Priority Setting for the Management of Chemicals Using the Globally Harmonized System and Multivariate Analysis: Use of the Mahalanobis-Taguchi System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mahalanobis–Taguchi System (MTS)
2.2. Calculation of Mahalanobis Distance (MD) using the Globally Harmonized System (GHS)
2.2.1. Globally Harmonized System (GHS)
2.2.2. Construction of the Mahalanobis Space (MS)
2.2.3. Scoring of Hazard Variables
2.3. Sensitivity Analysis of MD Rank
2.4. Comparison with Results of Damage Prediction Modeling Program
2.4.1. ALOHA (Areal Locations of Hazardous Atmospheres)
2.4.2. Establishing a Virtual Accident Scenario to Determine Estimated Damage Distance
2.4.3. Selection of Chemicals to be Compared
2.5. Statistical Analysis
3. Results
3.1. Hazard Priority Setting Using MTS
3.2. Sensitivity Analysis Results
3.3. Chemical Ranking Comparison Using MD and Damage Distance
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Strengthen the Prevention of Occupational Diseases; Working Paper; Ministry of Economics and Labor (MOEL): Seoul, Korea, 2012; p. 815.
- Shin, S.; Moon, H.-I.; Lee, K.; Hong, M.; Byeon, S.-H. A Chemical Risk Ranking and Scoring Method for the Selection of Harmful Substances to be Specially Controlled in Occupational Environments. Int. J. Environ. Res. Public Health 2014, 11, 12001–12014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, N.-S. Environment Act and Policy; Kangwon National University Institute of Comparative Legal Study: Chuncheon, Korea, 2013; Volume 11, pp. 35–36. [Google Scholar]
- Gu, S.; Choi, I.; Kim, W.; Sun, O.; Kim, S.; Lee, Y. Study on the Distribution of Fluorides Plants and the Estimation of Ambient Concentration of Hydrogen Fluoride Around the Area of the Accidental Release of Hydrogen Fluoride in Gumi. J. Environ. Health Sci. 2013, 39, 346–353. [Google Scholar] [CrossRef]
- Lee, J.-S.; Choi, D.-M. A Study on the Improvement of Chemical Accident Response System in View of the National Disaster Management System. Fire Sci. Eng. 2015, 29, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.-H.; Lee, D.-J.; Shin, C.-H. Characteristic Analysis of Casualty Accidents in Chemical Accidents. Fire Sci. Eng. 2017, 31, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Environment (MOE). Chemicals Control Act. Available online: http://elaw.klri.re.kr/eng_service/lawView.do?hseq=43426&lang=ENG (accessed on 12 June 2019).
- A Study on the Differentiation of Explosive Hazardous Place by Analyzing the Physical and Chemical Characteristics of a Flammable Liquid; Working Paper; Korea Occupational Safety & Health Agency: Ulsan, Korea, 2015.
- Jung, Y.-K.; Kim, B.; Heo, H.; Yoo, B.; Sin, C.; Yoon, Y.; Yoon, J.; Ma, B. A Study on the Simplified Estimating Method of Off-site Consequence Analysis by Concentration of Hydrochloric Acid. J. Korean Soc. Saf. 2017, 32, 52–58. [Google Scholar]
- NOAA’s National Ocean Service Office of Response and Restoration. ALOHA Fact Sheet. Available online: http://response.restoration.noaa.gov (accessed on 12 June 2019).
