Naturalistic Driving Study in Brazil: An Analysis of Mobile Phone Use Behavior while Driving
Abstract
:1. Introduction
2. Materials and Methods
2.1. The First Naturalistic Driving Study (NDS) in Brazil
2.2. MPU Analysis
- Texting: starting when the driver moves their hand towards the device, then touches the screen with one or both hands several times in a row, and ending when the driver puts the device down and resumes eye contact with the route or engages in another secondary task;
- Calling/voice message: starting when the driver moves their hand towards the device, then uses it for calls or to send/listen to audio in apps, and ending when the driver puts the device down or engages in another secondary task;
- Holding: starting when the driver moves their hand towards the device, then keeps holding the mobile phone, while looking in a different direction than where the device is, and ending when the driver puts the device down or engages in another secondary task;
- In-holder use: starting when the driver moves their hand towards the device, then uses the mobile phone while it is in a holder fixed to the vehicle’s panel/internal windshield screen, and ending when the driver ceases manual contact with the device and resumes eye contact with the route or engages in another secondary task;
- Checking/browsing: starting when the driver moves their hand towards the device, then touches the screen, maintaining visual and/or manual contact with the mobile phone, in order to view information, and ending when the driver puts the device down and resumes eye contact with the route, or engages in another secondary task;
- Other: starting when the driver moves their hand towards the device, then uses it for various purposes other than those described above, such as taking a photo or using the flashlight, and ending when the driver puts the device down and resumes eye contact with the route or engages in another secondary task.
2.3. Benchmarking with International NDS
3. Results
3.1. Characteristics of the Trips Recorded in the Brazilian NDS
3.2. Average Time That Driver Spent Using Mobile Phone and Type of Use
3.3. Average Percentage of Trips with MPU, Average Percentage of Trip Time with MPU and Frequency of Use
3.4. Average Instantaneous Speed While Using the Mobile Phone
4. Discussion
4.1. MPU Duration, Trip Length and Driving Speed Analysis
4.2. Comparisons with International Studies
4.3. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Global Status Report on Road Safety. 2018. Available online: https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/ (accessed on 13 January 2020).
- PAHO. Status of Road Safety in the Region of the Americas. 2019. Available online: http://iris.paho.org/xmlui/handle/123456789/51088 (accessed on 13 January 2020).
- Tison, J.; Chaudhary, N.; Cosgrove, L. National Phone Survey on Distracted Driving Attitudes and Behaviors. 2011. Available online: https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/811555.pdf (accessed on 13 January 2020).
- WHO. Mobile Phone Use: A Growing Problem of Driver Distraction; World Health Organization: Geneva, Switzerland, 2011; ISBN 978 92 4 150089 0. [Google Scholar]
- Oviedo-Trespalacios, O.; Nandavar, S.; Newton, J.D.A.; Demant, D.; Phillips, J.G. Problematic use of mobile phones in Australia…Is it getting worse? Front. Psychiatry 2019, 10, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wigginton, C.; Curran, M.; Brodeur, C. Global Mobile Consumer Trends, 2nd ed.; Delloite: London, UK, 2017. [Google Scholar]
- Ministry of Infrastructure. Registred Vehicle Fleet. 2020. Available online: https://infraestrutura.gov.br/component/content/article/115-portal-denatran/8552-estatísticas-frota-de-veículos-denatran.html (accessed on 14 January 2020).
- Ministry of Health. Number of Traffic Fatalities in Brazil. 2020. Available online: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sim/cnv/ext10uf.def (accessed on 19 December 2019).
- Federal Highway Police Department Traffic Offenses on Federal Highways. 2020. Available online: https://portal.prf.gov.br/dados-abertos-infracoes (accessed on 13 January 2020).
- Ministry of Health. Vigitel Brasil 2018: Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquerito Telefônico. 2019. Available online: http://bvsms.saude.gov.br/bvs/publicacoes/vigitel_brasil_2011_fatores_risco_doencas_cronicas.pdf (accessed on 13 January 2020).
