Malaria Transmission and Spillover across the Peru–Ecuador Border: A Spatiotemporal Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Primary Exposures
2.3. Environmental Confounders
2.4. Statistical Methods
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Global Malaria Programme; WHO Global. World Malaria Report 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Aramburú Guarda, J.; Ramal Asayag, C.; Witzig, R. Malaria reemergence in the Peruvian Amazon region. Emerg. Infect. Dis. 1999, 5, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Hay, S.I.; Okiro, E.A.; Gething, P.W.; Patil, A.P.; Tatem, A.J.; Guerra, C.A.; Snow, R.W. Estimating the global clinical burden of Plasmodium falciparum malaria in 2007. PLoS Med. 2010, 7, e1000290. [Google Scholar]
- Cotter, C.; Sturrock, H.J.; Hsiang, M.S.; Liu, J.; Phillips, A.A.; Hwang, J.; Gueye, C.S.; Fullman, N.; Gosling, R.D.; Feachem, R.G. The changing epidemiology of malaria elimination: New strategies for new challenges. Lancet 2013, 382, 900–911. [Google Scholar] [CrossRef]
- Grillet, M.E.; Villegas, L.; Oletta, J.F.; Tami, A.; Conn, J.E. Malaria in Venezuela requires response. Science 2018, 359, 528. [Google Scholar] [PubMed]
- Krisher, L.K.; Krisher, J.; Ambuludi, M.; Arichabala, A.; Beltrán-Ayala, E.; Navarrete, P.; Ordoñez, T.; Polhemus, M.E.; Quintana, F.; Rochford, R.; et al. Successful malaria elimination in the Ecuador–Peru border region: Epidemiology and lessons learned. Malar. J. 2016, 15, 573. [Google Scholar]
- Jaramillo-Ochoa, R.J.-O.; Sippy, R.; Farrel, D.F.; Cueva-Aponte, C.; Beltrán-Ayala, E.; Gonzaga, J.L.; Ordoñez-León, T.; Quintana, F.A.; Ryan, S.J.; Stewart-Ibarra, A.M. Effects of political instability in Venezuela on malaria resurgence at Ecuador–Peru border, 2018. Emerg. Infect. Dis. J. CDC 2019, 25, 834–836. [Google Scholar]
- Eliminating Malaria: 21 Countries, a Common Goal. Available online: http://www.who.int/malaria/areas/elimination/e2020/en/ (accessed on 16 August 2020).
- Carrasco-Escobar, G.; Miranda-Alban, J.; Fernandez-Miñope, C.; Brouwer, K.C.; Torres, K.; Calderon, M.; Gamboa, D.; Llanos-Cuentas, A.; Vinetz, J.M. High prevalence of very-low Plasmodium falciparum and Plasmodium vivax parasitaemia carriers in the Peruvian Amazon: Insights into local and occupational mobility-related transmission. Malar. J. 2017, 16, 415. [Google Scholar] [PubMed] [Green Version]
- Carrasco-Escobar, G.; Castro, M.C.; Barboza, J.L.; Ruiz-Cabrejos, J.; Llanos-Cuentas, A.; Vinetz, J.M.; Gamboa, D. Use of open mobile mapping tool to assess human mobility traceability in rural offline populations with contrasting malaria dynamics. Peer J. 2019, 7, e6298. [Google Scholar] [CrossRef] [PubMed]
- Pizzitutti, F.; Mena, C.F.; Feingold, B.; Pan, W.K. Modeling asymptomatic infections and work-related human circulation as drivers of unstable malaria transmission in low-prevalence areas: A study in the Northern Peruvian Amazon. Acta Trop. 2019, 197, 104909. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.T.; Valdivia, H.O.; de Oliveira, T.C.; Alves, J.M.P.; Duarte, A.M.R.C.; Cerutti-Junior, C.; Buery, J.C.; Brito, C.F.A.; de Souza, J.C.; Hirano, Z.M.B.; et al. Human migration and the spread of malaria parasites to the New World. Sci. Rep. 2018, 8, 1993. [Google Scholar] [PubMed] [Green Version]
- Carrasco-Escobar, G.; Gamboa, D.; Castro, M.C.; Bangdiwala, S.I.; Rodriguez, H.; Contreras-Mancilla, J.; Alava, F.; Speybroeck, N.; Lescano, A.G.; Vinetz, J.M.; et al. Micro-epidemiology and spatial heterogeneity of P. vivax parasitaemia in riverine communities of the Peruvian Amazon: A multilevel analysis. Sci. Rep. 2017, 7, 8082. [Google Scholar] [PubMed]
- Cruz Marques, A. Human migration and the spread of malaria in Brazil. Parasitol. Today 1987, 3, 166–170. [Google Scholar] [CrossRef]
- Wolfarth-Couto, B.; da Silva, R.A.; Filizola, N. Variability in malaria cases and the association with rainfall and rivers water levels in Amazonas State, Brazil. CSP 2019, 35, e00020218. [Google Scholar]
- Galardo, A.K.R.; Zimmerman, R.H.; Lounibos, L.P.; Young, L.J.; Galardo, C.D.; Arruda, M.; Couto, A.A.R.D. Seasonal abundance of anopheline mosquitoes and their association with rainfall and malaria along the Matapí River, Amapí, Brazil. Med. Vet. Entomol. 2009, 23, 335–349. [Google Scholar] [PubMed]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar]
- Integrating Earth Observations to Support Malaria Risk Monitoring in the Amazon. Earthzine. Available online: https://earthzine.org/integrating-earth-observations-to-support-malaria-risk-monitoring-in-the-amazon (accessed on 6 March 2020).