- Swanson, M.B.; Socha, A.C. Chemical Ranking and Scoring: Guidelines for Relative Assessments of Chemicals. In Proceedings of the Pellston Workshop on Chemical Ranking and Scoring, Sandestin, FL, USA, 11–16 February 1995; Setac Press: New York, NY, USA, 1997. [Google Scholar]
- Safety, O.; Administration, H. Globally Harmonized System of Classification and Labelling of Chemicals (GHS); United Nations Publications: New York, NY, USA, 2009. [Google Scholar]
- Taguchi, G.; Jugulum, R. The Mahalanobis–Taguchi Strategy: A Pattern Technology System; John Wiley & Sons: Toronto, ON, Canada, 2002. [Google Scholar]
- Woodall, W.H.; Koudelik, R.; Tsui, K.-L.; Kim, S.B.; Stoumbos, Z.G.; Carvounis, C.P. A Review and Analysis of the Mahalanobis–Taguchi System. Technometrics 2003, 45, 1–15. [Google Scholar] [CrossRef]
- Cudney, E.A.; Drain, D.; Paryani, K.; Sharma, N. A Comparison of The Mahalanobis–Taguchi System to a Standard Statistical Method for Defect Detection. J. Ind. Syst. Eng. 2009, 2, 250–258. [Google Scholar]
- Kim, M.-J.; Heo, C.-H.; Cho, H.-C. Computer-aided Diagnosis System for Breast Ultrasound Images using Mahalanobis Distance. Inf. Control Symp. 2016, 1, 91–92. [Google Scholar]
- Lee, M.-H. Multivariate Spatial Cluster Analysis Using Mahalanobis Distance. J. Korean Cartogr. Assoc. 2012, 12, 37–46. [Google Scholar] [CrossRef]
- Su, C.-T. Mahalanobis–Taguchi System and its Medical Applications. Neuropsychiatry 2017, 7, 316–320. [Google Scholar]
- Park, S.-G.; Park, W.-S.; Sim, H.-J.; Lee, J.-Y.; Oh, J.-E. Sound Quality Evaluation and Grade Construction of the Level D noise for the Vehicle Using Mahalanobis–Taguchi System. KSAE 2008, 18, 393–399. [Google Scholar]
- Huh, D.-A.; Lim, H.L.; Sohn, J.-R.; Byeon, S.-H.; Jung, S.; Lee, W.-K.; Moon, K.W. Development of a Screening Method for Health Hazard Ranking and Scoring of Chemicals Using the Mahalanobis–Taguchi System. Int. J. Environ. Res. Public Health 2018, 15, 2208. [Google Scholar] [CrossRef] [PubMed]
- US EPA. ALOHA User’s Manual; US EPA: Washington, DC, USA, 2007. [Google Scholar]
- Chemical Safety Agency. Technical Guidelines for Selection of Accident Scenario; Chemical Safety Agency Guidelines: Seoul, Korea, 2014. [Google Scholar]
- Kubota, Y.; Yano, H.; Kobayashi, T.; Kameya, T. Effect of Unit Space Setting and Method Numerization on Calculated Distance in Creation of an Integrated Index of Chemical Hazards by the MT System. J. Qual. Eng. Soc. 2014, 22, 28–36. [Google Scholar]
- Kubota, Y.; Yano, H.; Kobayashi, T.; Kameya, T. Creation and Verification of an Integrated Index of Chemical Hazards by the MT System. J. Qual. Eng. Soc. 2013, 21, 31–41. [Google Scholar]
Variables | X1 | X2 | Xj | Xk | |||
---|---|---|---|---|---|---|---|
Chemicals | |||||||
1 | X11 | X21 | Xi1 | Xk1 | |||
2 | X12 | X22 | Xi2 | Xk2 | |||
J | X1j | X2j | Xij | Xkj | |||
N | X1n | X2n | Xin | Xkn | |||
Mean | |||||||
Standard deviation |
Properties | No. | Variables | Categories | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Physical hazards | 1 | Explosives | 1 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | Not Classified | Classification Not Possible | Not Applicable |
2 | Flammable | 1 | 2 | 3 | 4 | |||||||
3 | Oxidizing | 1 | 2 | 3 | ||||||||
4 | Pyrophoric | 1 | ||||||||||
5 | Self-reactive | A | B | C | D | E | F | G | ||||
6 | Self-heating | 1 | 2 | |||||||||
7 | Substances and mixtures which, when in contact with water, emit flammable gases | 1 | 2 | 3 | ||||||||
Health hazards | 8 | Acute toxicity (Oral) | 1 | 2 | 3 | 4 | 5 | |||||
9 | Acute toxicity (Dermal) | 1 | 2 | 3 | 4 | 5 | ||||||
10 | Acute toxicity (Inhalation) | 1 | 2 | 3 | 4 | 5 | ||||||
11 | Skin corrosion/irritation | 1 | 2 | |||||||||
12 | Serious eye damage/eye irritation | 1 | 2 | |||||||||
13 | Carcinogenicity | 1A | 1B | 2 | ||||||||
14 | Germ cell mutagenicity | 1A | 1B | 2 | ||||||||
