [−2.01, 5.01] |
Alvehus et al., 2014 [20] | 59.0 | 6.5 | 17 | 56.8 | 6.0 | 17 | 0.7% | 2.20 [−2.00, 6.40] |
Andre et al., 2016_1 [78] | 60.5 | 9.1 | 10 | 58.9 | 9.7 | 10 | 0.2% | 1.60 [−6.64, 9.84] |
Ara et al., 2006 [79] | 56.5 | 4.2 | 12 | 55.9 | 4.2 | 12 | 1.1% | 0.60 [−2.76, 3.96] |
Bemben et al., 2001_2 [80] | 95.9 | 6.7 | 8 | 95.7 | 7.3 | 8 | 0.3% | 0.20 [−6.67, 7.07] |
Brown et al., 1999_2 [81] | 66.0 | 2.5 | 10 | 63.1 | 2.6 | 10 | 1.6% | 2.90 [0.66, 5.14] |
Burke et al., 2001_3 [82] | 62.5 | 2.6 | 5 | 61.5 | 2.7 | 5 | 0.8% | 1.00 [−2.29, 4.29] |
Caldow et al., 2015 [83] | 60.7 | 5.6 | 10 | 59.6 | 5.2 | 10 | 0.5% | 1.10 [−3.64, 5.84] |
Chycki et al., 2016_1 [84] | 60.6 | 5.2 | 6 | 58.6 | 5.3 | 6 | 0.3% | 2.00 [−3.94, 7.94] |
Chycki et al., 2016_2 [84] | 64.3 | 3.2 | 6 | 63.2 | 3.6 | 6 | 0.8% | 1.10 [−2.75, 4.95] |
Chycki et al., 2016_3 [84] | 63.2 | 3.6 | 6 | 63.1 | 3.8 | 6 | 0.7% | 0.10 [−4.09, 4.29] |
Deyssig et al., 1993_1 [85] | 83.6 | 3.2 | 11 | 76.4 | 3.6 | 11 | 1.5% | 7.20 [4.35, 10.05] |
Escalante et al., 2016_1 [86] | 62.0 | 9.7 | 10 | 61.2 | 9.7 | 10 | 0.2% | 0.80 [−7.70, 9.30] |
Fahey and Brown 1973_1 [87] | 66.1 | 9.4 | 13 | 63.6 | 8.6 | 13 | 0.2% | 2.50 [−4.43, 9.43] |
Falk et al., 2003_1 [88] | 79.0 | 9.2 | 15 | 77.0 | 8.6 | 15 | 0.3% | 2.00 [−4.37, 8.37] |
Falk et al., 2003_2 [88] | 72.7 | 7.7 | 13 | 71.5 | 8.0 | 13 | 0.3% | 1.20 [−4.84, 7.24] |
Fyfe et al., 2016 [89] | 60.9 | 5.5 | 8 | 60.1 | 6.0 | 8 | 0.4% | 0.80 [−4.84, 6.44] |
Garthe et al., 2013_1 [33] | 61.2 | 8.8 | 21 | 59.4 | 8.9 | 21 | 0.4% | 1.80 [−3.55, 7.15] |
Garthe et al., 2013_2 [33] | 61.1 | 6.6 | 18 | 59.9 | 6.7 | 18 | 0.6% | 1.20 [−3.14, 5.54] |
Glowacki et al., 2004 [90] | 64.3 | 8.5 | 13 | 61.8 | 8.7 | 13 | 0.3% | 2.50 [−4.11, 9.11] |
Gobbo et al., 2013 [91] | 32.4 | 3.5 | 15 | 31.7 | 3.3 | 15 | 2.0% | 0.70 [−1.73, 3.13] |
Harber et al., 2004 [92] | 67.3 | 3.4 | 8 | 65.4 | 3.4 | 8 | 1.1% | 1.90 [−1.43, 5.23] |
Hoffman et al., 2009_3 [93] | 77.0 | 14.3 | 7 | 76.6 | 13.3 | 7 | 0.1% | 0.40 [−14.07, 14.87] |
Hoffman et al., 2012 [94] | 65.6 | 2.2 | 9 | 65.5 | 1.9 | 9 | 3.3% | 0.10 [−1.80, 2.00] |
Ihalainen et al., 2018_1 [95] | 62.5 | 6.1 | 37 | 61.3 | 6.1 | 37 | 1.5% | 1.20 [−1.58, 3.98] |
Ihalainen et al., 2018_2 [95] | 59.1 | 5.0 | 31 | 58.6 | 5.1 | 31 | 1.9% | 0.50 [−2.01, 3.01] |
Joy et al., 2014_1 [39] | 61.0 | 5.6 | 12 | 58.5 | 5.5 | 12 | 0.6% | 2.50 [-1.94, 6.94] |
