Effects of a 12-Week Change-of-Direction Sprints Training Program on Selected Physical and Physiological Parameters in Professional Basketball Male Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Change-of-Direction Sprint Training
2.4. Assessment
2.4.1. Anthropometrics and Maximal Oxygen Consumption
2.4.2. t-Test
2.4.3. Yo-Yo Test Level 1
2.4.4. Intensive Repeated Sprint Ability Test (IRSA5COD)
2.4.5. Vertical Jump Tests
2.4.6. Five-Time Jump Test (FJT)
2.4.7. Blood Samples
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Practical Applications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ben Abdelkrim, N.; El Fazaa, S.; ELAti, J. Time-motion analysis and physiological data of elite under-19-year old basket-ball players during competition. Br. J. Sports Med. 2007, 41, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Marcelino, P.R.; Aoki, M.S.; Arruda, A.; Freitas, C.G.; Mendez-Villanueva, A.; Moreira, A. Does small sided-games’ court area influence metabolic, perceptual, and physical performance parameters of young elite basketball players? Biol. Sport 2016, 33, 37–42. [Google Scholar] [PubMed]
- Torres-Ronda, L.; Ric, A.; Llabres-Torres, I.; de Las Heras, B.; Schelling, I.D.A.X. Position-dependent cardiovascular response and time-motion analysis during training drills and friendly matches in elite male basketball players. J. Strength Cond. Res. 2016, 30, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Conte, D.; Favero, T.G.; Lupo, C.; Francioni, F.M.; Capranica, L.; Tessitore, A. Time-motion analysis of Italian elite women’s basketball games: Individual and team analyses. J. Strength Cond. Res. 2015, 29, 144–150. [Google Scholar] [CrossRef] [PubMed]
- DeWeese, B.; Nimphius, S. Program design and technique for speed and agility training. In Essentials of Strength Training and Conditioning; Human Kinetics: Champaign, IL, USA, 2016; pp. 521–558. [Google Scholar]
- Dennis-Peter, B.; Christoph, Z.; Peter, D.; Billy, S. Multi-Directional Sprint Training Improves Change-Of-Direction Speed and Reactive Agility in Young Highly Trained Soccer Players. J. Sports Sci. Med. 2016, 15, 314–319. [Google Scholar]
- Attene, G.; Laffaye, G.; Chaouachi, A.; Pizzolato, F.; Migliaccio, G.M.; Padulo, J. Repeated sprint ability in young basketball players: One vs. two changes of direction (Part 2). J. Sports Sci. 2015, 33, 1553–1563. [Google Scholar] [CrossRef] [PubMed]
- Maggioni, M.A.; Bonato, M.; Stahn, A.; La Torre, A.; Agnello, L.; Vernillo, G.; Castagna, C.; Merati, G. Effects of ball-drills and repeated sprint ability training in basketball players. Int. J. Sports Physiol. Perform. 2018, 20, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Morio, C.; Chavet, P.; Androuet, P.; Foissac, M.; Berton, E.; Nicol, C. Time course of neuro-mechanical changes underlying stretch-shortening cycle during intermittent exhaustive rebound exercise. Eur. J. Appl. Phys. 2011, 111, 2295–2305. [Google Scholar] [CrossRef]
- Edge, J.; Bishop, D.; Goodman, C.; Dawson, B. Effects of high- and moderate-intensity training on metabolism and repeated sprints. Med. Sci. Sports Exerc. 2005, 37, 1975–1982. [Google Scholar] [CrossRef]
- Ferrari, B.D.; Impellizzeri, F.M.; Rampinini, E.; Castagna, C.; Bishop, D.; Wisloff, U. Sprint vs. interval training in football. Int. J. Sports Med. 2008, 29, 668–674. [Google Scholar]
