PM2.5-Related Health Economic Benefits Evaluation Based on Air Improvement Action Plan in Wuhan City, Middle China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. PM2.5 Data Source
2.3. Health Impact Assessment
2.4. Economic Benefits Estimation
3. Results
3.1. Spatio-Temporal Changes of PM2.5 Concentration in Wuhan
3.2. Health and Health Economic Benefits of Controlling PM2.5 Pollution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ministry of Environment Protection of the People’s Republic of China. China Environmental Status Bulletin 2013; Ministry of Environment Protection of the People’s Republic of China: Beijing, China, 2014. Available online: http://www.mee.gov.cn/hjzl/zghjzkgb/lnzghjzkgb/201605/P020160526564151497131.pdf (accessed on 10 June 2018). (In Chinese)
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed]
- State Council of the People’s Republic of China. Action Plan of Air Pollution Control. Available online: www.gov.cn/zwgk/2013-09/12/content_2486773.htm (accessed on 30 June 2018). (In Chinese)
- Ministry of Ecology and Environment of the People’s Republic of China. China Ecological Environment Status Bulletin 2017; Ministry of Environment Protection of the People’s Republic of China: Beijing, China, 2018. Available online: http://www.mee.gov.cn/hjzl/zghjzkgb/lnzghjzkgb/201805/P020180531534645032372.pdf (accessed on 10 July 2018). (In Chinese)
- Shen, Y.; Zhang, L.; Fang, X.; Ji, H.; Li, X.; Zhao, Z. Spatiotemporal patterns of recent PM2.5 concentrations over typical urban agglomerations in China. Sci. Total. Environ. 2019, 655, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Liu, T.; Feiock, R.; Li, F. The impacts of China’s provincial energy policies on major air pollutants: A spatial econometric analysis. Energy Policy 2019, 132, 392–403. [Google Scholar] [CrossRef]
- Iii, C.A.P.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D.; Pope, C.A. Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. JAMA 2002, 287, 1132–1141. [Google Scholar]
- Cai, J.; Peng, C.; Yu, S.; Pei, Y.; Liu, N.; Wu, Y.; Fu, Y.; Cheng, J. Association between PM2.5 Exposure and All-Cause, Non-Accidental, Accidental, Different Respiratory Diseases, Sex and Age Mortality in Shenzhen, China. Int. J. Environ. Res. Public Heal. 2019, 16, 401. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- Voorhees, A.S.; Wang, J.; Wang, C.; Zhao, B.; Wang, S.; Kan, H. Public health benefits of reducing air pollution in Shanghai: A proof-of-concept methodology with application to BenMAP. Sci. Total. Environ. 2014, 485, 396–405. [Google Scholar] [CrossRef]
- Broome, R.A.; Fann, N.; Cristina, T.J.N.; Fulcher, C.; Duc, H.; Morgan, G.G. The health benefits of reducing air pollution in Sydney, Australia. Environ. Res. 2015, 143, 19–25. [Google Scholar] [CrossRef]
- Bravo, M.A.; Son, J.; de Freitas, C.U.; Gouveia, N.; Bell, M.L. Air pollution and mortality in Sao Paulo, Brazil: Effects of multiple pollutants and analysis of susceptible populations. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 150–161. [Google Scholar] [CrossRef]
- Chen, L.; Shi, M.; Li, S.; Gao, S.; Zhang, H.; Sun, Y.; Mao, J.; Bai, Z.; Wang, Z.; Zhou, J. Quantifying public health benefits of environmental strategy of PM2.5 air quality management in Beijing–Tianjin–Hebei region, China. J. Environ. Sci. 2017, 57, 33–40. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J.; Jeong, J.; Choi, M. Estimation of health benefits from air quality improvement using the MODIS AOD dataset in Seoul, Korea. Environ. Res. 2019, 173, 452–461. [Google Scholar] [CrossRef]
