DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non-Atopic Asthma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Samples
2.2. Covariates
2.3. Methylome
2.4. EWIS of DNA Methylation and BMI on Adult-Onset Asthma
2.5. EWIS of DNA Methylation and BMI Change on Adult-Onset Asthma
2.6. Candidate Pathway Enrichment Analyses Using Weighted Kolmogorov-Smirnov (WKS) Method
2.7. Identification of Differentially Methylated Regions (DMR)
2.8. Agnostic Pathway Enrichment Analyses Using Ingenuity Pathway Analysis (IPA)
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beuther, D.A.; Sutherland, E.R. Overweight, obesity, and incident asthma: A meta-analysis of prospective epidemiologic studies. Am. J. Respir. Crit. Care Med. 2007, 175, 661–666. [Google Scholar] [CrossRef]
- Egan, K.B.; Ettinger, A.S.; Bracken, M.B. Childhood body mass index and subsequent physician-diagnosed asthma: A systematic review and meta-analysis of prospective cohort studies. BMC Pediatr. 2013, 13, 121. [Google Scholar] [CrossRef] [PubMed]
- Castro-Giner, F.; Kogevinas, M.; Imboden, M.; de Cid, R.; Jarvis, D.; Machler, M.; Berger, W.; Burney, P.; Franklin, K.A.; Gonzalez, J.R.; et al. Joint effect of obesity and TNFA variability on asthma: Two international cohort studies. Eur. Respir. J. 2009, 33, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Fenger, R.V.; Gonzalez-Quintela, A.; Vidal, C.; Gude, F.; Husemoen, L.L.; Aadahl, M.; Berg, N.D.; Linneberg, A. Exploring the obesity-asthma link: Do all types of adiposity increase the risk of asthma? Clin. Exp. Allergy 2012, 42, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Haldar, P.; Pavord, I.D.; Shaw, D.E.; Berry, M.A.; Thomas, M.; Brightling, C.E.; Wardlaw, A.J.; Green, R.H. Cluster analysis and clinical asthma phenotypes. Am. J. Respir. Crit. Care Med. 2008, 178, 218–224. [Google Scholar] [CrossRef]
- Moore, W.C.; Meyers, D.A.; Wenzel, S.E.; Teague, W.G.; Li, H.; Li, X.; D’Agostino, R., Jr.; Castro, M.; Curran-Everett, D.; Fitzpatrick, A.M.; et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am. J. Respir. Crit. Care Med. 2010, 181, 315–323. [Google Scholar] [CrossRef]
- Jeong, A.; Imboden, M.; Hansen, S.; Zemp, E.; Bridevaux, P.O.; Lovison, G.; Schindler, C.; Probst-Hensch, N. Heterogeneity of obesity-asthma association disentangled by latent class analysis, the SAPALDIA cohort. Respir. Med. 2017, 125, 25–32. [Google Scholar] [CrossRef]
- Shore, S.A. Obesity and asthma: Possible mechanisms. J. Allergy Clin. Immunol. 2008, 121, 1087–1093; quiz 1094–1095. [Google Scholar] [CrossRef]
- Steier, J.; Lunt, A.; Hart, N.; Polkey, M.I.; Moxham, J. Observational study of the effect of obesity on lung volumes. Thorax 2014, 69, 752–759. [Google Scholar] [CrossRef] [Green Version]
- Suganami, T.; Nishida, J.; Ogawa, Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: Role of free fatty acids and tumor necrosis factor alpha. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2062–2068. [Google Scholar] [CrossRef]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W., Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castoldi, A.; Naffah de Souza, C.; Câmara, N.O.S.; Moraes-Vieira, P.M. The macrophage switch in obesity development. Front. Immunol. 2016, 6, 637. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Lee, H.J.; Chang, Y.J.; Pichavant, M.; Shore, S.A.; Fitzgerald, K.A.; Iwakura, Y.; Israel, E.; Bolger, K.; Faul, J.; et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat. Med. 2014, 20, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.J.; Soderhall, C.; Bustamante, M.; Baiz, N.; Gruzieva, O.; Gehring, U.; Mason, D.; Chatzi, L.; Basterrechea, M.; Llop, S.; et al. DNA methylation in childhood asthma: An epigenome-wide meta-analysis. Lancet Respir. Med. 2018, 6, 379–388. [Google Scholar] [CrossRef]