Joy et al., 2016_1 [96] | 65.5 | 6.9 | 11 | 65.3 | 8.1 | 11 | 0.3% | 0.20 [−6.09, 6.49] |
Kelly et al, 1998_1 [97] | 78.0 | 11.8 | 9 | 75.2 | 12.0 | 9 | 0.1% | 2.80 [−8.20, 13.80] |
Kerksick et al., 2009_1 [98] | 62.2 | 6.1 | 24 | 61.2 | 6.1 | 24 | 1.0% | 1.00 [−2.45, 4.45] |
Kerksick et al., 2006_3 [99] | 63.5 | 7.3 | 11 | 63.5 | 8.2 | 11 | 0.3% | 0.00 [−6.49, 6.49] |
King et al., 1999_1 [100] | 64.1 | 2.4 | 9 | 61.2 | 2.5 | 9 | 2.3% | 2.90 [0.64, 5.16] |
Ko and Choi 2013 [101] | 56.0 | 10.9 | 18 | 55.0 | 10.5 | 18 | 0.2% | 1.00 [−5.99, 7.99] |
Kreider et al., 2002_1 [102] | 76.1 | 3.0 | 23 | 75.5 | 3.1 | 23 | 3.8% | 0.60 [−1.16, 2.36] |
Lemon et al., 1992_2 [103] | 73.4 | 10.5 | 12 | 73.4 | 10.5 | 12 | 0.2% | 0.00 [−8.40, 8.40] |
lo et al., 2011 [104] | 50.8 | 3.3 | 10 | 50.5 | 3.9 | 10 | 1.2% | 0.30 [−2.87, 3.47] |
Lowery et al., 2014 [105] | 60.8 | 5.8 | 12 | 58.8 | 6.3 | 12 | 0.5% | 2.00 [−2.85, 6.85] |
Mangine et al., 2008_1 [106] | 71.4 | 9.9 | 8 | 69.3 | 10.5 | 8 | 0.1% | 2.10 [−7.90, 12.10] |
Mangine et al., 2008_2 [106] | 71.8 | 8.4 | 9 | 69.5 | 8.1 | 9 | 0.2% | 2.30 [−5.32, 9.92] |
Mayhew et al., 2009 [107] | 50.5 | 2.5 | 21 | 49.6 | 2.4 | 21 | 5.4% | 0.90 [−0.58, 2.38] |
Miller et al., 1984 [108] | 66.6 | 2.2 | 8 | 64.3 | 2.1 | 8 | 2.7% | 2.30 [0.19, 4.41] |
Moore et al., 2007 [109] | 64.8 | 6.7 | 12 | 61.6 | 6.9 | 12 | 0.4% | 3.20 [−2.24, 8.64] |
Nybo et al., 2010 [9] | 62.8 | 2.7 | 8 | 61.0 | 2.3 | 8 | 2.0% | 1.80 [−0.66, 4.26] |
Oliver et al., 2013_1 [52] | 64.2 | 8.5 | 11 | 61.9 | 8.9 | 11 | 0.2% | 2.30 [−4.97, 9.57] |
Oliver et al., 2013_2 [52] | 64.3 | 6.8 | 11 | 63.3 | 7.0 | 11 | 0.4% | 1.00 [−4.77, 6.77] |
Paoli et al., 2017_1 [110] | 62.4 | 3.3 | 18 | 60.3 | 3.5 | 18 | 2.4% | 2.10 [−0.12, 4.32] |
Paoli et al., 2017_2 [110] | 64.2 | 4.9 | 18 | 60.9 | 4.7 | 18 | 1.2% | 3.30 [0.16, 6.44] |
Peeters et al., 1999_1 [111] | 75.4 | 12.9 | 14 | 75.3 | 12.8 | 14 | 0.1% | 0.10 [−9.42, 9.62] |
Peronnet et al., 1986 [112] | 66.3 | 2.1 | 7 | 64.5 | 2.2 | 7 | 2.4% | 1.80 [−0.45, 4.05] |
Pérez-Gómez et al., 2013 [56] | 58.3 | 7.1 | 8 | 57.5 | 7.6 | 8 | 0.2% | 0.80 [−6.41, 8.01] |
Saremi et al., 2010_1 [113] | 62.3 | 1.3 | 8 | 60.3 | 1.5 | 8 | 6.3% | 2.00 [0.62, 3.38] |
Schneider et al., 2003 [114] | 59.1 | 3.3 | 7 | 57.2 | 3.0 | 7 | 1.1% | 1.90 [−1.40, 5.20] |
Schumann et al., 2014_1 [61] | 57.2 | 5.0 | 16 | 55.6 | 4.5 | 16 | 1.1% | 1.60 [−1.70, 4.90] |
