The Impact of Efficacy, Values, and Knowledge on Public Preferences Concerning Food–Water–Energy Policy Tradeoffs
Abstract
:1. Introduction
2. The Food–Water–Energy (FWE) Nexus
3. Values–Beliefs–Norms (VBN) Theory and Correlates of FWE Tradeoffs
3.1. Efficacy
3.2. Values and Beliefs
3.3. Knowledge
3.4. Demographic Control Variables
4. Methods and Data
State | Surveys | Responses | Response Rate | Online Return Rate |
---|---|---|---|---|
California | 1170 | 435 | 37.2% | 31.7% |
Idaho | 1175 | 440 | 37.4% | 18.9% |
Oregon | 1173 | 475 | 40.5% | 24.2% |
Washington | 1177 | 454 | 38.6% | 19.2% |
5. State Case Studies
6. Findings: Policy Tradeoffs
7. Multivariate Analyses
7.1. Dependent Variables: Policy Support
7.2. Independent Variables
8. Results
9. Discussion
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benites-Lazaro, L.L.; Giatti, L.L.; Sousa, W.C.; Giarolla, A. Land-water-food nexus of biofuels: Discourse and policy debates in Brazil. Environ. Dev. 2020, 33. [Google Scholar] [CrossRef]
- Rulli, M.C.; Bellomi, A.; Cazzoli, G.; De Carols, G.; D’Odorico, P. The water-land-food nexus of first-generation biofuels. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Gorter, H.; Drabik, D.; Just, D.R. The economics of biofuel policies: Impacts on price volatility in grain and oilseed markets. In Palgrave Studies in Agricultural Economics and Food Policy; Palgrave Macmillan: New York, NY, USA, 2015. [Google Scholar]
- Evans, A.E.V.; Mateo-Sagasta, J.; Qadir, M.; Boelee, E.; Ippolito, A. Agricultural water pollution: Key knowledge gaps and research needs. Curr. Opin. Environ. Sustain. 2019, 36, 20–27. [Google Scholar] [CrossRef]
- Simpson, G.B.; Jewitt, G.P.W. The Development of the Water-Energy-Food Nexus as a framework for Achieving Resource Security: A Review. Front. Environ. Sci. 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The Water-Energy-Food Nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13, 4. [Google Scholar] [CrossRef]
- Hoff, H. Understanding the Nexus. In Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus; Stockholm Environment Institute: Stockholm, Sweden, 2011. [Google Scholar]
- Scott, C.A.; Kurian, M.; Wescoat, J.L., Jr. Governing the nexus. In The Water-Energy-Food Nexus: Enhancing Adaptive Capacity to Complex Global Challenges; Springer: Berlin, Germany, 2016; pp. 15–38. [Google Scholar]
- Hibbard, K.; Wilson, T. Water, energy, and land use. In Climate Change Impacts in the U.S. Global Change Research Program; The Third National Climate Assessment: Washington, DC, USA, 2014. [Google Scholar] [CrossRef]
- Yillia, P. Water-Energy-Food nexus: Framing the opportunities, challenges and synergies for implementing the SDGs. Österr Wasser- und Abfallw 2016, 68, 86–98. [Google Scholar] [CrossRef]
- Portney, K.E.; Hannibal, B.; Goldsmith, C.; McGee, P.; Liu, X.; Vedlitz, A. Awareness of the food-water-energy nexus and public policy support in the United States: Public attitudes among the American people. Environ. Behav. 2017, 50, 1–26. [Google Scholar] [CrossRef]
- Bullock, J.B.; Bowman, A.O. Exploring citizen’s support for policy tools at the food, energy, water nexus. Environ. Prog. Sustain. Energy 2017, 37, 148–154. [Google Scholar] [CrossRef]
- Page, B.; Shapiro, R. Effects of public opinion on policy. Am. J. Political Sci. 1983, 77, 175–190. [Google Scholar] [CrossRef]
- Dietz, T.; Dan, A.; Shwom, R. Support for climate change policy: Social psychological and social structural influences. Rural Sociol. 2007, 72, 185–214. [Google Scholar] [CrossRef] [Green Version]
- Steg, L.; Dreijerink, L.; Abrahamse, W. Factors influencing the acceptability of energy policies: A test of VBN theory. J. Environ. Psychol. 2005, 25, 415–425. [Google Scholar] [CrossRef]