- Forno, E.; Wang, T.; Qi, C.; Yan, Q.; Xu, C.J.; Boutaoui, N.; Han, Y.Y.; Weeks, D.E.; Jiang, Y.; Rosser, F.; et al. DNA methylation in nasal epithelium, atopy, and atopic asthma in children: A genome-wide study. Lancet Respir. Med. 2018. [Google Scholar] [CrossRef]
- Reese, S.E.; Xu, C.J.; den Dekker, H.T.; Lee, M.K.; Sikdar, S.; Ruiz-Arenas, C.; Merid, S.K.; Rezwan, F.I.; Page, C.M.; Ullemar, V.; et al. Epigenome-wide meta-analysis of DNA methylation and childhood asthma. J. Allergy Clin. Immunol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Dick, K.J.; Nelson, C.P.; Tsaprouni, L.; Sandling, J.K.; Aïssi, D.; Wahl, S.; Meduri, E.; Morange, P.-E.; Gagnon, F.; Grallert, H.; et al. DNA methylation and body-mass index: A genome-wide analysis. Lancet 2014, 383, 1990–1998. [Google Scholar] [CrossRef]
- Wahl, S.; Drong, A.; Lehne, B.; Loh, M.; Scott, W.R.; Kunze, S.; Tsai, P.C.; Ried, J.S.; Zhang, W.; Yang, Y.; et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 2017, 541, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Su, S.; Barnes, V.A.; De Miguel, C.; Pollock, J.; Ownby, D.; Shi, H.; Zhu, H.; Snieder, H.; Wang, X. A genome-wide methylation study on obesity: Differential variability and differential methylation. Epigenetics 2013, 8, 522–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastogi, D.; Suzuki, M.; Greally, J.M. Differential epigenome-wide DNA methylation patterns in childhood obesity-associated asthma. Sci. Rep. 2013, 3, 2164. [Google Scholar] [CrossRef] [PubMed]
- Gunawardhana, L.P.; Gibson, P.G.; Simpson, J.L.; Benton, M.C.; Lea, R.A.; Baines, K.J. Characteristic DNA methylation profiles in peripheral blood monocytes are associated with inflammatory phenotypes of asthma. Epigenetics 2014, 9, 1302–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackermann-Liebrich, U.; Kuna-Dibbert, B.; Probst-Hensch, N.M.; Schindler, C.; Dietrich, D.F.; Stutz, E.Z.; Bayer-Oglesby, L.; Baum, F.; Brändli, O.; Brutsche, M.; et al. Follow-up of the Swiss Cohort Study on Air Pollution and Lung Diseases in Adults (SAPALDIA 2) 1991–2003: Methods and characterization of participants. Sozial. Und. Präventivmedizin SPM 2005, 50, 245–263. [Google Scholar] [CrossRef]
- Martin, B.W.; Ackermann-Liebrich, U.; Leuenberger, P.; Kunzli, N.; Stutz, E.Z.; Keller, R.; Zellweger, J.P.; Wuthrich, B.; Monn, C.; Blaser, K.; et al. SAPALDIA: Methods and participation in the cross-sectional part of the Swiss Study on Air Pollution and Lung Diseases in Adults. Soz. Praventivmed. 1997, 42, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Hebels, D.G.; Georgiadis, P.; Keun, H.C.; Athersuch, T.J.; Vineis, P.; Vermeulen, R.; Portengen, L.; Bergdahl, I.A.; Hallmans, G.; Palli, D.; et al. Performance in omics analyses of blood samples in long-term storage: Opportunities for the exploitation of existing biobanks in environmental health research. Environ. Health Perspect. 2013, 121, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Aryee, M.J.; Jaffe, A.E.; Corrada-Bravo, H.; Ladd-Acosta, C.; Feinberg, A.P.; Hansen, K.D.; Irizarry, R.A. Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 2014, 30, 1363–1369. [Google Scholar] [CrossRef] [PubMed]