- Oviedo-Trespalacios, O.; Truelove, V.; Watson, B.; Hinton, J.A. The impact of road advertising signs on driver behaviour and implications for road safety: A critical systematic review. Transp. Res. Part A Policy Pract. 2019, 122, 85–98. [Google Scholar] [CrossRef]
- Schneidereit, T.; Petzoldt, T.; Keinath, A.; Krems, J.F. Using SHRP 2 naturalistic driving data to assess drivers’ speed choice while being engaged in different secondary tasks. J. Saf. Res. 2017, 62, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Funkhouser, D.; Sayer, J. Naturalistic Census of Cell Phone Use. Transp. Res. Rec. J. Transp. Res. Board 2012, 2321, 1–6. [Google Scholar] [CrossRef]
- Atwood, J.; Guo, F.; Fitch, G.; Dingus, T.A. The driver-level crash risk associated with daily cellphone use and cellphone use while driving. Accid. Anal. Prev. 2018, 119, 149–154. [Google Scholar] [CrossRef]
- Dozza, M.; Flannagan, C.A.C.; Sayer, R. Real-world effects of using a phone while driving on lateral and longitudinal control of vehicles. J. Saf. Res. 2015, 55, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Christoph, M.; van Nes, N.; Knapper, A. Naturalistic Driving Observations of Manual and Visual-Manual Interactions with Navigation Systems and Mobile Phones While Driving. Transp. Res. Rec. J. Transp. Res. Board 2013, 2365, 31–38. [Google Scholar] [CrossRef]
- Christoph, M.; Wesseling, S.; van Nes, N. Self-regulation of drivers’ mobile phone use: The influence of driving context. Transp. Res. Part F Traffic Psychol. Behav. 2019, 66, 262–272. [Google Scholar] [CrossRef]
- Metz, B.; Landau, A.; Just, M. Frequency of secondary tasks in driving—Results from naturalistic driving data. Saf. Sci. 2014, 68, 195–203. [Google Scholar] [CrossRef]
- Tivesten, E.; Dozza, M. Driving context influences drivers’ decision to engage in visual-manual phone tasks: Evidence from a naturalistic driving study. J. Safety Res. 2015, 53, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Tivesten, E.; Dozza, M. Driving context and visual-manual phone tasks influence glance behavior in naturalistic driving. Transp. Res. Part F Traffic Psychol. Behav. 2014, 26, 258–272. [Google Scholar] [CrossRef] [Green Version]
- Kujala, T.; Mäkelä, J. Naturalistic study on the usage of smartphone applications among Finnish drivers. Accid. Anal. Prev. 2018, 115, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Young, K.L.; Osborne, R.; Koppel, S.; Charlton, J.L.; Grzebieta, R.; Williamson, A.; Haworth, N.; Woolley, J.; Senserrick, T. What contextual and demographic factors predict drivers’ decision to engage in secondary tasks? IET Intell. Transp. Syst. 2019, 13, 1218–1223. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Cui, B.; Yang, M.; Guo, F.; Wang, J. Effect of using mobile phones on driver’s control behavior based on naturalistic driving data. Int. J. Environ. Res. Public Health 2019, 16, 1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, S.M.; Hicks, A.; Caird, J.K. Safety-critical event risk associated with cell phone tasks as measured in naturalistic driving studies: A systematic review and meta-analysis. Accid. Anal. Prev. 2016, 87, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Dingus, T.A. Estimates of prevalence and risk associated with inattention and distraction based upon in situ naturalistic data. Ann. Adv. Automot. Med. 2014, 58, 60–68. [Google Scholar]
- Ilias, D.; Caravatto Baras, F.; Crespo, M.; Pardo De Alexandre, G.; Martinez, J.E.; Cristina, V.; Santucci, R.; Regina, S.; Nascimento, D. Mobile phone using while driving among young university students. Rev. Fac. Ciênc. Méd. Sorocaba 2012, 14, 123–125. [Google Scholar]
- Ministério da Saúde. População Residente em 2017—Estimativas para o TCU. 2019. Available online: http://tabnet.datasus.gov.br/cgi/deftohtm.exe?ibge/cnv/poptbr.def (accessed on 13 January 2020).