- Padulo, J.; Laffaye, G.; Haddad, M.; Chaouachi, A.; Attene, G.; Migliaccio, G.M.; Chamari, K.; Pizzolato, F. Repeated sprint ability in young basketball players: One vs. two changes of direction (Part 1). J. Sports Sci. 2015, 33, 1480–1492. [Google Scholar] [CrossRef]
- Adlercreutz, H.; Härkönen, M.; Kuoppasalmi, K.; Näveri, H.; Huhtaniemi, I.; Tikkanen, H.; Remes, K.; Dessypris, A.; Karvonen, J. Effect of training on plasma anabolic and catabolic steroid hormones and their response during physical exercise. Int. Sports Med. 1986, 7, 27–28. [Google Scholar] [CrossRef] [PubMed]
- Urhausen, A.; Kindermann, W. Review Diagnosis of Overtraining: What Tools Do We Have? Sports Med. 2002, 32, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Vervoorn, C.; Quist, A.; Vermulst, L.; Erich, W.B.; de Vries, W.R.; Thijssen, J.H. The behaviour of the plasma free testosterone/cortisol ratio during a season of elite rowing training. Int. J. Sports Med. 1991, 12, 257–263. [Google Scholar] [CrossRef]
- Brini, S.; Ahmaidi, S.; Bouassida, A. Effects of Passive versus Active Recovery at Different Intensities on Repeated Sprint Performance and Testosterone/Cortisol Ratio in Male Senior Basketball Players. Sci. Sports 2019, in press. [Google Scholar] [CrossRef]
- Brini, S.; Marzouki, H.; Ouerghi, N.; Ouergui, I.; Castagna, C.; Bouassida, A. Effects of Ramadan observance combined with two training programs on plasma lipids and testosterone/cortisol ratio in male senior basketball payers. Med. Sport 2019, 72, 47–58. [Google Scholar]
- Lac, G.; Berthon, P. Changes in cortisol and testosterone levels and T/C ratio during an endurance competition and recovery. J. Sports Med. Phys. Fit. 2000, 40, 139–144. [Google Scholar]
- Meckel, Y.; Eliakim, A.; Seraev, M.; Zaldivar, F.; Cooper, D.M.; Sagiv, M.; Nemet, D. The effect of a brief sprint interval exercise on growth factors and inflammatory mediators. J. Strength Cond. Res. 2009, 23, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Stojanovic, M.D.; Ostojic, S.M.; Calleja-Gonzalez, J.; Milosevic, Z.; Mikic, M. Correlation between explosive strength, aerobic power and repeated sprint ability in elite basketball players. J. Sports Med. Phys. Fit. 2012, 52, 375–381. [Google Scholar]
- Foster, C. Monitoring training in athletes with reference to overtraining syndrome. Med. Sci. Sports Exerc. 1998, 30, 1164–1168. [Google Scholar] [CrossRef]
- Zagatto, A.M.; Ardigo, L.P.; Barbieri, F.A.; Milioni, F.; Iacono, A.D.; Camargo, B.H.; Padulo, J. Performance and metabolic demand of a new repeated-sprint ability test in basketball players: Does the number of changes of direction matter? J. Strength Cond. Res. 2017, 31, 2438–2446. [Google Scholar] [CrossRef]
- Bosco, C.; Luhtanen, P.; Komi, P. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef]
- Chamari, K.; Chaouachi, A.; Hambli, M.; Kaouech, F.; Wisløff, U.; Castagna, C. The Five-Jump Test for Distance as a Field Test to Assess Lower Limb Explosive Power in Soccer Players. J. Strength Cond. Res. 2008, 22, 944–950. [Google Scholar] [CrossRef]
- Pauloe, K.; Madole, K.; Garhammer, J.; Lacourse, M.; Rozenek, R. Reliability and validity of the t-test as a measure of agility, leg power, and leg speed in college-aged men and women. J. Strength Cond Res. 2000, 14, 443–450. [Google Scholar]