- Triche, T.J., Jr.; Weisenberger, D.J.; Van Den Berg, D.; Laird, P.W.; Siegmund, K.D. Low-level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Res. 2013, 41, e90. [Google Scholar] [CrossRef]
- Teschendorff, A.E.; Marabita, F.; Lechner, M.; Bartlett, T.; Tegner, J.; Gomez-Cabrero, D.; Beck, S. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 2013, 29, 189–196. [Google Scholar] [CrossRef]
- Chen, Y.A.; Lemire, M.; Choufani, S.; Butcher, D.T.; Grafodatskaya, D.; Zanke, B.W.; Gallinger, S.; Hudson, T.J.; Weksberg, R. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 2013, 8, 203–209. [Google Scholar] [CrossRef]
- Lehne, B.; Drong, A.W.; Loh, M.; Zhang, W.; Scott, W.R.; Tan, S.T.; Afzal, U.; Scott, J.; Jarvelin, M.R.; Elliott, P.; et al. A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. Genome Biol. 2015, 16, 37. [Google Scholar] [CrossRef] [Green Version]
- Houseman, E.A.; Accomando, W.P.; Koestler, D.C.; Christensen, B.C.; Marsit, C.J.; Nelson, H.H.; Wiencke, J.K.; Kelsey, K.T. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 2012, 13, 86. [Google Scholar] [CrossRef]
- Annunziato, F.; Romagnani, C.; Romagnani, S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol. 2015, 135, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Linden, A.; Dahlen, B. Interleukin-17 cytokine signalling in patients with asthma. Eur. Respir. J. 2014, 44, 1319–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loza, M.J.; McCall, C.E.; Li, L.; Isaacs, W.B.; Xu, J.; Chang, B.L. Assembly of inflammation-related genes for pathway-focused genetic analysis. PLoS ONE 2007, 2, e1035. [Google Scholar] [CrossRef] [PubMed]
- Charmpi, K.; Ycart, B. Weighted Kolmogorov Smirnov testing: An alternative for Gene Set Enrichment Analysis. Stat. Appl. Genet. Mol. Biol. 2015, 14, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Van der Laan, M.J.; Birkner, M.D.; Hubbard, A.E. Empirical Bayes and resampling based multiple testing procedure controlling tail probability of the proportion of false positives. Stat. Appl. Genet. Mol. Biol. 2005, 4, 29. [Google Scholar] [CrossRef] [PubMed]
- Peters, T.J.; Buckley, M.J.; Statham, A.L.; Pidsley, R.; Samaras, K.V.; Lord, R.; Clark, S.J.; Molloy, P.L. De novo identification of differentially methylated regions in the human genome. Epigenet. Chromatin. 2015, 8, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, K.D.; Timp, W.; Bravo, H.C.; Sabunciyan, S.; Langmead, B.; McDonald, O.G.; Wen, B.; Wu, H.; Liu, Y.; Diep, D.; et al. Increased methylation variation in epigenetic domains across cancer types. Nat. Genet. 2011, 43, 768–775. [Google Scholar] [CrossRef] [Green Version]
- Irizarry, R.A.; Ladd-Acosta, C.; Wen, B.; Wu, Z.; Montano, C.; Onyango, P.; Cui, H.; Gabo, K.; Rongione, M.; Webster, M.; et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 2009, 41, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Xie, Z.; Pape, M.L.; Dye, T. An evaluation of statistical methods for DNA methylation microarray data analysis. BMC Bioinform. 2015, 16, 217. [Google Scholar] [CrossRef]
- Galic, S.; Oakhill, J.S.; Steinberg, G.R. Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol. 2010, 316, 129–139. [Google Scholar] [CrossRef]