- Lucas, F.R.; Russo, L.E.A.; Kawashima, R.S.; Figueira, A.D.C.; Larocca, A.P.C.; Kabbach, F.I. Uso de simuladores de direção aplicado ao projeto de segurança viária. Bol. Ciencias Geod. 2013, 19, 341–352. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, M.I.; de Oliveira, P.T.M.e.S.; Ribeiro, R.L.; Larocca, A.P.C.; Junior, F.I.K. Conceito, configuração e aplicação de um simulador de direção no Brasil—Estudo de caso. Transportes 2017, 25, 1–14. [Google Scholar] [CrossRef]
- Larocca, A.P.C.; Ribeiro, R.L.; da Cruz Figueira, A.; de Oliveira, P.T.M.e.S.; Lulio, L.C.; Rangel, M.A.C. Analysis of perception of vertical signaling of highways by drivers in a simulated driving environment. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 471–487. [Google Scholar] [CrossRef]
- Dingus, T.A.; Guo, F.; Lee, S.; Antin, J.F.; Perez, M.; Buchanan-King, M.; Hankey, J. Driver crash risk factors and prevalence evaluation using naturalistic driving data. Proc. Natl. Acad. Sci. USA 2016, 113, 2636–2641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caird, J.K.; Willness, C.R.; Steel, P.; Scialfa, C. A meta-analysis of the effects of cell phones on driver performance. Accid. Anal. Prev. 2008, 40, 1282–1293. [Google Scholar] [CrossRef] [PubMed]
- Hosking, S.G.; Young, K.L.; Regan, M.A. The effects of text messaging on young drivers. Hum. Factors 2009, 51, 582–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oviedo-Trespalacios, O.; Haque, M.M.; King, M.; Washington, S. Understanding the impacts of mobile phone distraction on driving performance: A systematic review. Transp. Res. Part C Emerg. Technol. 2016, 72, 360–380. [Google Scholar] [CrossRef] [Green Version]
- Strayer, D.L.; Drews, F.A.; Crouch, D.J. A comparison of the cell phone driver and the drunk driver. Hum. Factors 2006, 48, 381–391. [Google Scholar] [CrossRef]
- Farmer, C.M.; Braitman, K.A.; Lund, A.K. Cell phone use while driving and attributable crash risk. Traffic Inj. Prev. 2010, 11, 466–470. [Google Scholar] [CrossRef]
- Oviedo-Trespalacios, O.; Haque, M.M.; King, M.; Washington, S. “Mate! I’m running 10 min late”: An investigation into the self-regulation of mobile phone tasks while driving. Accid. Anal. Prev. 2019, 122, 134–142. [Google Scholar] [CrossRef]
- Steinberger, F.; Moeller, A.; Schroeter, R. The antecedents, experience, and coping strategies of driver boredom in young adult males. J. Saf. Res. 2016, 59, 69–82. [Google Scholar] [CrossRef]
- Young, K.L.; Lenné, M.G. Driver engagement in distracting activities and the strategies used to minimise risk. Saf. Sci. 2010, 48, 326–332. [Google Scholar] [CrossRef]
- Oviedo-Trespalacios, O.; King, M.; Haque, M.M.; Washington, S. Risk factors of mobile phone use while driving in Queensland: Prevalence, attitudes, crash risk perception, and task-management strategies. PLoS ONE 2017, 12, e0183361. [Google Scholar] [CrossRef]