Schumann et al., 2014_2 [61] | 55.9 | 4.6 | 18 | 54.1 | 4.1 | 18 | 1.5% | 1.80 [−1.05, 4.65] |
Slater et al., 2001_1 [115] | 70.1 | 1.0 | 7 | 69.2 | 1.2 | 7 | 8.9% | 0.90 [−0.26, 2.06] |
Spence et al., 2011 [64] | 59.1 | 2.5 | 13 | 56.9 | 2.5 | 13 | 3.2% | 2.20 [0.28, 4.12] |
Spillane et al., 2016_1 [116] | 62.1 | 5.3 | 11 | 61.8 | 4.3 | 11 | 0.7% | 0.30 [−3.73, 4.33] |
Taylor et al., 2011_1 [117] | 66.2 | 8.3 | 15 | 65.7 | 8.8 | 15 | 0.3% | 0.50 [−5.62, 6.62] |
Thorstensson et al., 1976 [118] | 65.0 | 1.2 | 14 | 62.8 | 1.3 | 14 | 13.9% | 2.20 [1.27, 3.13] |
Tinsley et al., 2017_1 [119] | 58.7 | 8.0 | 18 | 56.4 | 9.3 | 18 | 0.4% | 2.30 [−3.37, 7.97] |
Volek et al., 2004 [120] | 70.6 | 5.8 | 9 | 67.2 | 5.6 | 9 | 0.4% | 3.40 [−1.87, 8.67] |
Yan et al., 2016_1 [121] | 58.8 | 4.7 | 8 | 57.9 | 5.0 | 8 | 0.5% | 0.90 [−3.86, 5.66] |
Yan et al., 2016_2 [121] | 61.0 | 7.7 | 9 | 59.5 | 7.3 | 9 | 0.2% | 1.50 [−5.43, 8.43] |
Yan et al., 2016_3 [121] | 59.3 | 6.6 | 8 | 57.6 | 6.5 | 8 | 0.3% | 1.70 [−4.72, 8.12] |
Total (95% CI) | 810 | 810 | 100% | 1.65 [1.28, 2.01] | ||||
Heterogeneity: Tau² = 0.00; Chi² = 33.79, df = 64 (p = 1.00); I² = 0% | Test for overall effect: Z = 8.91 (p < 0.00001) |
Model | n Studies/ Groups | Estimate | Lower | Upper | p | Estimate | Lower | Upper | p | τ2 | Adj. R2 | I2 | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intrcpt | Moderator coeff. | Heterogeneity | |||||||||||
Overall Effects | |||||||||||||
No covariables | 158 | 1.530 | 1.300 | 1.753 | <0.001 | 0 (SE = 0.13) | 0% | 1.000 | |||||
Participants Characteristics | |||||||||||||
Age (years) | 142 | 0.943 | −0.962 | 2.849 | 0.332 | 0.02 | −0.06 | 0.10 | 0.58 | 0 (SE = 0.15) | NA% | 0% | 1.000 |
Weight (kg) | 150 | 1.138 | −1.822 | 4.098 | 0.451 | 0.00 | −0.03 | 0.04 | 0.82 | 0 (SE = 0.14) | NA% | 0% | 1.000 |
Height (m) | 126 | −0.014 | −6.032 | 6.004 | 0.996 | 0.80 | −2.58 | 4.18 | 0.64 | 0 (SE = 0.15) | NA% | 0% | 1.000 |
Training Status | 119 | 1.547 | 1.167 | 1.927 | <0.001 | −0.16 | −0.40 | 0.08 | 0.19 | 0 (SE = 0.18) | NA% | 0% | 1.000 |
Training Characteristics | |||||||||||||
Study Durations (weeks) | 156 | 1.428 | 0.896 | 1.960 | <0.001 | 0.01 | −0.04 | 0.06 | 0.69 | 0 (SE = 0.13) | NA% | 0% | 1.000 |
Sessions | 152 | 1.492 | 0.939 | 2.045 | <0.001 | 0.00 | −0.02 | 0.02 | 0.89 | 0 (SE = 0.13) | NA% | 0% | 1.000 |