- Banno, A.; Reddy, A.T.; Lakshmi, S.P.; Reddy, R.C. PPARs: Key Regulators of Airway Inflammation and Potential Therapeutic Targets in Asthma. Nucl. Receptor. Res. 2018, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, A.B.; Lee, J.S.; Visser, M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Nevitt, M.; Harris, T.B. Weight change and the conservation of lean mass in old age: The Health, Aging and Body Composition Study. Am. J. Clin. Nutr. 2005, 82, 872–878; quiz 915–916. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Kwon, Y.H.; Cho, J.H.; Lee, D.Y.; Park, S.E.; Oh, H.G.; Park, C.Y.; Lee, W.Y.; Oh, K.W.; Park, S.W.; et al. Changes in Body Composition According to Age and Sex among Young Non-Diabetic Korean Adults: The Kangbuk Samsung Health Study. Endocrinol. Metab. (Seoul) 2017, 32, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Santanasto, A.J.; Goodpaster, B.H.; Kritchevsky, S.B.; Miljkovic, I.; Satterfield, S.; Schwartz, A.V.; Cummings, S.R.; Boudreau, R.M.; Harris, T.B.; Newman, A.B. Body Composition Remodeling and Mortality: The Health Aging and Body Composition Study. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Esser, N.; L’Homme, L.; De Roover, A.; Kohnen, L.; Scheen, A.J.; Moutschen, M.; Piette, J.; Legrand-Poels, S.; Paquot, N. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia 2013, 56, 2487–2497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandanmagsar, B.; Youm, Y.H.; Ravussin, A.; Galgani, J.E.; Stadler, K.; Mynatt, R.L.; Ravussin, E.; Stephens, J.M.; Dixit, V.D. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 2011, 17, 179–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang da, W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Granell, R.; Henderson, A.J.; Evans, D.M.; Smith, G.D.; Ness, A.R.; Lewis, S.; Palmer, T.M.; Sterne, J.A. Effects of BMI, fat mass, and lean mass on asthma in childhood: A Mendelian randomization study. PLoS Med. 2014, 11, e1001669. [Google Scholar] [CrossRef]
- Skaaby, T.; Taylor, A.E.; Thuesen, B.H.; Jacobsen, R.K.; Friedrich, N.; Mollehave, L.T.; Hansen, S.; Larsen, S.C.; Volker, U.; Nauck, M.; et al. Estimating the causal effect of body mass index on hay fever, asthma and lung function using Mendelian randomization. Allergy 2018, 73, 153–164. [Google Scholar] [CrossRef] [PubMed]
Cases | Controls | |
---|---|---|
N | 61 | 146 |
Age (year) | 60.8 (15.6) | 57.4 (15.0) |
Female | 43 (70%) | 82 (56%) |
BMI (kg/m2) a | 25.7 (5.8) | 24.5 (4.8) |
BMI change (kg/m2) b | 0.4 (2.0) | 0.5 (1.6) |
Smoking c | ||
Former | 27 (44%) | 50 (34%) |
Never | 34 (56%) | 96 (66%) |
Pack-years d | 7.8 (13.3) | 6.8 (11.6) |
Education level e | ||
Low | 0 (0%) | 2 (1%) |
Middle | 43 (70%) | 94 (64%) |
High | 18 (30%) | 50 (34%) |
Physical activity f | ||
Insufficiently active | 18 (30%) | 30 (21%) |
Sufficiently active | 42 (69%) | 113 (77%) |
N/A | 1 (2%) | 3 (2%) |
Bench time (min) g | 80.0 (34.0) | 82.5 (32.5) |
hs-CRP (mg/L) h | 1.3 (1.4) | 0.7 (1.2) |
Pathway | #Genes | #CpGs | Enrichment p-Value | ||
---|---|---|---|---|---|
Basic Model | Adjusted for Physical Activity | Adjusted for Neutrophil Counts | |||
Adhesion-extravasation-migration | 142 | 1737 | 0.48 | 0.30 | 0.37 |
Apoptosis signaling | 68 | 1210 | 0.22 | 0.34 | 0.32 |
Calcium signaling | 14 | 413 | 0.81 | 0.72 | 0.70 |
Complement cascade | 40 | 483 | 0.92 | 0.73 | 0.96 |
Cytokine signaling | 172 | 1883 | 0.070 | 0.053 | 0.067 |
Eicosanoid signaling | 39 | 450 | 0.58 | 0.78 | 0.55 |
Glucocorticoid/PPAR signaling | 21 | 404 | 0.0023 | 0.0053 | 0.0039 |
G-Protein coupled receptor signaling | 42 | 1133 | 0.74 | 0.49 | 0.66 |