- Mohtar, R.H.; Daher, B. Water, Energy, and Food: The Ultimate Nexus. In Encyclopedia of Agricultural, Food, and Biological Engineering, 2nd ed.; Informa UK Limited: London, UK, 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Cai, X.; Wallington, K.; Shafiee-Jood, M.; Marston, L. Understanding and managing the food-energy-water nexus—Opportunities for water resources research. Adv. Water Resour. 2018, 111, 259–273. [Google Scholar] [CrossRef]
- Allouche, J.; Middleton, C.; Gyawali, D. Nexus Nirvana or Nexus Nullity? A Dynamic Approach to Security and Sustainability in the Water-Energy-Food Nexus; STEPS Centre: Brighton, UK, 2014. [Google Scholar]
- World Economomic Forum. Water Security: The Water-Food-Energy-Climate Nexus; Island Press: Washington, DC, USA, 2011. [Google Scholar]
- Al-Saidi, M.; Elagib, N.A. Towards understanding the integrative approach of the water, energy and food nexus. Sci. Total Environ. 2017, 574, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Yumkella, K.K. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar] [CrossRef]
- Johnson, N.; Burek, P.; Parkinson, S.; Havlik, P.; Nakicenovic, N.; Riahi, K.; David, D. Modeling the energy-water-land nexus: A review of opportunities and challenges for integrated assessment modeling. Int. Inst. Appl. Syst. Anal. 2015, 48, 12–23. [Google Scholar]
- Allan, T.; Keulertz, M.; Woertz, E. The water–food–energy nexus: An introduction to nexus concepts and some conceptual and operational problems. Int. J. Water Resour. D 2015, 31, 301–311. [Google Scholar] [CrossRef]
- Mohtar, R.H. The Water-Energy-Food Nexus: Who owns it? Policy Brief. OCP Policy Center 2016, 57, 2. [Google Scholar]
- Larcom, S.; van Gevelt, T. Regulating the water-energy-food nexus: Interdependencies, transaction costs and procedural justice. Environ. Sci. Policy 2017, 72, 55–64. [Google Scholar] [CrossRef]
- Bizikova, L.; Swanson, D. The Water-Energy-Food Security Nexus: Towards a Practical Planning and Decision-Support Framework for Landscape Investment and Risk Management; International Institute for Sustainable Development: Winnipeg, MB, Canada, 2013. [Google Scholar]
- Wichelns, D. The water-energy-food nexus: Is the increasing attention warranted, from either a research or policy perspective? Environ. Sci. Policy 2017, 69, 113–123. [Google Scholar] [CrossRef]
- Hellegers, P.; Zilberman, D.; Steduto, P.; McCornick, P. Interactions between water, energy, food and environment: Evolving perspectives and policy issues. Water Policy 2008, 10, 1–10. [Google Scholar] [CrossRef]
- Stern, P.; Dietz, T.; Abel, Y.; Guagnano, G.; Kalof, L. A Value-belief-norm theory of support for social movements: The case of environmentalism. Hum. Ecol. Rev. 1999, 6, 81–97. [Google Scholar]
- Stern, P. Toward a coherent theory of environmentally significant behavior. J. Soc. Issues 2000, 56, 407–424. [Google Scholar] [CrossRef]
- Dunlap, R.; Van Liere, K.; Mertig, A.; Jones, R. Measuring endorsement of the New Ecological Paradigm: A revised NEP scale. J. Soc Issues 2000, 56, 425–442. [Google Scholar] [CrossRef]
- Lind, H.; Nordfjaern, T.; Jorgensen, S.; Rundmo, T. The Value-belief-norm theory, personal norms and sustainable travel mode choice in urban areas. J. Environ. Psychol. 2015, 44, 119–125. [Google Scholar] [CrossRef]
- Sawitri, D.; Hadiyanto, H.; Hadi, S. Pro-environmental behavior from a Social Cognitive Theory perspective. Procedia Environ. Sci. 2015, 23, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Steel, B.S. Thinking globally and acting locally? Environmental attitudes, behavior and activism. J. Environ. Manag. 1996, 47, 27–36. [Google Scholar] [CrossRef]
- Chen, M. An examination of the value-belief-norm theory model in predicting pro-environmental behaviour in Tawain. Asian J. Soc. Psychol. 2015, 18, 145–151. [Google Scholar] [CrossRef]