Days per week | 149 | 1.528 | 0.502 | 2.553 | 0.004 | −0.01 | −0.31 | 0.30 | 0.97 | 0 (SE = 0.14) | NA% | 0% | 1.000 |
n exercises per workout | 141 | 1.423 | 0.640 | 2.207 | <0.001 | 0.01 | −0.09 | 0.11 | 0.87 | 0 (SE = 0.16) | NA% | 0% | 1.000 |
Rest between exercise (min) | 121 | 1.336 | 0.646 | 2.025 | <0.001 | 0.05 | −0.23 | 0.32 | 0.74 | 0 (SE = 0.16) | NA% | 0% | 1.000 |
n set per workout | 123 | 1.853 | 1.453 | 2.253 | <0.001 | −0.03 | −0.05 | −0.00 | 0.04 | 0 (SE = 0.14) | NA% | 0% | 1.000 |
range repetitions | 123 | 1.257 | 0.486 | 2.029 | 0.001 | 0.02 | −0.07 | 0.12 | 0.61 | 0 (SE = 0.17) | NA% | 0% | 1.000 |
Training duration (min) | 35 | 1.548 | −0.248 | 3.344 | 0.091 | 0.00 | −0.03 | 0.03 | 0.75 | 0 (SE = 0.40) | NA% | 0% | 1.000 |
Average Intensity (%1RM) | 89 | 2.353 | −1.383 | 6.089 | 0.217 | −0.01 | −0.06 | 0.04 | 0.63 | 0 (SE = 0.22) | NA% | 0% | 1.000 |
Fat Free Mass | |||||||||||||
No covariables | 82 | 1.550 | 1.223 | 1.886 | <0.001 | 0 (SE = 1.91) | 0% | 1.000 | |||||
Participants Characteristics | |||||||||||||
Age (years) | 77 | 1.116 | −1.534 | 3.766 | 0.409 | 0.02 | −0.09 | 0.13 | 0.74 | 0 (SE = 1.95) | NA% | 0% | 1.000 |
Weight (kg) | 80 | −0.183 | −4.371 | 4.006 | 0.932 | 0.02 | −0.03 | 0.08 | 0.42 | 0 (SE = 0.21) | NA% | 0% | 1.000 |
Height (m) | 67 | −1.960 | −18.842 | 14.930 | 0.82 | 1.96 | −7.55 | 11.46 | 0.69 | 0 (SE = 0.21) | NA% | 0% | 1.000 |
Training Status | 70 | 1.530 | 1.082 | 1.978 | <0.001 | −0.13 | −0.41 | 0.15 | 0.37 | 0 (SE = 0.24) | NA% | 0% | 1.000 |
Training Characteristics | |||||||||||||
Study Durations (weeks) | 80 | 1.314 | 0.534 | 2.094 | <0.001 | 0.02 | −0.05 | 0.10 | 0.50 | 0 (SE = 0.20) | NA% | 0% | 1.000 |
Sessions | 76 | 1.172 | 0.297 | 2.047 | 0.009 | 0.01 | −0.01 | 0.04 | 0.35 | 0 (SE = 0.20) | NA% | 0% | 1.000 |
Days per week | 76 | 1.154 | −0.325 | 2.633 | 0.126 | 0.11 | −0.30 | 0.53 | 0.59 | 0 (SE = 0.20) | NA% | 0% | 1.000 |
n exercises per workout | 73 | 1.280 | 0.238 | 2.321 | 0.016 | 0.04 | −0.10 | 0.17 | 0.59 | 0 (SE = 0.21) | NA% | 0% | 1.000 |
Rest between exercise (min) | 56 | 2.086 | 0.096 | 4.075 | 0.04 | -0.36 | −1.40 | 0.68 | 0.50 | 0 (SE = 0.27) | NA% | 0% | 1.000 |
n set per workout | 66 | 1.739 | 1.181 | 2.296 | <0.001 | -0.01 | −0.05 | 0.02 | 0.49 | 0 (SE = 0.20) | NA% | 0% | 1.000 |
range repetitions | 72 | 1.199 | 0.335 | 2.064 | 0.007 | 0.05 | −0.07 | 0.17 | 0.38 | 0 (SE = 0.20) | NA% | 0% | 1.000 |
