Comparison of Clay Ceramsite and Biodegradable Polymers as Carriers in Pack-bed Biofilm Reactor for Nitrate Removal
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Apparatus
2.3. Experiment Procedures
2.4. Analytical Methods
3. Results and Discussions
3.1. Denitrification Performance During the Start-up Period
3.2. Effect of HRT on Denitrification Performance
3.3. Effect of C/N Ratio on Denitrification Performance
3.4. Effect of Shock Loading of Influent Nitrate on Denitrification Performance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jing, Z.Q.; Li, Y.Y.; Cao, S.W.; Liu, Y.Y. Performance of double-layer biofilter packed with coal fly ash ceramic granules in treating highly polluted river water. Bioresour. Technol. 2012, 120, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Parisa, R.; Mehdi, T.M. On using clay and nanoclay ceramic granules in reducing lead, arsenic, nitrate, and turbidity from water. Appl. Water Sci. 2018, 8, 131. [Google Scholar]
- Wei, N.; Shi, Y.H.; Wu, G.X.; Hu, H.Y.; Wu, Y.H.; When, H. Tertiary denitrification of the secondary effluent by denitrifying biofilters packed with different sizes of quartz sand. Water 2014, 6, 1300–1311. [Google Scholar] [CrossRef]
- Strong, P.J.; Mcdonald, B.; Gapes, D.J. Enhancing denitrification using a carbon supplement generated from the wet oxidation of waste activated sludge. Bioresour. Technol. 2011, 102, 5533–5540. [Google Scholar] [CrossRef] [PubMed]
- Boley, A.; Muller, W.R.; Haider, G. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems. Aquac. Eng. 2000, 22, 75–85. [Google Scholar] [CrossRef]
- Wang, J.L.; Chu, L.B. Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnol. Adv. 2016, 34, 1103–1112. [Google Scholar] [CrossRef]
- Hille, A.; He, M.; Ochmann, C. Application of two component biodegradable carriers in a particle-fixed biofilm airlift suspension reactor: Development and structure of biofilms. Bioprocess Biosyst. Eng. 2009, 32, 31–39. [Google Scholar] [CrossRef]
- Wu, W.Z.; Yang, L.H.; Wang, J.L. Denitrification performance and microbial diversity in a packed-bed bioreactor using PCL as carbon source and biofilm carrier. Appl. Microbiol. Biotechnol. 2013, 97, 2725–2733. [Google Scholar] [CrossRef]
- Hosseinkhani, H.; Domb, A.J. Biodegradable polymers in gene-silencing technology. Polym. Adv. Technol. 2019, 30, 2647–2655. [Google Scholar] [CrossRef]
- Rodrigues, A.L.; Mosquera-Corral, A.; Machado, A.V. Use of biopolymers as solid substrates for denitrification. Water Sci. Technol. 2012, 65, 105–111. [Google Scholar] [CrossRef]
- Walters, E.; Hille, A.; He, M.; Ochmann, C.; Horn, H. Simultaneous nitrification/denitrification in a biofilm airlift suspension (BAS) reactor with biodegradable carrier material. Water Res. 2009, 43, 4461–4468. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.Z.; Yang, L.H.; Wang, J.L. Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor. Environ. Sci. Pollut. Res. 2013, 20, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.Z.; Liu, Z.F.; Gao, J.F.; Hou, Z.W.; Tan, H.G. Nitrate removal efficiency and bacterial community of polycaprolactone-packed bioreactors treating water from a recirculating aquaculture system. Aquac. Int. 2018, 26, 773–784. [Google Scholar] [CrossRef]
- Si, Z.H.; Sung, X.S.; Wang, Y.H.; Cao, X.; Zhao, Y.F.; Wang, B.; Chen, Y.; Arefe, A. Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources: Denitrification efficiency and bacterial community structure. Bioresour. Technol. 2018, 267, 416–425. [Google Scholar] [CrossRef]
- Chu, L.B.; Wang, J.L. Comparison of polyurethane foam and biodegradable polymers as carriers in moving bed biofilm reactor for treating wastewater with a low C/N ratio. Chemosphere 2011, 83, 63–68. [Google Scholar] [CrossRef]
- Fan, Z.X.; Hu, J.; Wang, J.L. Biological nitrate removal using wheat straw and PLA as substrate. Environ. Technol. 2012, 33, 2369–2374. [Google Scholar] [CrossRef]