- Abel, D.W.; Holloway, T.; Martínez-Santos, J.; Harkey, M.; Tao, M.; Kubes, C.; Hayes, S. Air Quality-Related Health Benefits of Energy Efficiency in the United States. Environ. Sci. Technol. 2019, 53, 3987–3998. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Xue, W.; Wang, Y.; Lei, Y.; Feng, T.; Cai, Z. Health Benefit Evaluation for Air Pollution Prevention and Control Action Plan in China. Environ. Sci. 2019, 07, 1–9. (In Chinese) [Google Scholar]
- Dai, H.; An, J.; Li, L.; Huang, C.; Yan, R.; Zhu, S.; Ma, Y.; Song, W.; Kan, H. Health Benefit Analyses of the Clean Air Action Plan Implementation in Shanghai. Environ. Sci. 2019, 40, 24–32. (In Chinese) [Google Scholar]
- The People’s Government of Wuhan Municipality. Air Improvement Action Plan in Wuhan City (2013–2017); The People’s Government of Wuhan Municipality: Wuhan, China, 2014. Available online: http://www.wh.gov.cn/whszfwz/xwxx/zfgb/201406/P020150313423387265894.pdf (accessed on 30 June 2018). (In Chinese)
- Wuhan Ecology and Environment Bureau. Wuhan Environmental Statement 2017. Available online: http://hbj.wuhan.gov.cn/hbHjzkgb/29772.jhtml (accessed on 30 June 2018). (In Chinese)
- Ministry of Ecology and Environment of the People’s Republic of China. HJ 633-2012 Technical Regulation on Ambient Air Quality Index (on Trail); China Environmental Science Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Xu, G.; Jiao, L.; Zhao, S.; Yuan, M.; Li, X.; Han, Y.; Zhang, B.; Dong, T. Examining the Impacts of Land Use on Air Quality from a Spatio-Temporal Perspective in Wuhan, China. Atmosphere 2016, 7, 62. [Google Scholar] [CrossRef]
- Statistics Bureau of Wuhan Municipality. Wuhan Statistical Yearbook; China Statistics Press: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Wuhan Ecology and Environment Bureau. Annual Report of Wuhan Vehicle Emission Control 2017. Available online: http://hbj.wuhan.gov.cn/jdcGzdt/29938.jhtml (accessed on 18 November 2019). (In Chinese)
- Chen, L.; Shi, M.; Gao, S.; Li, S.; Mao, J.; Zhang, H.; Sun, Y.; Bai, Z.; Wang, Z. Assessment of population exposure to PM2.5 for mortality in China and its public health benefit based on BenMAP. Environ. Pollut. 2017, 221, 311–317. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, Y.; Jang, C.; Xie, J.P.; Wang, S.X.; Fu, J.; Lin, C.J.; Ma, J.; Ding, D.; Qiu, X.Z.; et al. Research and development of environmental benefits mapping and analysis program: Community edition. Acta Sci. Circumstantiae 2013, 33, 2395–2401. (In Chinese) [Google Scholar]
- Sacks, J.D.; Lloyd, J.M.; Zhu, Y.; Anderton, J.; Jang, C.J.; Hubbell, B.; Fann, N. The Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP–CE): A tool to estimate the health and economic benefits of reducing air pollution. Environ. Model. Softw. 2018, 104, 118–129. [Google Scholar] [CrossRef]
- US EPA. BenMAP-CE User’s Manual; US EPA: Washington, DC, USA, 2018. Available online: https://www.epa.gov/sites/production/files/2015-04/documents/benmap-ce_user_manual_march_2015.pdf (accessed on 10 July 2018).
- Ravi, V.; Gao, A.H.; Martinkus, N.B.; Wolcott, M.P.; Lamb, B.K. Air Quality and Health Impacts of an Aviation Biofuel Supply Chain Using Forest Residue in the Northwestern United States. Environ. Sci. Technol. 2018, 52, 4154–4162. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Y.; Kelly, J.T.; Jang, C.J.; Wang, S.; Hanna, A.; Xing, J.; Lin, C.-J.; Long, S.; Yu, L. Health benefit assessment of PM2.5 reduction in Pearl River Delta region of China using a model-monitor data fusion approach. J. Environ. Manag. 2019, 233, 489–498. [Google Scholar] [CrossRef]