Training duration (min) | 26 | 1.467 | −1.415 | 4.349 | 0.318 | 0.01 | −0.05 | 0.06 | 0.79 | 0 (SE = 0.47) | NA% | 0% | 1.000 |
Average Intensity (%1RM) | 45 | 3.993 | −3.027 | 11.012 | 0.265 | -0.03 | −0.12 | 0.06 | 0.48 | 0 (SE = 0.26) | NA% | 0% | 1.000 |
Lean Muscle Mass | |||||||||||||
No covariables | 65 | 1.644 | 1.275 | 2.013 | <0.0001 | 0.03 (SE = 0.24) | 1% | 0.999 | |||||
Participants Characteristics | |||||||||||||
Age (years) | 54 | 1.020 | −1.964 | 4.005 | 0.5028 | 0.02 | −0.10 | 0.14 | 0.73 | 0.03 (SE = 0.33) | NA% | 1% | 0.996 |
Weight (kg) | 60 | 4.870 | 0.002 | 9.739 | 0.0499 | −0.04 | −0.10 | 0.02 | 0.18 | 0 (SE = 0.25) | NA% | 0% | 1.000 |
Height (m) | 49 | 0.107 | −6.453 | 6.666 | 0.9746 | 0.73 | −2.94 | 4.40 | 0.70 | 0 (SE = 0.33) | NA% | 0% | 1.000 |
Training Status | 41 | 1.584 | 0.721 | 2.446 | 0.0003 | −0.15 | −0.66 | 0.36 | 0.57 | 0 (SE = 0.44) | NA% | 0% | 1.000 |
Training Characteristics | |||||||||||||
Study Durations (weeks) | 65 | 1.701 | 0.881 | 2.521 | <0.0001 | −0.01 | −0.08 | 0.07 | 0.87 | 0.04 (SE = 0.26) | 0.00 | 2% | 0.999 |
Sessions | 65 | 1.860 | 1.087 | 2.633 | <0.0001 | −0.01 | −0.03 | 0.02 | 0.53 | 0.05 (SE = 0.26) | 0 | 2% | 0.999 |
Days per week | 62 | 1.996 | −0.184 | 4.175 | 0.0727 | --0.13 | −0.84 | 0.58 | 0.72 | 0 (SE = 0.24) | NA% | 0% | 1.000 |
n exercises per workout | 57 | 1.661 | 0.289 | 3.032 | 0.0176 | −0.01 | −0.18 | 0.16 | 0.92 | 0 (SE = 0.45) | NA% | 0% | 1.000 |
Rest between exercise (min) | 54 | 1.458 | 0.279 | 2.636 | 0.0153 | 0.06 | −0.37 | 0.50 | 0.78 | 0 (SE = 0.26) | NA% | 0% | 1.000 |
n set per workout | 46 | 2.082 | 1.417 | 2.748 | <0.0001 | −0.04 | −0.09 | 0.01 | 0.09 | 0 (SE = 0.29) | NA% | 0% | 1.000 |
range repetitions | 44 | 0.601 | −1.874 | 3.076 | 0.6341 | 0.08 | −0.17 | 0.33 | 0.54 | 0 (SE = 0.43) | NA% | 0% | 1.000 |
Training duration (min) | 9 | 1.256 | −1.867 | 4.379 | 0.4306 | 0.01 | −0.03 | 0.05 | 0.75 | 0 (SE = 1.61) | NA% | 0% | 0.998 |
Average Intensity (%1RM) | 41 | 0.807 | −3.984 | 5.598 | 0.7413 | 0.01 | −0.05 | 0.07 | 0.77 | 0 (SE = 0.54) | NA% | 0% | 1.000 |
Skeletal Mascle Mass | |||||||||||||
No covariables | 11 | 1.11 | 0.519 | 1.709 | <0.001 | 0 (SE = 0.41) | 0% | 0.920 | |||||
Participants Characteristics | |||||||||||||
Age (years) | 11 | 1.5 | −7.901 | 10.901 | 0.755 | −0.017 | −0.424 | 0.391 | 0.936 | 0 (SE = 0.48) | NA% | 0% | 0.873 |