- Wandtner, B.; Schumacher, M.; Schmidt, E.A. The role of self-regulation in the context of driver distraction: A simulator study. Traffic Inj. Prev. 2016, 17, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Oviedo-Trespalacios, O.; Haque, M.M.; King, M.; Washington, S. Self-regulation of driving speed among distracted drivers: An application of driver behavioral adaptation theory. Traffic Inj. Prev. 2017, 18, 599–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oviedo-Trespalacios, O.; Haque, M.M.; King, M.; Demmel, S. Driving behaviour while self-regulating mobile phone interactions: A human-machine system approach. Accid. Anal. Prev. 2018, 118, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Fitch, G.; Toole, L.; Grove, K. Investigating Drivers’ Compensatory Behavior when Using a Mobile Device; Report #17-UT-048; Housed at the Virginia Tech Transportation Institute: Blacksburg, VA, USA, 2017; pp. 1–31. [Google Scholar]
- Li, X.; Oviedo-Trespalacios, O.; Rakotonirainy, A.; Yan, X. Collision risk management of cognitively distracted drivers in a car-following situation. Transp. Res. Part F Traffic Psychol. Behav. 2019, 60, 288–298. [Google Scholar] [CrossRef]
- Scott-Parker, B.; Oviedo-Trespalacios, O. Young driver risky behaviour and predictors of crash risk in Australia, New Zealand and Colombia: Same but different? Accid. Anal. Prev. 2017, 99, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Oviedo-Trespalacios, O.; Haque, M.M.; King, M.; Washington, S. Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers. Accid. Anal. Prev. 2017, 101, 67–77. [Google Scholar] [CrossRef]
- Oviedo-Trespalacios, O.; Afghari, A.P.; Haque, M.M. A hierarchical Bayesian multivariate ordered model of distracted drivers’ decision to initiate risk-compensating behaviour. Anal. Methods Accid. Res. 2020, 26, 100121. [Google Scholar] [CrossRef]
Driver | Age | Gender (M/F) 1 | Driving Time Experience (Years) | Car Model | Car Model Year | Unit of Power (HP) 2 |
---|---|---|---|---|---|---|
D1 | 31 | F | 10 | Chevrolet/Prisma | 2012 | 97 |
D2 | 38 | M | <1 | Renault/Scenic | 2009 | 115 |
D3 | 19 | M | <1 | VW/Fox | 2010 | 104 |
D4 | 23 | M | 4 | GM/Zafira | 2002 | 116 |
D5 | 38 | F | 21 | VW/Fox | 2013 | 76 |
D6 | 25 | M | 7 | Citröen/DS3 | 2012 | 165 |
Country | Authors | I1 1 | I2 2 | I3 3 | I4 4 | I5 5 |
---|---|---|---|---|---|---|
United States | Funkhouser and Sayer (2012) [13] | ✓ | ✓ | ✓ | ||
Netherlands | Christoph, Nes and Knapper (2013) [16] | ✓ | ✓ | ✓ | ||
Germany | Metz, Landau and Just (2014) [18] | ✓ | ✓ | |||
Australia | Young et al. (2019) [22] | ✓ | ||||
Sweden | Tivesten and Dozza (2014) [19] | ✓ | ||||
Tivesten and Dozza (2015) [20] | ✓ | |||||
United States | Dingus et al. (2016) [31] | ✓ | ||||
Netherlands | Christoph, Wesseling and van Nes (2019) [17] | ✓ | ✓ | |||
Finland | Kujala and Mäkelä (2018) [21] | ✓ |