- Castagna, C.; Impellizzeri, F.M.; Rampinini, E.; D’Ottavio, S.; Manzi, V. The Yo-Yo intermittent recovery test in basketball players. J. Sci. Med. Sport 2008, 11, 202–208. [Google Scholar] [CrossRef]
- Léger, L.; Gadoury, C. Validity of the 20 m shuttle run test with 1 min stages to predict VO2max in adults. Can. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Hirvonen, J.; Rehunen, S.; Rusko, H.; Harkonen, M. Breakdown of high-energy phosphate compounds and lactate accumulation during short supramaximal exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 253–259. [Google Scholar] [CrossRef]
- Prieske, O.; Muehlbauer, T.; Mueller, S.; Krueger, T.; Kibele, A.; Behm, D.; Granacher, U. Effects of surface instability on neuromuscular performance during drop jumps and landings. Eur. J. Appl. Physiol. 2013, 113, 2943–2951. [Google Scholar] [CrossRef]
- Hermassi, S.; Laudner, K.; Schwesig, R. The Effects of Circuit Strength Training on the Development of Physical Fitness and Performance-Related Variables in Handball Players. J. Hum. Kinet. 2020, 71, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educ. Psychol. Meas. 1973, 33, 107–112. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Glaister, M.; Howaston, G.; Pattison JRMcInnes, G. The reliability and validity of fatigue measures during multiple sprint work: An issue revisited. J. Strength Cond. Res. 2008, 22, 1597–1601. [Google Scholar] [CrossRef] [Green Version]
- Oliver, J.L. Is a fatigue index a worthwhile measure of repeated sprint ability? J. Sci. Med. Sport 2009, 12, 20–23. [Google Scholar] [CrossRef]
- Chennaoui, M.; Gomez-Merino, D.; Drogou, C.; Bourrilhon, C.; Sautivet, S.; Guezennec, C.Y. Hormonal and metabolic adaptation in professional cyclists during training. Can. Appl. Physiol. Nutr. Metab. 2004, 29, 714–730. [Google Scholar] [CrossRef]
- Gravina, L.; Gil, S.M.; Ruiz, F.; Zubero, J.; Gil JIrazusta, J. Anthropometric and physiological differences between first team and reserve soccer players aged 10–14 years at the beginning and end of the season. J. Strength Cond. Res. 2008, 22, 1308–1314. [Google Scholar] [CrossRef]
- Moreira, A.; Mortatti, A.; Aoki, M.; Arruda, A.; Freitas, C.; Carling, C. Role of free testosterone in interpreting physical performance in elite young Brazilian soccer players. Pediatr. Exerc. Sci. 2013, 25, 186–197. [Google Scholar] [CrossRef] [PubMed]
Measures | ICC | 95% CI | % CV |
---|---|---|---|
IRSA5COD | 0.92 | 0.77–0.98 | 4.1 |
Squat jump | 0.96 | 0.79–0.98 | 4.6 |
Countermovement jump | 0.97 | 0.86–0.97 | 4.4 |
Five-time jump test | 0.98 | 0.88–0.98 | 3.1 |
t-test | 0.98 | 0.92–0.99 | 4.3 |
Yo-Yo IR1 | 0.93 | 0.73–0.95 | 2.3 |
Testosterone | 0.94 | 0.83–0.94 | 3.6 |
Cortisol | 0.96 | 0.77–0.96 | 4.1 |
p-Values (Effect Size) | |||||||||
---|---|---|---|---|---|---|---|---|---|
IRSA5COD Test | INT (n = 8) | CON (n = 8) | Time | Group | Group × Time | ||||
Pre Test | Post Test | Δ% | Pre Test | Post Test | Δ% | ||||
TT (s) | 70.09 ± 0.98 | 70.05 ± 0.99 | 0.04 ± 0.05 | 69.81 ± 0.62 | 69.75 ± 0.63 | 0.08 ± 0.07 | 0.27 (0.15) | 0.11 (0.31) | 0.41 (0.09) |
BT (s) | 6.91 ± 0.09 | 6.90 ± 0.10 | 0.16 ± 0.35 | 6.87 ± 0.12 | 6.90 ± 0.11 | −0.42 ± 0.84 | 0.50 (0.07) | 0.06 (0.42) | 0.07 (0.39) |