- Yu, T.; Yu, T. The moderating effects of students’ personality traits on pro-environmental behavioral intentions in response to climate change. Int. J. Environ. Res. Public Health 2017, 14, 1472. [Google Scholar] [CrossRef] [Green Version]
- Pierce, J.; Steel, B. Prospects for Alternative Energy Development in the U.S. West: Tilting at Windmills? Springer Press: Cham, Switzerland, 2017. [Google Scholar]
- Whitley, C.T.; Takahashi, B.; Zwickle, A.; Besley, J.C.; Lertpratchya, A.P. Sustainability behaviors among college students: An application of the VBN theory. Environ. Educ. Res. 2018, 2, 245–262. [Google Scholar] [CrossRef]
- Bandura, A. A social cognitive perspective on positive psychology. Int. J. Soc. Psychol. 2011, 26, 7–20. [Google Scholar] [CrossRef]
- Strecher, V.J.; DeVellis, B.M.; Becker, M.H.; Rosenstock, I.M. The role of Self-efficacy in Achieving Health Behavior Change. Health Educ. Behav. 1986, 13, 55–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, R.H.; Naud, S. Perceived role of motivation and self-efficacy in smoking cessation: A secondary data analysis. Addict. Behav. 2016, 61, 58–61. [Google Scholar]
- Kellstedt, P.M.; Zahran, S.; Vedlitz, A. Personal efficacy, the information environment, and attitudes toward global warming and climate change in the United States. Risk Anal. 2008, 28, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Milfont, T.L. The Interplay between Knowledge, Perceived Efficacy, and Concern about Global Warming and Climate Change: A One-Year Longitudinal Study. Risk Anal. 2012, 32, 1003–1020. [Google Scholar] [CrossRef]
- Ung, M.; Luginaah, I.; Ratana, C.; Campbell, G. Perceived Self-Efficacy and Adaptation to Climate Change in Coastal Cambodia. Climate 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Bandura, A. Self-Efficacy: The Exercise of Control; W.H. Freeman and Company: New York, NY, USA, 1997. [Google Scholar]
- Lubell, M. Environmental Activism as Collective Action. Environ. Behav. 2002, 34, 431–454. [Google Scholar] [CrossRef]
- Vancouver, J.B.; Moore, K.M.; Yoder, R.J. Self-efficacy and resource allocation: Support for a nonmonotonic, discontinuous model. J. Appl. Psychol. 2008, 93, 35–47. [Google Scholar] [CrossRef]
- Grothmann, T.; Patt, A. Adaptive capacity and human cognition: The process of individual adaptation to climate change. Glob. Environ. Chang. 2005, 15, 199–213. [Google Scholar] [CrossRef]
- Jugert, P.; Greenaway, K.H.; Barth, M.; Büchner, R.; Eisentraut, S.; Fritsche, I. Collective efficacy increases pro-environmental intentions through increasing self-efficacy. J. Environ. Psychol. 2016, 48, 12–23. [Google Scholar] [CrossRef]
- Ockwell, D.; Whitmarsh, L.; O’Neill, S.J. Reorienting Climate Change Communication for Effective Mitigation. Sci. Commun. 2009, 30, 305–327. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.; Dyball, R.; Fazey, I.; Gross, C.; Dovers, S.; Ehrlich, P.R.; Brulle, R.J.; Christensen, C.; Borden, R.J. Human Behaviour and Sustainability. Front. Ecol. Environ. 2012. [Google Scholar] [CrossRef] [Green Version]
- Hardin, G.J. The tragedy of the commons. Science 1968, 162, 1243–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finkel, S.E. Reciprocal Effects of Participation and Political Efficacy: A Panel Analysis. Am. J. Political Sci. 1985, 29, 891–913. [Google Scholar] [CrossRef]
- Wu, H.; Mweemba, L. Environmental self-efficacy, attitude and behavior among small scale farmers in Zambia. Environ. Dev. Sustain. 2010, 12, 727–744. [Google Scholar] [CrossRef]
- Brody, S.D.; Zahran, S.; Vedlitz, A.; Grover, H. Examining the relationship between physical vulnerability and public perceptions of global climate change in the United States. Environ. Behav. 2008, 40, 72–95. [Google Scholar] [CrossRef] [Green Version]