Weight (kg) | 10 | −1.792 | −15.819 | 12.236 | 0.802 | 0.038 | −0.152 | 0.227 | 0.695 | 0 (SE = 0.56) | NA% | 0% | 0.863 |
Height (m) | 10 | −3.23 | −41.849 | 35.385 | 0.870 | 2.37 | −19.223 | 23.964 | 0.830 | 0 (SE = 0.55) | NA% | 0% | 0.853 |
Training Status | 8 | 2.448 | 0.418 | 4.478 | 0.018 | −0.893 | −2.259 | 0.474 | 0.201 | 0 (SE = 0.51) | NA% | 0% | 0.956 |
Training Characteristics | |||||||||||||
Study Durations (weeks) | 11 | 0.885 | −0.935 | 2.704 | 0.341 | 0.023 | −0.148 | 0.194 | 0.794 | 0 (SE = 0.44) | NA% | 0% | 0.878 |
Sessions | 11 | 1.941 | −2.455 | 6.337 | 0.387 | −0.027 | −0.171 | 0.116 | 0.710 | 0 (SE = 0.48) | NA% | 0% | 0.884 |
Days per week | 11 | 1.824 | −0.571 | 4.219 | 0.136 | −0.217 | −0.926 | 0.492 | 0.549 | 0 (SE = 0.44) | NA% | 0% | 0.900 |
n exercises per workout | 11 | 3.197 | 0.25 | 6.143 | 0.034 | −0.305 | −0.728 | 0.118 | 0.157 | 0 (SE = 0.44) | NA% | 0% | 0.980 |
Rest between exercise (min) | 11 | 0.719 | −0.657 | 2.095 | 0.306 | 0.141 | −0.301 | 0.583 | 0.532 | 0 (SE = 0.44) | NA% | 0% | 0.902 |
n set per workout | 11 | 1.489 | 0.304 | 2.674 | 0.014 | −0.022 | −0.082 | 0.038 | 0.474 | 0 (SE = 0.45) | NA% | 0% | 0.910 |
range repetitions | 7 | 3.056 | −8.385 | 14.497 | 0.601 | −0.247 | −1.593 | 1.1 | 0.720 | 0 (SE = 0.72) | NA% | 0% | 0.968 |
Training duration (min) | |||||||||||||
Average Intensity (%1RM) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benito, P.J.; Cupeiro, R.; Ramos-Campo, D.J.; Alcaraz, P.E.; Rubio-Arias, J.Á. A Systematic Review with Meta-Analysis of the Effect of Resistance Training on Whole-Body Muscle Growth in Healthy Adult Males. Int. J. Environ. Res. Public Health 2020, 17, 1285. https://doi.org/10.3390/ijerph17041285
Benito PJ, Cupeiro R, Ramos-Campo DJ, Alcaraz PE, Rubio-Arias JÁ. A Systematic Review with Meta-Analysis of the Effect of Resistance Training on Whole-Body Muscle Growth in Healthy Adult Males. International Journal of Environmental Research and Public Health. 2020; 17(4):1285. https://doi.org/10.3390/ijerph17041285
Chicago/Turabian StyleBenito, Pedro J., Rocío Cupeiro, Domingo J. Ramos-Campo, Pedro E. Alcaraz, and Jacobo Á. Rubio-Arias. 2020. "A Systematic Review with Meta-Analysis of the Effect of Resistance Training on Whole-Body Muscle Growth in Healthy Adult Males" International Journal of Environmental Research and Public Health 17, no. 4: 1285. https://doi.org/10.3390/ijerph17041285