Stomatal Conductance Measurement for Toxicity Assessment in Zero-Effluent Constructed Wetlands: Effects of Landfill Leachate on Hydrophytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Landfill Leachate and Hydrophytes
2.2. The Experimental Matrix
2.3. Experimental Procedure
2.4. Toxicity Evaluation—the Lowest Effective Concentration causing a Toxic Effect (LOEC)
- I = effect caused by each landfill leachate solution (%);
- C = mean measured leaf stomatal conductance for control treated with tap water only (mmol H2O·m−2·s−1);
- T = mean measured leaf stomatal conductance for plants treated with landfill leachate solutions (mmol H2O·m−2·s−1).
- Cr = landfill leachate solution concentration used in the experiment (%);
2.5. Statistical Procedures
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Białowiec, A.; Micuda, M.; Koziel, J.A. Waste to carbon: Densification of torrefied refuse-derived fuels. Energies 2018, 11, 3233. [Google Scholar] [CrossRef]
- Białowiec, A.; Wojnowska-Baryła, I.; Agopsowicz, M. The efficiency of evapotranspiration of landfill leachate in the soil–plant system with willow Salix amygdalina L. Ecol. Eng. 2007, 30, 356–361. [Google Scholar] [CrossRef]
- Białowiec, A.; Albuquerque, A.; Randerson, P.F. The influence of evapotranspiration on vertical flow subsurface constructed wetland performance. Ecol. Eng. 2014, 67, 89–94. [Google Scholar] [CrossRef][Green Version]
- Gregersen, P.; Brix, H. Zero-discharge of nutrients and water in a willow dominated constructed wetland. Water Sci. Technol. 2001, 44, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Headley, T.R.; Davison, L.; Huett, D.O.; Muller, R. Evapotranspiration from subsurface horizontal flow wetlands planted with Phragmites australis in sub-tropical Australia. Water Res. 2012, 46, 345–354. [Google Scholar] [CrossRef] [PubMed]
- O’Hogain, S.; McCarton, L.; Reid, A.; Turner, J. A review of zero discharge wastewater treatment systems using reed willow bed combinations in Ireland. Proceedings of 12th IWA International Conference on Wetland Systems for Water Pollution Control, Venice, Italy, 4–8 October 2010. [Google Scholar]
- Shelef, O.; Gross, A.; Rachmilevitch, S. Role of plants in a constructed wetland: Current and new perspectives. Water 2013, 5, 405–419. [Google Scholar] [CrossRef]
- Bialowiec, A.; Agopsowicz, M. Using phytotoxicological test for landfill leachate dose selection in willow short rotation plantations. In Proceedings of the Eleventh International Waste Management and Landfill Symposium in Sardinia, Santa Margherita di Pula, Italy, 1–5 October 2007. [Google Scholar]
- Białowiec, A. Transpiration as landfill leachate phytotoxicity indicator. Waste Manag. 2015, 39, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Białowiec, A.; Kasiński, S. Landfill leachate treatment in soil-plant systems—Possibilities of leachate dose rate selection in initial plants growth. Annu. Set Environ. Prot. 2009, 11, 1267–1278. [Google Scholar]
- Bialowiec, A.; Randerson, P.F.; Kopik, M. Using fractal geometry to determine phytotoxicity of landfill leachate on willow. Chemosphere 2010, 79, 534–540. [Google Scholar] [CrossRef] [PubMed]
- DELTA-T DEVICES. User Manual for the Porometer Type AP4. Available online: https://www.delta-t.co.uk/wp-content/uploads/2017/02/AP4_Porometer_User_Manual_v3.1.pdf (accessed on 23 January 2019).
- Bialowiec, A.; Randerson, P.F. Phytotoxicity of landfill leachate on willow—Salix amygdalina L. Waste Manag. 2010, 30, 1587–1593. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Ohta, T.; Tanaka, T. Dependence of stomatal conductance on leaf chlorophyll concentration and meteorological variables. Agr. Forest Meteorol. 2005, 32, 44–57. [Google Scholar] [CrossRef]
- Savvides, A.; Fanourakis, D.; Van Ieperen, W. Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. J. Exp. Bot. 2012, 63, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Paz, R.C.; Reinoso, H.; Espasandin, F.D.; González Antivilo, F.A.; Sansberro, P.A.; Rocco, R.A.; Ruiz, O.A.; Menéndez, A.B. Alkaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots. Plant Biol. 2014, 16, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
Plant Species | Leachate Type | Leachate Concentration (%) | |||||
---|---|---|---|---|---|---|---|
P. australis | L1 | 0 (tap water) | 6.25 | 12.5 | 25.0 | 50.0 | 100.0 |
L2 | |||||||
A. calamus | L1 | ||||||
L2 |
Timeline of the Experiment, Weeks | |||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Pre-cultivation of plants in tap water | Treatment of plants with leachate solutions | ||||||
(gs) * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Białowiec, A.; Koziel, J.A.; Manczarski, P. Stomatal Conductance Measurement for Toxicity Assessment in Zero-Effluent Constructed Wetlands: Effects of Landfill Leachate on Hydrophytes. Int. J. Environ. Res. Public Health 2019, 16, 468. https://doi.org/10.3390/ijerph16030468
Białowiec A, Koziel JA, Manczarski P. Stomatal Conductance Measurement for Toxicity Assessment in Zero-Effluent Constructed Wetlands: Effects of Landfill Leachate on Hydrophytes. International Journal of Environmental Research and Public Health. 2019; 16(3):468. https://doi.org/10.3390/ijerph16030468
Chicago/Turabian StyleBiałowiec, Andrzej, Jacek A. Koziel, and Piotr Manczarski. 2019. "Stomatal Conductance Measurement for Toxicity Assessment in Zero-Effluent Constructed Wetlands: Effects of Landfill Leachate on Hydrophytes" International Journal of Environmental Research and Public Health 16, no. 3: 468. https://doi.org/10.3390/ijerph16030468