- Gutierrez-Wing, M.T.; Malone, R.F.; Rusch, K.A. Evaluation of polyhydroxybutyrate as carbon source for recirculating aquaculture water denitrification. Aquac. Eng. 2012, 51, 36–43. [Google Scholar] [CrossRef]
- Cristina, T.; Giulia, P.; Laurent, O. Alternative of solutions for the bio-denitrification of landfill leachates using pine bark and compost. J. Hazard Mater. 2010, 178, 1100–1105. [Google Scholar]
- Robinson-Lora, M.A.; Brennan, R.A. The use of carb-shell chitin for biological denitrification: Batch and column tests. Bioresour. Technol. 2009, 100, 534–541. [Google Scholar] [CrossRef]
- Guan, R.; Li, X.J.; Wachemo, A.C.; Yuan, H.; Liu, Y.P.; Zou, D.X.; Zou, X.Y.; Gu, J.Y. Enhancing anaerobic digestion performance and degradation of lignocellulosic components of rice straw by combined biological and chemical pretreatment. Sci. Total Environ. 2018, 637, 9–17. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Xu, C.Y.; Zhong, D.; Han, Y.X.; Han, H.G.; Zheng, M.Q.; Zhu, H. Enhanced nitrogen removal of coal pyrolysis wastewater with low COD to nitrogen ratio by partial nitrification-denitrification bioprocess assisted with polycaprolactone. Environ. Sci. Pollut. Res. 2019, 26, 21655–21667. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.L.; Machado, A.V.; Nobrega, J.M. A poly-epsilon-caprolactone based biofilm carrier for nitrate removal from water. Int. J. Environ. Sci. Technol. 2013, 11, 263–268. [Google Scholar] [CrossRef][Green Version]
- Takahashi, M.; Yamada, T.; Tanno, M.; Tsuji, H.; Hiraish, A. Nitrate removal efficiency and bacterial community dynamics in denitrification processes using poly (L-lactic acid) as the solid substrate. Microbes Environ. 2011, 26, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.M.; Wang, J.L. Removal of nitrate from groundwater by heterotrophic denitrification using the solid carbon source. Sci. China Ser. B Chem. 2009, 52, 236–240. [Google Scholar] [CrossRef]
- Zhao, W.J.; Liu, D.W.; Feng, Q.C.; Wen, S.M.; Chang, W.H. DFT insights into the electronic properties and adsorption mechanism of HS− on smithsonite (101) surface. Miner. Eng. 2019, 141, 105846. [Google Scholar] [CrossRef]
- Feng, Q.C.; Wen, S.M.; Bai, X.; Chang, W.H.; Cui, C.F.; Zhao, W.J. Surface modification of smithsonite with ammonia to enhance the formation of sulfidization products and its response to flotation. Miner. Eng. 2019, 137, 1–9. [Google Scholar] [CrossRef]
- Jin, S.L.; Feng, C.P.; Tong, S.; Chen, N.; Liu, H.Y.; Zhao, J.M. Effect of sawdust dosage and hydraulic retention time (HRT) on nitrate removal in sawdust/pyrite mixotrophic denitrification (SPMD) systems. Environ. Sci. Water Res. 2019, 5, 346–357. [Google Scholar] [CrossRef]
- Dong, X.; Reddy, G.B. Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique. Bioresour. Technol. 2010, 101, 1175–1182. [Google Scholar] [CrossRef]
- Shen, Z.Q.; Zhou, Y.X.; Wang, J.L. Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal. Bioresour. Technol. 2013, 131, 33–39. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef]
- Gallegos, D.; Wedwitschka, H.; Moeller, L.; Weinrich SZehnsdorf, A.; Nelles, M.; Stinner, W. Mixed silage of Elodea and wheat straw as a substrate for energy production in anaerobic digestion plants. Energy Sustain. Soc. 2018, 8, 7. [Google Scholar] [CrossRef]
- Wang, X.M.; Wang, J.L. Denitrification of nitrate-contaminated groundwater using biodegradable snack as carbon source under low-temperature condition. Int. J. Environ. Sci. Technol. 2012, 9, 113–118. [Google Scholar] [CrossRef][Green Version]
- Yang, Z.L.; Zhu, W.Q.; Yu, D.S.; Bo, Y.T.; Li, J. Enhanced carbon and nitrogen removal performance of simultaneously anammox and denitrification (SAD) with mannitol addition treating saline wastewater. J. Chem. Technol. Biotechnol. 2018, 94, 377–388. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Han, Y.X.; Xu, C.Y.; Ma, W.C.; Zheng, M.Q.; Zhu, H.; Ma, W.W. Microbial nitrate removal in biologically enhanced treated coal gasification wastewater of low COD to nitrate ratio by coupling biological denitrification with iron and carbon micro-electrolysis. Bioresour. Technol. 2018, 262, 65. [Google Scholar] [CrossRef] [PubMed]