- Spence, A.; Poortinga, W.; Butler, C.; Pidgeon, N.F. Perceptions of climate change and willingness to act sustainably influenced by flood experiences. Nat. Clim. Chang. 2011, 1, 46–49. [Google Scholar] [CrossRef] [Green Version]
- Geiger, N.; Swim, J.; Fraser, J. Creating a climate for change: Interventions, efficacy and public discussion about climate change. J. Environ. Psychol. 2017, 51, 104–116. [Google Scholar] [CrossRef] [Green Version]
- McGinty, M.M.; Swisher, M.; Alavalapati, J. Agroforestry adoption and maintenance: Self-efficacy, attitudes and socio-economic factors. Agrofor. Syst. 2008, 73, 99–108. [Google Scholar] [CrossRef]
- Caprara, G.V.; Steca, P. The contribution of values and self-efficacy beliefs to prosocial behavior across ages. J. Soc. Clin. Psychol. 2017, 26, 218–239. [Google Scholar] [CrossRef]
- Rasit, M.R.; Che Ab Razab, S.Z. The Role of Self-Efficacy and Cognitive Behaviour Therapy in Forming Prosocial Behaviour. Cogn. Behav. Ther. Theor. Appl. 2019. [Google Scholar] [CrossRef] [Green Version]
- Gifford, R.; Nilsson, A. Personal and social factors that influence pro-environmental concern and behaviour: A review. Int. J. Psychol. 2014, 49, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, M.R.; Bergtold, J.S.; Heier Stamm, J.L.; Caldas, M.M.; Ramsey, S.M. Bringing the “social” into sociohydrology: Conservation policy support in the Central Great Plains of Kansas, USA. Water Resour. Res. 2017, 53, 6725–6743. [Google Scholar] [CrossRef]
- Howley, P. Landscape aesthetics: Assessing the general publics’ preferences towards rural landscapes. Ecol. Econ. 2011, 15, 161–169. [Google Scholar] [CrossRef]
- Poortinga, W.; Steg, L.; Vlek, C. Values, environmental concern, and environmental behavior–A study of household energy use. Environ. Behav. 2004, 36, 70–93. [Google Scholar] [CrossRef]
- Stern, P.; Dietz, T.; Guagnano, G. The new ecological paradigm in social-psychological context. Environ. Behav. 1995, 27, 723–743. [Google Scholar] [CrossRef]
- López-Mosquera, N.; Sánchez, M. Theory of Planned Behavior and the Value-Belief-Norm Theory explaining willingness to pay for a suburban park. J. Environ. Manag. 2012, 113, 251–262. [Google Scholar] [CrossRef]
- Salvaggio, M.; Futrell, R.; Batson, C.; Brents, B. Water scarcity in the desert metropolis: How environmental values, knowledge and concern affect Las Vegas residents’ support for water conservation policy. J. Environ. Plann. Man. 2014, 57, 588–611. [Google Scholar] [CrossRef]
- Ntanos, S.; Kyriakopoulos, G.; Skordoulis, M.; Chalikias, M.; Arabatzis, G. An application of the New Environmental Paradigm (NEP) Scale in a Greek Context. Energies 2019, 12, 239. [Google Scholar] [CrossRef] [Green Version]
- Steel, B.; Wolters, E.A.; Warner, R.L. Public preferences for the Food-Water-Energy Tradeoffs in the Western, U.S. Sustainability 2019, 11, 5200. [Google Scholar] [CrossRef] [Green Version]
- Stoutenbotough, J.W.; Vedlitz, A. The effect of perceived and assessed knowledge of climate change on public policy concerns: An empirical comparison. Environ. Sci. Policy 2014, 37, 23–33. [Google Scholar] [CrossRef]
- Gilens, M. Political ignorance and collective policy preferences. Am. Political Sci. Rev. 2001, 95, 379–396. [Google Scholar] [CrossRef]
- Diamond, E.; Bernauer, T.; Mayer, F. Does providing scientific information affect climate change and GMO policy preferences of the mass public? Insights from survey experiments in Germany and the United States. Environ. Polit. 2020. [Google Scholar] [CrossRef]
- Sturgis, P.; Allum, N. Science in society: Re-evaluating the deficit model of public attitudes. Public Underst. Sci. 2004, 13, 55–74. [Google Scholar] [CrossRef] [Green Version]