- Altieri, K.E.; Keen, S.L. Public health benefits of reducing exposure to ambient fine particulate matter in South Africa. Sci. Total. Environ. 2019, 684, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Boldo, E.; Linares, C.; Lumbreras, J.; Borge, R.; Narros, A.; García-Pérez, J.; Fernández-Navarro, P.; Pérez-Gómez, B.; Aragonés, N.; Ramis, R.; et al. Health impact assessment of a reduction in ambient PM2.5 levels in Spain. Environ. Int. 2011, 37, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio- respiratory mortality: A review. Environ. Heal. 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Shao, Z.; Yang, L.; Liu, R.; Bi, J.; Ma, Z. How much will the Chinese public pay for air pollution mitigation? A nationwide empirical study based on a willingness-to-pay scenario and air purifier costs. J. Clean. Prod. 2019, 218, 51–60. [Google Scholar] [CrossRef]
- Ding, D.; Zhu, Y.; Jang, C.; Lin, C.-J.; Wang, S.; Fu, J.; Gao, J.; Deng, S.; Xie, J.; Qiu, X. Evaluation of health benefit using BenMAP-CE with an integrated scheme of model and monitor data during Guangzhou Asian Games. J. Environ. Sci. 2016, 42, 9–18. [Google Scholar] [CrossRef]
- Zhao, X.; Fan, C.; Wang, Y. Evaluation of Health Losses by Air Pollution in Beijing: A Study Based on Corrected Human Capital Method. China Popul. Resour. Environ. 2014, 24, 169–176. (In Chinese) [Google Scholar]
- Gao, T.; Li, G.; Xu, M.; Wang, X.; Liang, F.; Zeng, Q.; Pan, X. Meta-analysis of contingent valuation studies on air pollution-related value of statistical life in China. J. Environ. Health 2015, 32, 697–700. (In Chinese) [Google Scholar]
- Wang, H.; Mullahy, J. Willingness to pay for reducing fatal risk by improving air quality: A contingent valuation study in Chongqing, China. Sci. Total. Environ. 2006, 367, 50–57. [Google Scholar] [CrossRef]
- Hammitt, J.K.; Zhou, Y. The Economic Value of Air-Pollution-Related Health Risks in China: A Contingent Valuation Study. Environ. Resour. Econ. 2006, 33, 399–423. [Google Scholar] [CrossRef]
- Xu, X.; Cen, R.; Kan, H.; Ying, X. Meta-analysis of contingent valuation studies on air pollution-related value of statistical life in China. Chin. Heal. Resour. 2013, 16, 64–67. (In Chinese) [Google Scholar]
- Huang, D.; Andersson, H.; Zhang, S. Willingness to pay to reduce health risks related to air quality: Evidence from a choice experiment survey in Beijing. J. Environ. Plan. Manag. 2017, 61, 2207–2229. [Google Scholar] [CrossRef]
- Fann, N.; Baker, K.R.; Chan, E.A.W.; Eyth, A.; Macpherson, A.; Miller, E.; Snyder, J. Assessing Human Health PM2.5 and Ozone Impacts from U.S. Oil and Natural Gas Sector Emissions in 2025. Environ. Sci. Technol. 2018, 52, 8095–8103. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Xu, J.; Zhang, S. Valuing the health risks of particulate air pollution in the Pearl River Delta, China. Environ. Sci. Policy 2012, 15, 38–47. [Google Scholar] [CrossRef]
- World Health Organization. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; World Health Organization: Geneva, Switzerland, 2005; Available online: http://www.who.int/phe/health_topics/outdoorair_aqg/en/index.html (accessed on 30 May 2018).
- Pan, S.; Roy, A.; Choi, Y.; Eslami, E.; Thomas, S.; Jiang, X.; Gao, H.O. Potential impacts of electric vehicles on air quality and health endpoints in the Greater Houston Area in 2040. Atmos. Environ. 2019, 207, 38–51. [Google Scholar] [CrossRef]
- Hubei Provincial Peoples Government. Available online: http://www.hubei.gov.cn/mlhb/zdnr/201312/t20131203_481055.shtml (accessed on 18 November 2018). (In Chinese)
- Liu, T.; Cai, Y.; Feng, B.; Cao, G.; Lin, H.; Xiao, J.; Li, X.; Liu, S.; Pei, L.; Fu, L.; et al. Long-term mortality benefits of air quality improvement during the twelfth five-year-plan period in 31 provincial capital cities of china. Atmos. Environ. 2018, 173, 53–61. [Google Scholar] [CrossRef]