- Ginige, M.P.; Hugenholtz, P.; Daims, H.; Wagner, M.; Keller, J.; Blackball, L.L. Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. Appl. Environ. Microbiol. 2004, 70, 588–596. [Google Scholar] [CrossRef]
- Ginige, M.P.; Keller, J.; Blackall, L.L. Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization microautoradiography. Appl. Environ. Microbiol. 2005, 71, 8683–8691. [Google Scholar] [CrossRef]
- Manucharova, N.A.; Dobrovol’skaya, T.G.; Stepanov, A.L. Taxonomy of denitrifying bacteria in soddy podzolic soil. Mikrobiologiia 2000, 69, 286–289. [Google Scholar]
- Nagashima, S.; Kamimura, A.; Shimizu, T.; Nakamura-Isaki, S.; Aono, E.; Sakamoto, K.; Ichikawa, N.; Nakazawa, H.; Sekine, M.; Yamazaki, S. Complete genome sequence of phototrophic betaproteobacterium Rubrivivax gelatinosus IL144. J. Bacteriol. 2012, 194, 3541–3542. [Google Scholar] [CrossRef]
- Zhao, H.H.; Kong, C.H. Elimination of pyraclostrobin by simultaneous microbial degradation coupled with the Fenton process in microbial fuel cells and the microbial community. Bioresour. Technol. 2018, 258, 227. [Google Scholar] [CrossRef]
- Zhu, S.M.; Deng, Y.L.; Ruan, Y.J.; Guo, X.S.; Shi, M.M.; Shen, J.Z. Biological denitrification using poly(butylene succinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment. Bioresour. Technol. 2015, 192, 603–610. [Google Scholar] [CrossRef]
- Liu, D.Z.; Li, J.W.; Li, C.W.; Deng, Y.L.; Zhang, Q.; Ye, Z.Y.; Zhu, S.M. Poly (butylene succinate)/bamboo powder blends as solid-phase carbon source and biofilm carrier for denitrifying biofilters treating wastewater from recirculating aquaculture system. Sci. Rep. 2018, 8, 3289. [Google Scholar] [CrossRef] [PubMed]
Carrier type | Product mark | Appearance shape | Density (g/mL) | Diameter (mm) | Height (mm) | Molecular Weight (Dalton) |
---|---|---|---|---|---|---|
Clay Ceramsite | PP-B 3.0 | pellet | 1.67 | 4–6 | - | - |
PCL | 1400C | cylinder | 1.08 | 3 | 4 | 140,000 |
Average Water Quality in Influent and Effluent/(mg·L−1) | Calculation Results/(mg·d−1) | ||
---|---|---|---|
Influent NO3−-N | 48.79 | Denitrification Consumption (Cd) | 987.96 |
Effluent NO3−-N | 0.74 | DO Consumption (Co) | 24.54 |
Inffluent DO | 6.66 | TOC Residual (Cr) | 43.28 |
Effluent DO | 3.25 | Physical Dissolution (Cp) | 182.0 |
Influent TOC | 4.80 | Biological Degradation (Cb) | 873.78 |
Effluet TOC | 6.60 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Chen, X.; Wu, H.; Luo, W.; Liu, X.; Feng, L.; Zhao, T. Comparison of Clay Ceramsite and Biodegradable Polymers as Carriers in Pack-bed Biofilm Reactor for Nitrate Removal. Int. J. Environ. Res. Public Health 2019, 16, 4184. https://doi.org/10.3390/ijerph16214184
Zhang Q, Chen X, Wu H, Luo W, Liu X, Feng L, Zhao T. Comparison of Clay Ceramsite and Biodegradable Polymers as Carriers in Pack-bed Biofilm Reactor for Nitrate Removal. International Journal of Environmental Research and Public Health. 2019; 16(21):4184. https://doi.org/10.3390/ijerph16214184
Chicago/Turabian StyleZhang, Qian, Xue Chen, Heng Wu, Wandong Luo, Xiangyang Liu, Li Feng, and Tiantao Zhao. 2019. "Comparison of Clay Ceramsite and Biodegradable Polymers as Carriers in Pack-bed Biofilm Reactor for Nitrate Removal" International Journal of Environmental Research and Public Health 16, no. 21: 4184. https://doi.org/10.3390/ijerph16214184
APA StyleZhang, Q., Chen, X., Wu, H., Luo, W., Liu, X., Feng, L., & Zhao, T. (2019). Comparison of Clay Ceramsite and Biodegradable Polymers as Carriers in Pack-bed Biofilm Reactor for Nitrate Removal. International Journal of Environmental Research and Public Health, 16(21), 4184. https://doi.org/10.3390/ijerph16214184