- Sousa-Silva, R.; Verbist, B.; Lomba, Â.; Valent, P.; Suškevičs, M.; Picard, O.; Hoogstra-Klein, M.A.; Cosofret, C.-V.; Bouriaud, L.; Ponette, Q.; et al. Adapting forest management to climate change in Europe: Linking perceptions to adaptive responses. For. Policy Econ. 2018, 90, 22–30. [Google Scholar] [CrossRef]
- Arcury, T. Environmental attitude and environmental knowledge. Hum. Organ. 1990, 49, 300–304. [Google Scholar] [CrossRef]
- Dietz, T.; Stern, P.C.; Guagnano, G.A. Social structural and social psychological bases of environmental concern. Environ. Behav. 1998, 30, 450–471. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.E.; Dunlap, R.E. The social basis of environmental concern: Have they changed over time? Rural Soc. 1992, 57, 28–47. [Google Scholar] [CrossRef]
- Hines, J.M.; Hungerford, H.R.; Tomera, A.N. Analysis and synthesis of research on responsible environmental behavior. J. Environ. Educ. 1986, 18, 1–8. [Google Scholar] [CrossRef]
- Casey, P.J.; Scott, K. Environmental concern and behavior in an Australian sample within an ecocentric-anthropocentric framework. Aust. J. Psychol. 2006, 58, 56–67. [Google Scholar] [CrossRef]
- Howell, S.E.; Laska, S.B. The changing face of the environmental coalition: A research note. Environ. Behav. 1992, 24, 134–144. [Google Scholar] [CrossRef]
- Xiao, C.; McCright, A.M. Environmental concern and sociodemographic variables: A study of statistical models. J. Environ. Educ. 2007, 38, 3–13. [Google Scholar] [CrossRef]
- Bord, R.J.; O’Connor, R.E. The gender gap in environmental attitudes: The case of perceived vulnerability to risk. Soc. Sci. Q. 1997, 70, 586–593. [Google Scholar]
- Pampel, F.C. The varied influence of SES on environmental concern. Soc. Sci. Q. 2014, 95, 57–75. [Google Scholar] [CrossRef] [PubMed]
- Dillman, D. Mail and Internet Surveys: The Tailored Design Method, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Muller, A.; Schmidhuber, J.; Hoogeveen, J.; Steduko, P. Some insights into the effect of growing bio-energy demand on global food security and natural resources. Water Policy 2008, 10, 83–94. [Google Scholar] [CrossRef]
- The American Association for the Public Opinion Research. Available online: https://www.aapor.org/AAPOR_Main/media/publications/Standard-Definitions20169theditionfinal.pdf (accessed on 11 November 2020).
- Rupert, M.G.; Hunt, C.D.; Skinner, K.D.; Frans, L.M.; Mahler, B.J. The quality of our Nation’s waters: Groundwater quality in the Columbia Plateau and Snake River Plain basin-fill and basaltic-rock aquifers and the Hawaiian volcanic-rock aquifers, Washington, Idaho, and Hawaii, 1993–2005. Circular 2015, 88, 13–59. [Google Scholar] [CrossRef] [Green Version]
- Blumm, M.C.; DeRoy, D. The Fight over Columbia River Columbia River Basin Salmon Spills and the F er Basin Salmon Spills and the Future of the Lower Snake River Dams. Wash. J. Envtl. L Pol’y 2019, 9, 1. [Google Scholar]
- Null, S.E.; Medellin-Azuara, J.; Escriva-Bou, A.; Lent, N.; Lund, J.R. Optimizing the dammed: Water supply losses and fish habitat gains from dam removal in California. J. Environ. Manag. 2014, 136, 121–131. [Google Scholar] [CrossRef]
- McKinnon, I. Competing or Compatible Capitalisms? Exurban Sprawl and High-Value Agriculture in Southwestern Oregon; A Comparative Political Ecology of Exurbia; Taylor, L., Hurley, P., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Paris, A. On the link between oil and agricultural commodity prices: Do biofuels matter? Int. Econ. 2018, 155, 48–60. [Google Scholar] [CrossRef]
- Executive Order S-01-07. Available online: https://research.fit.edu/media/site-specific/researchfitedu/coast-climate-adaptation-library/united-states/west-coast-amp-hawaix27i/california---statewide/Bonner-et-al.--2010.--Climate-Action-Team-Report-to-State-Officials.pdf (accessed on 11 November 2020).