- Xie, Y.; Dai, H.; Dong, H.; Hanaoka, T.; Masui, T. Economic Impacts from PM2.5 Pollution-Related Health Effects in China: A Provincial-Level Analysis. Environ. Sci. Technol. 2016, 50, 4836–4843. [Google Scholar] [CrossRef]
- Zou, B.; You, J.; Lin, Y.; Duan, X.; Zhao, X.; Fang, X.; Campen, M.J.; Li, S. Air pollution intervention and life-saving effect in China. Environ. Int. 2019, 125, 529–541. [Google Scholar] [CrossRef]
- Vuong, Q.-H. The (ir)rational consideration of the cost of science in transition economies. Nat. Hum. Behav. 2018, 2, 5. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; He, M.Z.; Kinney, P.L.; Li, T. A county-level estimate of PM 2.5 related chronic mortality risk in China based on multi-model exposure data. Environ. Int. 2018, 110, 105–112. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Lv, Z.; Zhao, R.; Deng, F.; Wang, C.; Qin, A.; Yang, X. Estimation of PM2.5 mortality burden in China with new exposure estimation and local concentration-response function. Environ. Pollut. 2018, 243, 1710–1718. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Zhang, J.; Zhou, W.; Wang, X.; Fu, H. Spatiotemporal mapping and multiple driving forces identifying of PM2.5 variation and its joint management strategies across China. J. Clean. Prod. 2019. [Google Scholar] [CrossRef]
District | Year | Decline in 2013–2017 (%) | ||||
---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | ||
Jiang’an | 97 | 82 | 69 | 58 | 53 | 44.8 |
Jianghan | 95 | 82 | 71 | 58 | 51 | 46.0 |
Qiaokou | 94 | 84 | 71 | 58 | 52 | 44.8 |
Hanyang | 94 | 83 | 71 | 57 | 51 | 45.2 |
Wuchang | 93 | 79 | 69 | 55 | 50 | 46.7 |
Qingshan | 99 | 87 | 71 | 59 | 56 | 43.5 |
Hongshan | 96 | 82 | 69 | 57 | 54 | 43.2 |
Dongxihu | 97 | 86 | 72 | 58 | 54 | 44.2 |
Hannan | 86 | 78 | 70 | 56 | 55 | 36.0 |
Caidian | 88 | 82 | 70 | 57 | 55 | 38.0 |
Jiangxia | 96 | 83 | 70 | 58 | 55 | 43.3 |
Huangpi | 98 | 84 | 70 | 58 | 55 | 43.6 |
Xinzhou | 97 | 82 | 69 | 58 | 53 | 44.8 |
Wuhan City | 94 | 82 | 70 | 57 | 53 | 43.6 |
District | Number of PM2.5-Related Avoided Premature Deaths | District | Number of PM2.5-Related Avoided Premature Deaths |
---|---|---|---|
Jiang’an | 1921 (1349–2445) | Dongxihu | 804 (565–1024) |
Jianghan | 1297 (911–1650) | Hannan | 219 (152–282) |
Qiaokou | 1342 (942–1710) | Caidian | 954 (664–1224) |
Hanyang | 1607 (1128–2047) | Jiangxia | 1451 (1016–1854) |
Wuchang | 2722 (1913–3645) | Huangpi | 2842 (1994–3622) |
Qingshan | 1098 (771–1398) | Xinzhou | 2457 (1725–3130) |
Hongshan | 2670 (1873–3405) | Wuhan City | 21,384 (15,004–27,255) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Z.; Wang, X.; Li, F.; Li, Y.; Chen, X.; Chen, M. PM2.5-Related Health Economic Benefits Evaluation Based on Air Improvement Action Plan in Wuhan City, Middle China. Int. J. Environ. Res. Public Health 2020, 17, 620. https://doi.org/10.3390/ijerph17020620
Qu Z, Wang X, Li F, Li Y, Chen X, Chen M. PM2.5-Related Health Economic Benefits Evaluation Based on Air Improvement Action Plan in Wuhan City, Middle China. International Journal of Environmental Research and Public Health. 2020; 17(2):620. https://doi.org/10.3390/ijerph17020620
Chicago/Turabian StyleQu, Zhiguang, Xiaoying Wang, Fei Li, Yanan Li, Xiyao Chen, and Min Chen. 2020. "PM2.5-Related Health Economic Benefits Evaluation Based on Air Improvement Action Plan in Wuhan City, Middle China" International Journal of Environmental Research and Public Health 17, no. 2: 620. https://doi.org/10.3390/ijerph17020620
APA StyleQu, Z., Wang, X., Li, F., Li, Y., Chen, X., & Chen, M. (2020). PM2.5-Related Health Economic Benefits Evaluation Based on Air Improvement Action Plan in Wuhan City, Middle China. International Journal of Environmental Research and Public Health, 17(2), 620. https://doi.org/10.3390/ijerph17020620