FI (%) | 1.26 ± 0.58 | 1.15 ± 0.50 | 8.57 ± 17.76 | 1.19 ± 0.63 | 1.03 ± 0.59 | 14.56 ± 23.59 | 0.12 (0.29) | 0.26 (0.17) | 0.65 (0.03) |
HR (beat/min) | 186.75 ± 2.77 | 187.15 ± 3.47 | −0.22 ± 1.61 | 186.90 ± 5.75 | 188.05 ± 3.75 | −0.65 ± 1.38 | 0.30 (0.15) | 0.78 (0.01) | 0.61 (0.04) |
Lac (mmol/l) | 5.37 ± 2.06 | 5.25 ± 2.66 | −14.43 ± 80.63 | 5.75 ± 2.43 | 6 ± 2.93 | −12.36 ± 48.83 | 0.94 (0.001) | 0.50 (0.05) | 0.77 (0.13) |
RPE | 5.62 ± 1.40 | 5.75 ± 0.88 | −3.33 ± 18.77 | 6 ± 1.30 | 5.76 ±1.03 | 3.86 ± 11.44 | 0.97 (0.003) | 0.56 (0.07) | 0.81 (0.16) |
p-Value (Effect Size) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | INT (n = 8) | CON (n = 8) | Time | Group | Group × Time | ||||
Pre Test | Post Test | Δ% | Pre Test | Post Test | Δ% | ||||
SJ (cm) | 40.25 ± 6.58 | 35.13 ± 4.01 * | 11.68 ± 10.21 | 42 ± 6.41 | 36.37 ± 5.07 ** | 13.16 ± 4.80 | 0.002 (0.77) | 0.31 (0.15) | 0.75 (0.02) |
CMJ (cm) | 43.87 ± 6.88 | 39 ± 7.76 † *** | 11.58 ± 4.30 | 40.25 ± 6.98 | 42.12 ±6.91 ** | −4.96 ± 4.79 | 0.006 (0.68) | 0.84 (0.007) | 0.001 (0.92) |
FJT (m) | 7.37 ± 0.46 | 7.26 ± 0.44 *** | 1.54 ± 0.85 | 7.40 ± 0.56 | 7.35 ±0.59 | 0.78 ± 1.30 | 0.006 (0.70) | 0.37 (0.12) | 0.15 (0.27) |
t-test (s) | 10.21 ± 0.90 | 9.86 ± 0.91 †† *** | 3.38 ± 1.13 | 10.18 ±0.98 | 10.01 ± 0.87 ** | 1.70 ± 1.24 | 0.001 (0.60) | 0.016 (0.6) | 0.003 (0.74) |
YO-YOIR1 (m) | 1792.50 ± 208.65 | 2065 ± 331.18 ** | −14.89 ± 11.03 | 1627.50 ± 412.78 | 1805 ± 529.66 ** | −10 ± 6.76 | 0.003 (0.50) | 0.13 (0.29) | 0.24 (0.19) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brini, S.; Ben Abderrahman, A.; Boullosa, D.; Hackney, A.C.; Zagatto, A.M.; Castagna, C.; Bouassida, A.; Granacher, U.; Zouhal, H. Effects of a 12-Week Change-of-Direction Sprints Training Program on Selected Physical and Physiological Parameters in Professional Basketball Male Players. Int. J. Environ. Res. Public Health 2020, 17, 8214. https://doi.org/10.3390/ijerph17218214
Brini S, Ben Abderrahman A, Boullosa D, Hackney AC, Zagatto AM, Castagna C, Bouassida A, Granacher U, Zouhal H. Effects of a 12-Week Change-of-Direction Sprints Training Program on Selected Physical and Physiological Parameters in Professional Basketball Male Players. International Journal of Environmental Research and Public Health. 2020; 17(21):8214. https://doi.org/10.3390/ijerph17218214
Chicago/Turabian StyleBrini, Seifeddine, Abderraouf Ben Abderrahman, Daniel Boullosa, Anthony C. Hackney, Alessandro Moura Zagatto, Carlo Castagna, Anissa Bouassida, Urs Granacher, and Hassane Zouhal. 2020. "Effects of a 12-Week Change-of-Direction Sprints Training Program on Selected Physical and Physiological Parameters in Professional Basketball Male Players" International Journal of Environmental Research and Public Health 17, no. 21: 8214. https://doi.org/10.3390/ijerph17218214
APA StyleBrini, S., Ben Abderrahman, A., Boullosa, D., Hackney, A. C., Zagatto, A. M., Castagna, C., Bouassida, A., Granacher, U., & Zouhal, H. (2020). Effects of a 12-Week Change-of-Direction Sprints Training Program on Selected Physical and Physiological Parameters in Professional Basketball Male Players. International Journal of Environmental Research and Public Health, 17(21), 8214. https://doi.org/10.3390/ijerph17218214