- Christensen, A.; Hobbs, B. A model of state and federal biofuel policy: Feasibility assessment of the California Low Carbon Fuel Standard. Appl. Energy 2016, 169, 799–812. [Google Scholar] [CrossRef] [Green Version]
- Truebner, M. The Dynamics OF “Neither Agree nor Disagree” Answers in Attitudinal Questions. J. Surv. Stat. Methodol. 2019. [Google Scholar] [CrossRef]
- Sturgis, P.; Roberts, C.; Smith, P. Middle Alternatives Revisited: How the neither/nor Response Acts as a Way of Saying “I Don’t Know”? Sociol. Methods Res. 2014, 43, 15–38. [Google Scholar] [CrossRef]
- Koropeckyj-Cox, T.; Pendell, G. Attitudes about Childlessness in the United States: Correlates of Positive, Neutral and Negative Responses. J. Fam. Issues 2007, 28, 1054–1082. [Google Scholar] [CrossRef]
- Harzing, A. Response Styles in Cross-National Survey Research. A 26-Country Study. Int. J. Cross-Cult. Manag. 2006, 6, 243–266. [Google Scholar] [CrossRef] [Green Version]
- Knauper, B. The Impact of Age and Education on Response Order Effects in Attitude Measurement. Public Opin. Q. 1999, 63, 347–370. [Google Scholar] [CrossRef]
- Pierce, G.; Gonzales, S. Mistrust at the tap? Factors contributing to public drinking water. Water Policy 2017, 19, 1–12. [Google Scholar] [CrossRef]
- Tabernero, C.; Hernandez, B. Self-efficacy and Intrinsic Motivation guiding Environmental Behavior. Environ. Behav. 2011, 43, 658–675. [Google Scholar] [CrossRef]
- de Boer, J.; Aiking, H. Prospects for pro-environmental protein consumption in Europe: Cultural, culinary, economic and psychological factors. Appetite 2018, 121, 29–40. [Google Scholar] [CrossRef]
- Villamor, G.B.; Guta, D.; Djanibekov, U.; Mirzabaev, A. Gender specific perspectives among small farm households on water-energy-food security nexus issues in Ethiopia. SSRN Electron. J. 2018. [Google Scholar] [CrossRef] [Green Version]
Question: In recent years there has been considerable attention to tradeoffs between food production, water resources and energy supplies. We are interested in your views of what should be done in cases where those impacts are likely to occur. Please circle the number in each case that best represents your opinion. [1 = Strongly Agree; 2 = Agree; 3 = Neutral; 4 = Agree; 5 = Strongly Agree] | |||||
State Abbreviation | Promote biofuel production on agricultural lands for energy independence | Promote food production on agricultural lands to feed a growing population | |||
1 = Strongly Agree | 2 = Agree | 3 = Neutral | 4 = Agree | 5 = Strongly Agree | |
(%) | (%) | (%) | (%) | (%) | |
CA | 12.1 | 11.2 | 26.2 | 26.6 | 23.8 |
ID | 6.9 | 5.7 | 30.6 | 28.9 | 28.0 |
OR | 3.3 | 3.9 | 35.5 | 28.5 | 28.8 |
WA | 3.4 | 3.6 | 37.0 | 28.2 | 27.8 |
Chi-square = 75.33, p = 0.000; n = 1752 | |||||
Maintain livestock feed crops for use in meat production | Limit the growth of feed crops to grow more water-friendly foods directly for human consumption | ||||