- Besag, J. Spatial Interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B (Methodol.) 1974, 36, 192–236. [Google Scholar] [CrossRef]
- Fuglstad, G.-A.; Simpson, D.; Lindgren, F.; Rue, H. Constructing priors that penalize the complexity of Gaussian random fields. J. Am. Stat. Assoc. 2019, 114, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Blangiardo, M.; Cameletti, M.; Baio, G.; Rue, H. Spatial and spatio-temporal models with R-INLA. Spat. Spatio-temporal Epidemiol. 2013, 4, 33–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbieri, A.; Carr, D.; Bilsborrow, R. Migration within the frontier: The second generation colonization in the Ecuadorian Amazon. Popul. Res. Policy Rev. 2009, 28, 291–320. [Google Scholar] [PubMed] [Green Version]
Model | P. vivax | P. falciparum |
---|---|---|
With river connectivity indicator variables | 0.16 | 0.04 |
Without river connectivity indicator variables | 1.26 | 0.88 |
Variable | P. vivax | P. falciparum | ||||
---|---|---|---|---|---|---|
Estimate | Lower UI | Upper UI | Estimate | Lower UI | Upper UI | |
Rainfall (mm) | 1.022 | 0.876 | 1.191 | 2.336 | 1.254 | 4.322 |
Temperature (°C) | 1.501 | 1.054 | 2.137 | 2.924 | 0.374 | 22.01 |
Soil Temperature (°C) | 0.528 | 0.381 | 0.730 | 0.808 | 0.145 | 4.624 |
Soil Moisture | 0.926 | 0.829 | 1.034 | 1.027 | 0.665 | 1.592 |
Border incidence | 1.031 | 1.029 | 1.033 | 1.030 | 1.021 | 1.039 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunderson, A.K.; Kumar, R.E.; Recalde-Coronel, C.; Vasco, L.E.; Valle-Campos, A.; Mena, C.F.; Zaitchik, B.F.; Lescano, A.G.; Pan, W.K.; Janko, M.M. Malaria Transmission and Spillover across the Peru–Ecuador Border: A Spatiotemporal Analysis. Int. J. Environ. Res. Public Health 2020, 17, 7434. https://doi.org/10.3390/ijerph17207434
Gunderson AK, Kumar RE, Recalde-Coronel C, Vasco LE, Valle-Campos A, Mena CF, Zaitchik BF, Lescano AG, Pan WK, Janko MM. Malaria Transmission and Spillover across the Peru–Ecuador Border: A Spatiotemporal Analysis. International Journal of Environmental Research and Public Health. 2020; 17(20):7434. https://doi.org/10.3390/ijerph17207434
Chicago/Turabian StyleGunderson, Annika K., Rani E. Kumar, Cristina Recalde-Coronel, Luis E. Vasco, Andree Valle-Campos, Carlos F. Mena, Benjamin F. Zaitchik, Andres G. Lescano, William K. Pan, and Mark M. Janko. 2020. "Malaria Transmission and Spillover across the Peru–Ecuador Border: A Spatiotemporal Analysis" International Journal of Environmental Research and Public Health 17, no. 20: 7434. https://doi.org/10.3390/ijerph17207434
APA StyleGunderson, A. K., Kumar, R. E., Recalde-Coronel, C., Vasco, L. E., Valle-Campos, A., Mena, C. F., Zaitchik, B. F., Lescano, A. G., Pan, W. K., & Janko, M. M. (2020). Malaria Transmission and Spillover across the Peru–Ecuador Border: A Spatiotemporal Analysis. International Journal of Environmental Research and Public Health, 17(20), 7434. https://doi.org/10.3390/ijerph17207434