15 | Reproductive toxicity | 1A | 1B | 2 | ||||||||
16 | Specific target organ toxicity (Single exposure) | 1 | 2 | 3 | ||||||||
17 | Specific target organ toxicity (Repeated exposure) | 1 | 2 |
Criteria | Value |
---|---|
Numbers of “Category 1” classifications | 0 |
Numbers of “Category 2” classifications | ≤1 |
Numbers of “Category 2” for carcinogenicity, germ cell mutagenicity, and reproductive toxicity | 0 |
Numbers of “Classification Not Possible” | ≤7 |
Categories | Category 1 | Category 2 | Category 3 | Category 4 | Category 5–7 | Not Classified | Classification Not Possible | Not Applicable |
---|---|---|---|---|---|---|---|---|
Score | 50 | 45 | 40 | 35 | 30 | 25 | 42 | 1 |
Scenarios | Methods | Category 1 | Category 2 | Category 3 | Category 4 | Category 5–7 | Not Classified | Classification Not Possible | Not Applicable |
---|---|---|---|---|---|---|---|---|---|
Scenario A 1 | A1 | 50 | 48 | 46 | 44 | 42 | 40 | 47 | 1 |
A2 | 50 | 45 | 40 | 35 | 30 | 25 | 42 | 1 | |
A3 | 50 | 42 | 34 | 26 | 18 | 10 | 38 | 1 | |
Scenario B 2 | B1 | 50 | 45 | 40 | 35 | 30 | 25 | 47 | 1 |
B2 | 50 | 45 | 40 | 35 | 30 | 25 | 37 | 1 | |
B3 | 50 | 45 | 40 | 35 | 30 | 25 | 32 | 1 | |
B4 | 50 | 45 | 40 | 35 | 30 | 25 | 27 | 1 | |
Scenario C 3 | C1 | 50 | 45 | 40 | 35 | 30 | 25 | 42 | 3 |
C2 | 50 | 45 | 40 | 35 | 30 | 25 | 42 | 5 | |
C3 | 50 | 45 | 40 | 35 | 30 | 25 | 42 | 7 | |
C4 | 50 | 45 | 40 | 35 | 30 | 25 | 42 | 9 |
Scenario | Methods | A1 | A2 | A3 | B1 | B2 | B3 | B4 | C1 | C2 | C3 | C4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Scenario A 1 | A1 | 1 | ||||||||||
A2 | 0.996 | 1 | ||||||||||
A3 | 0.978 | 0.991 | 1 | |||||||||
Scenario B 2 | B1 | 0.929 | 0.932 | 0.953 | 1 | |||||||
B2 | 0.910 | 0.917 | 0.883 | 0.741 | 1 | |||||||
B3 | 0.660 | 0.669 | 0.628 | 0.465 | 0.876 | 1 | ||||||
B4 | 0.469 | 0.477 | 0.439 | 0.296 | 0.698 | 0.936 | 1 | |||||
Scenario C 3 | C1 | 0.993 | 0.999 | 0.994 | 0.935 | 0.914 | 0.666 | 0.473 | 1 | |||
C2 | 0.990 | 0.999 | 0.996 | 0.937 | 0.911 | 0.662 | 0.469 | 0.999 | 1 | |||
C3 | 0.986 | 0.997 | 0.998 | 0.939 | 0.906 | 0.657 | 0.465 | 0.999 | 0.999 | 1 | ||
C4 | 0.981 | 0.994 | 0.999 | 0.940 | 0.901 | 0.652 | 0.460 | 0.996 | 0.998 | 0.999 | 1 |
Weighting | Estimate of Damage Radius Using ALOHA vs. MD | |||
---|---|---|---|---|
Equal Interval | Quintile | Jenks Natural Breaks | Geometrical Interval | |
Unweighted | 0.134 | 0.208 | 0.097 | 0.316 |
Linear weighted | 0.282 | 0.396 | 0.282 | 0.556 |
Quadratic weighted | 0.380 | 0.517 | 0.424 | 0.741 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, H.L.; Huh, E.-H.; Huh, D.-A.; Sohn, J.-R.; Moon, K.W. Priority Setting for the Management of Chemicals Using the Globally Harmonized System and Multivariate Analysis: Use of the Mahalanobis-Taguchi System. Int. J. Environ. Res. Public Health 2019, 16, 3119. https://doi.org/10.3390/ijerph16173119
Lim HL, Huh E-H, Huh D-A, Sohn J-R, Moon KW. Priority Setting for the Management of Chemicals Using the Globally Harmonized System and Multivariate Analysis: Use of the Mahalanobis-Taguchi System. International Journal of Environmental Research and Public Health. 2019; 16(17):3119. https://doi.org/10.3390/ijerph16173119
Chicago/Turabian StyleLim, Hong Lyuer, Eun-Hae Huh, Da-An Huh, Jong-Ryeul Sohn, and Kyong Whan Moon. 2019. "Priority Setting for the Management of Chemicals Using the Globally Harmonized System and Multivariate Analysis: Use of the Mahalanobis-Taguchi System" International Journal of Environmental Research and Public Health 16, no. 17: 3119. https://doi.org/10.3390/ijerph16173119
APA StyleLim, H. L., Huh, E.-H., Huh, D.-A., Sohn, J.-R., & Moon, K. W. (2019). Priority Setting for the Management of Chemicals Using the Globally Harmonized System and Multivariate Analysis: Use of the Mahalanobis-Taguchi System. International Journal of Environmental Research and Public Health, 16(17), 3119. https://doi.org/10.3390/ijerph16173119