CA | 15.5 | 17.8 | 33.0 | 16.6 | 17.1 |
ID | 17.8 | 16.8 | 35.7 | 14.5 | 15.2 |
OR | 12.1 | 11.6 | 41.4 | 14.4 | 20.5 |
WA | 11.0 | 9.7 | 39.0 | 20.9 | 19.4 |
Chi-square = 40.01, p = 0.000; n = 1763 | |||||
Increase the use of water-intensive plants (e.g., rice) to feed a growing population | Reduce the use of water-intensive plants to increase the access to safe drinking water and sanitation | ||||
CA | 6.3 | 7.0 | 41.7 | 23.5 | 21.4 |
ID | 7.7 | 9.3 | 47.2 | 18.1 | 17.7 |
OR | 4.7 | 5.6 | 40.0 | 25.6 | 24.1 |
WA | 3.8 | 1.8 | 42.2 | 27.5 | 24.8 |
Chi-square = 47.38, p = 0.000; n = 1772 |
Variable Name | Variable Description | Mean (s.d.) |
---|---|---|
Age | Age in years (range = 18 to 98) | Mean = 51.6, s.d. = 16.83, n = 1796 |
Gender | Gender dummy variable (1 = female, 0 = male) | Mean = 0.504, n = 1787 |
Education | Formal educational attainment (1 = less than high school to 8 = postgraduate degree) | Mean = 4.80, s.d. = 1.46, n = 1798 |
Income | Household income before taxes in 2019 (1 = less than $10,000 to 10 = $200,000 or more) | Mean = 5.88, s.d. = 1.80, n = 1772 |
Quiz | Food, water, and energy quiz (0 = no correct answers to 5 = five correct answers) | Mean = 2.56, s.d. = 1.38, n = 1804 |
Efficacy | Environmental efficacy index (4 = low efficacy to 20 = high efficacy) | Mean = 14.16, s.d. = 3.94, n = 1793 |
NEP | New ecological paradigm scale (6 = low level of support to 30 high level of support) | Mean = 20.73, s.d. = 5.43, n = 1782 |
Interact | Interaction variable for efficacy and NEP (Interact = Efficacy × NEP) |
Prefer Biofuel Production a | Neutral b | Prefer Food Production c | |
---|---|---|---|
Variables | Coefficient (SE) Exp(B) | Coefficient (SE) Exp(B) | Coefficient (SE) Exp(B) |
Age | −0.009 (0.005) 0.991 | 0.024 *** (0.003) 1.025 | −0.026 *** (0.003) 0.975 |
Gender | −0.471 ** (0.177) 0.624 | −0.130 (0.113) 0.878 | 0.337 ** (0.106) 1.401 |
Education | −0.027 (0.063) 0.974 | 0.068 * (0.032) 0.861 | 0.167 *** (0.038) 1.182 |
Income | −0.035 (0.050) 0.966 | 0.068 * (0.032) 1.070 | −0.053 (0.031) 0.948 |
Quiz | 0.080 (0.063) 1.083 | −0.340 *** (0.042) 0.712 | 0.247 *** (0.039) 1.280 |
Efficacy | −0.365 *** (0.067) 0.694 | 0.275 *** 0(.059) 1.317 | 0.091 (0.050) 1.095 |
NEP | −0.343 *** (0.048) 0.710 | 0.234 *** (0.037) 1.264 | 0.033 (0.032) 1.034 |
Interact | 0.017 *** (0.004) 1.017 | −0.015 *** (0.003) 0.986 | −0.001 (0.002) 0.999 |
n | 1732 | 1732 | 1732 |
Chi-square | 236.938 *** | 198.225 *** | 222.311 *** |
Percent predicted | 87.9 | 68.7 | 54.0 |
Nagelkerke R2 | 0.245 | 0.152 | 0.161 |
Prefers Maintaining Livestock Feed Crops a | Neutral b | Prefers Limiting Feed Crops to Grow More Water-Friendly Foods c | |
---|---|---|---|
Variables | Coefficient (SE) Exp(B) | Coefficient (SE) Exp(B) | Coefficient (S) Exp(B) |
Age | −0.001 (0.004) 0.999 | 0.009 ** (0.003) 1.009 | −0.016 *** (0.003) 0.984 |
Gender | −0.018 (0.119) 0.982 | 0.011 (0.107) 1.011 | 0.009 (0.116) 1.009 |