Driver | Total Number of Trips | Share of Total Trip (SD = 8%) | Traveled Distance (km) | Share of Total Traveled Distance (SD = 4%) | Share of Traveled Distance in Urban Roads (%) | Share of Traveled Distance in Highways (%) |
---|---|---|---|---|---|---|
D1 | 29 | 14.29 | 227.610 | 17.47 | 100.00 | 0.00 |
D2 | 14 | 7.88 | 263.557 | 17.85 | 96.10 | 3.90 |
D3 | 17 | 8.37 | 207.399 | 15.73 | 99.86 | 0.14 |
D4 | 48 | 23.65 | 235.228 | 17.73 | 100.00 | 0.00 |
D5 | 56 | 27.59 | 286.997 | 21.43 | 89.13 | 10.87 |
D6 | 37 | 18.23 | 129.752 | 9.79 | 100.00 | 0.00 |
Total | - | 100% | 1303 | 100% | - | - |
Driver | Share of Trips per Duration (%) | Share of Travel Time per Speed (%) | ||||
---|---|---|---|---|---|---|
0–15 min | 15–30 min | Above 30 min | 0–30 km/h | 30–60 km/h | Above 60 km/h | |
D1 | 13.79 | 51.72 | 34.48 | 71.04 | 26.74 | 2.23 |
D2 | 7.14 | 21.43 | 71.43 | 67.04 | 30.62 | 2.34 |
D3 | 23.53 | 41.18 | 35.29 | 57.18 | 34.17 | 8.66 |
D4 | 75.00 | 25.00 | 0.00 | 60.21 | 34.49 | 5.31 |
D5 | 75.00 | 12.50 | 12.50 | 63.02 | 32.62 | 4.36 |
D6 | 91.89 | 8.11 | 0.00 | 64.99 | 30.56 | 4.45 |
Mean | 47.73 | 26.66 | 25.62 | 63.91 | 31.53 | 4.46 |
Type | Usage Time (s) | Usage Time (%) | I1 (s) 95% CI [LL–UL] 3 |
---|---|---|---|
Checking/browsing | 8244 | 46.11 | 20.31 [23.20–17.41] |
Holding | 3919 | 21.92 | 37.68 [28.57–46.79] |
Calling/voice message | 2585 | 14.46 | 63.05 [39.84–86.26] |
On-holder | 1639 | 9.17 | 11.07 [8.65–13.50] |
Texting | 1322 | 7.39 | 35.73 [15.98–24.98] |
Other | 93 1 | 0.52 | - |
NPI (Not Possible to Identify) | 76 2 | 0.43 | - |
Statistic Parameter | I3 1 (%) n = 201 | I4 2 (uses/h) n = 201 | I5 3 (km/h) n = 627 |
---|---|---|---|
Mean | 7.03 | 8.37 | 12.77 |
Standard deviation | 11.16 | 10.59 | 14.14 |
Minimum value | 0.00 | 0.00 | 0.00 |
1º quartile (Q1) | 0.00 | 0.00 | 0.92 |
Median | 1.90 | 5.26 | 8.21 |
3º quartile (Q3) | 8.89 | 13.03 | 22.08 |
Maximum value | 65.75 | 57.75 | 61.96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastos, J.T.; Santos, P.A.B.d.; Amancio, E.C.; Gadda, T.M.C.; Ramalho, J.A.; King, M.J.; Oviedo-Trespalacios, O. Naturalistic Driving Study in Brazil: An Analysis of Mobile Phone Use Behavior while Driving. Int. J. Environ. Res. Public Health 2020, 17, 6412. https://doi.org/10.3390/ijerph17176412
Bastos JT, Santos PABd, Amancio EC, Gadda TMC, Ramalho JA, King MJ, Oviedo-Trespalacios O. Naturalistic Driving Study in Brazil: An Analysis of Mobile Phone Use Behavior while Driving. International Journal of Environmental Research and Public Health. 2020; 17(17):6412. https://doi.org/10.3390/ijerph17176412
Chicago/Turabian StyleBastos, Jorge Tiago, Pedro Augusto B. dos Santos, Eduardo Cesar Amancio, Tatiana Maria C. Gadda, José Aurélio Ramalho, Mark J. King, and Oscar Oviedo-Trespalacios. 2020. "Naturalistic Driving Study in Brazil: An Analysis of Mobile Phone Use Behavior while Driving" International Journal of Environmental Research and Public Health 17, no. 17: 6412. https://doi.org/10.3390/ijerph17176412