Innate pathogen detection | 50 | 515 | 0.89 | 0.72 | 0.88 |
Leukocyte signaling | 121 | 1429 | 0.14 | 0.059 | 0.090 |
MAPK signaling | 118 | 2682 | 0.013 | 0.0036 | 0.018 |
Natural killer cell signaling | 31 | 368 | 0.54 | 0.41 | 0.51 |
NF-κB signaling | 33 | 654 | 0.031 | 0.0028 | 0.054 |
Phagocytosis-Ag presentation | 39 | 1058 | 0.81 | 0.72 | 0.66 |
PI3K/AKT signaling | 37 | 907 | 0.031 | 0.23 | 0.053 |
ROS/glutathione/cytotoxic granules | 22 | 190 | 0.58 | 0.45 | 0.53 |
TNF superfamily signaling | 38 | 537 | 0.78 | 0.69 | 0.73 |
Global inflammation § | 1027 | 15985 | 0.0026 | 0.011 | 0.0057 |
NLRP3-IL1B-IL17 axis | 11 | 219 | 1.00 | 0.99 | 1.00 |
Pathway | #Genes | #CpGs | Enrichment p-Value | ||
---|---|---|---|---|---|
Basic Model | Adjusted for Physical Activity | Unadjusted for Neutrophil Counts | |||
Adhesion-extravasation-migration | 142 | 1737 | 0.67 | 0.60 | 0.39 |
Apoptosis signaling | 68 | 1210 | 0.50 | 0.37 | 0.22 |
Calcium signaling | 14 | 413 | 0.29 | 0.34 | 0.21 |
Complement cascade | 40 | 483 | 0.45 | 0.64 | 0.34 |
Cytokine signaling | 172 | 1883 | 0.26 | 0.35 | 0.21 |
Eicosanoid signaling | 39 | 450 | 0.48 | 0.17 | 0.61 |
Glucocorticoid/PPAR signaling | 21 | 404 | 0.063 | 0.15 | 0.072 |
G-Protein coupled receptor signaling | 42 | 1133 | 0.47 | 0.88 | 0.46 |
Innate pathogen detection | 50 | 515 | 0.059 | 0.12 | 0.13 |
Leukocyte signaling | 121 | 1429 | 0.35 | 0.49 | 0.34 |
MAPK signaling | 118 | 2682 | 0.13 | 0.33 | 0.24 |
Natural killer cell signaling | 31 | 368 | 0.91 | 0.75 | 0.91 |
NF-κB signaling | 33 | 654 | 0.70 | 0.49 | 0.62 |
Phagocytosis-Ag presentation | 39 | 1058 | 0.51 | 0.89 | 0.71 |
PI3K/AKT signaling | 37 | 907 | 0.98 | 0.98 | 0.89 |
ROS/glutathione/cytotoxic granules | 22 | 190 | 0.24 | 0.55 | 0.14 |
TNF superfamily signaling | 38 | 537 | 0.085 | 0.33 | 0.065 |
Global inflammation § | 1027 | 15985 | 0.048 | 0.23 | 0.028 |
NLRP3-IL1B-IL17 axis | 11 | 219 | 0.046 | 0.13 | 0.15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, A.; Imboden, M.; Ghantous, A.; Novoloaca, A.; Carsin, A.-E.; Kogevinas, M.; Schindler, C.; Lovison, G.; Herceg, Z.; Cuenin, C.; et al. DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non-Atopic Asthma. Int. J. Environ. Res. Public Health 2019, 16, 600. https://doi.org/10.3390/ijerph16040600
Jeong A, Imboden M, Ghantous A, Novoloaca A, Carsin A-E, Kogevinas M, Schindler C, Lovison G, Herceg Z, Cuenin C, et al. DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non-Atopic Asthma. International Journal of Environmental Research and Public Health. 2019; 16(4):600. https://doi.org/10.3390/ijerph16040600
Chicago/Turabian StyleJeong, Ayoung, Medea Imboden, Akram Ghantous, Alexei Novoloaca, Anne-Elie Carsin, Manolis Kogevinas, Christian Schindler, Gianfranco Lovison, Zdenko Herceg, Cyrille Cuenin, and et al. 2019. "DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non-Atopic Asthma" International Journal of Environmental Research and Public Health 16, no. 4: 600. https://doi.org/10.3390/ijerph16040600
APA StyleJeong, A., Imboden, M., Ghantous, A., Novoloaca, A., Carsin, A. -E., Kogevinas, M., Schindler, C., Lovison, G., Herceg, Z., Cuenin, C., Vermeulen, R., Jarvis, D., Amaral, A. F. S., Kronenberg, F., Vineis, P., & Probst-Hensch, N. (2019). DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non-Atopic Asthma. International Journal of Environmental Research and Public Health, 16(4), 600. https://doi.org/10.3390/ijerph16040600