Education | −0.136 *** (0.043) 0.872 | −0.147 *** (0.039) 0.863 | 0.304 *** (0.042) 1.356 |
Income | 0.199 *** (0.036) 1.221 | −0.075 * (0.031) 0.928 | −0.124 *** (0.034) 0.883 |
Quiz | −0.007 (0.043) 0.993 | −0.224 *** (0.039) 1.165 | 0.275 *** (0.043) 1.316 |
Efficacy | −0.035 (0.052) 0.996 | 0.153 ** (0.051) 1.165 | 0.026 (0.065) 1.027 |
NEP | −0.060 (0.034) 0.942 | 0.153 *** (0.032) 1.166 | −0.033 (0.043) 0.961 |
Interact | −0.002 (0.003) 0.998 | −0.010 *** (0.002) 0.990 | 0.006 * (0.003) 1.007 |
n | 1732 | 1732 | 1732 |
Chi-square | 189.326 *** | 118.421 *** | 353.053 *** |
Percent predicted | 74.1 | 67.0 | 75.1 |
Nagelkerke R2 | 0.150 | 0.090 | 0.255 |
Prefers Maintaining Water-Intensive Plants a | Neutral b | Prefers to Reduce Water-Intensive Plants c | |
---|---|---|---|
Variables | Coefficient (SE) Exp(B) | Coefficient (SE) Exp(B) | Coefficient (SE) Exp(B) |
Age | 0.008 (0.005) 1.008 | 0.000 (0.003) 1.000 | −0.007 * (0.003) 0.993 |
Gender | 0.158 (0.180) 1.171 | 0.201 * (0.104) 1.223 | −0.289 *** (0.109) 0.749 |
Education | −0.094 (0.065) | −0.020 (0.037) 1.085 | 0.081 * (0.039) 1.085 |
Income | −0.120 * (0.051) 0.887 | −0.084 ** (0.030) 0.920 | 0.128 (0.032) 1.136 |
Quiz | −0.029 (0.063) 0.971 | −0.093 ** (0.037) 0.911 | 0.097 ** (0.039) 1.253 |
Efficacy | −0.163 * (0.070) 0.850 | 0.154 *** (0.048) 1.166 | 0.226 *** (0.068) 1.253 |
NEP | −0.128 ** (0.044) 0.880 | 0.072 * (0.030) 1.075 | 0.184 *** (0.044) 1.202 |
Interact | 0.002 (0.004) 1.002 | −0.009 *** (0.002) 0.991 | −0.006 * (0.003) 0.994 |
n | 1732 | 1732 | 1732 |
Chi-square | 218.584 *** | 77.597 *** | 322.409 *** |
Percent predicted | 89.1 | 57.2 | 69.5 |
Nagelkerke R2 | 0.235 | 0.059 | 0.227 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gardezi, N.u.Z.; Steel, B.S.; Lavado, A. The Impact of Efficacy, Values, and Knowledge on Public Preferences Concerning Food–Water–Energy Policy Tradeoffs. Int. J. Environ. Res. Public Health 2020, 17, 8345. https://doi.org/10.3390/ijerph17228345
Gardezi NuZ, Steel BS, Lavado A. The Impact of Efficacy, Values, and Knowledge on Public Preferences Concerning Food–Water–Energy Policy Tradeoffs. International Journal of Environmental Research and Public Health. 2020; 17(22):8345. https://doi.org/10.3390/ijerph17228345
Chicago/Turabian StyleGardezi, Najam uz Zehra, Brent S. Steel, and Angela Lavado. 2020. "The Impact of Efficacy, Values, and Knowledge on Public Preferences Concerning Food–Water–Energy Policy Tradeoffs" International Journal of Environmental Research and Public Health 17, no. 22: 8345. https://doi.org/10.3390/ijerph17228345
APA StyleGardezi, N. u. Z., Steel, B. S., & Lavado, A. (2020). The Impact of Efficacy, Values, and Knowledge on Public Preferences Concerning Food–Water–Energy Policy Tradeoffs. International Journal of Environmental Research and Public Health, 17(22), 8345. https://doi.org/10.3390/ijerph17228345