Ecological and Epidemiological Findings Associated with Zoonotic Rabies Outbreaks and Control in Moshi, Tanzania, 2017–2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Questionnaire Design and Data Collection
2.3. Sample Collection
2.4. Ethical Clearance
2.5. Laboratory Analysis
2.6. Data Analysis
3. Results
3.1. Study Demographics (Human and Animal)
3.2. Rabies Awareness and Knowledge among Respondents
3.3. Dog Bites Victims and Post-Exposure Prophylaxis
3.4. Laboratory Findings
3.5. Secondary Data
3.6. Factors Influencing Seroprevalence to Rabies Virus Infection
3.6.1. Univariate and Multivariate Analysis
3.6.2. Qualitative Findings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lembo, T.; Hampson, K.; Haydon, D.T.; Craft, M.; Dobson, A.; Dushoff, J.; Ernest, E.; Hoare, R.; Kaare, M.; Mlengeya, T.; et al. Exploring reservoir dynamics: A case study of rabies in the Serengeti ecosystem. J. Appl. Ecol. 2008, 45, 1246–1257. [Google Scholar] [CrossRef] [PubMed]
- Hampson, K.; Dobson, A.; Kaare, M.; Dushoff, J.; Magoto, M.; Sindoya, E.; Cleaveland, S. Rabies exposures, post-exposure prophylaxis and deaths in a region of endemic canine rabies. PLoS Negl. Trop. Dis. 2008, 2, e339. [Google Scholar] [CrossRef] [PubMed]
- Hampson, K.; Coudeville, L.; Lembo, T.; Sambo, M.; Kieffer, A.; Attlan, M.; Barrat, J.; Blanton, J.D.; Briggs, D.J.; Cleaveland, S.; et al. Estimating the global burden of endemic canine rabies. PLoS Negl. Trop. Dis. 2015, 9, e0003786. [Google Scholar] [CrossRef]
- Cleaveland, S.; Fevre, E.M.; Kaare, M.; Coleman, P.G. Estimating human rabies mortality in the United Republic of Tanzania from dog bite injuries. Bull. World Health Organ. 2002, 80, 304–310. [Google Scholar] [PubMed]
- Kipanyula, M.J. Why has canine rabies remained endemic in the Kilosa district of Tanzania? Lessons learnt and the way forward. Infect. Dis. Poverty 2015, 4, 52. [Google Scholar] [CrossRef] [PubMed]
- Mazigo, H.D.; Okumu, F.; Kweka, E.J.; Mnyone, L.L. Retrospective analysis of rabies cases reported at Bugando Referral Hospital, Mwanza, Tanzania. J. Glob. Infect. Dis. 2010, 2, 216–220. [Google Scholar] [PubMed]
- Swai, E.S.; Moshy, W.E.; Kaaya, J.E.; Mtui, P.F. Spatial and temporal distribution of rabies in northern Tanzania in the period of 1993–2002. Tanzan J. Health Res. 2010, 12, 80–85. [Google Scholar] [CrossRef]
- Grimshaw, J.M.; Cordeiro, N.J.; Foley, C.A.H. The mammals of Kilimanjaro. J. East Afr. Nat. Hist. 1995, 84, 105–139. [Google Scholar] [CrossRef]
- Sabeta, C.T.; Mansfield, K.L.; McElhinney, L.M.; Fooks, A.R.; Nel, L.H. Molecular epidemiology of rabies in bat-eared foxes (Otocyon megalotis) in South Africa. Virus Res. 2007, 129, 1–10. [Google Scholar] [CrossRef]
- Hayman, D.T.S.; Johnson, N.; Horton, D.L.; Hedge, J.; Wakeley, P.R.; Banyard, A.C.; Zhang, S.; Alhassan, A.; Fooks, A.R. Evolutionary history of rabies in Ghana. PLoS Negl. Trop. Dis. 2011, 5, e1001. [Google Scholar] [CrossRef]
- Zulu, G.C.; Sabeta, C.T.; Nel, L.H. Molecular epidemiology of rabies: Focus on domestic dogs (Canis familiaris) and black-backed jackals (Canis mesomelas) from northern South Africa. Virus Res. 2009, 140, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Lembo, T.; Haydon, D.T.; Velasco-Villa, A.; Rupprecht, C.E.; Packer, C.; Brandão, P.E.; Kuzmin, I.V.; Fooks, A.R.; Barrat, J.; Cleaveland, S. Molecular epidemiology identifies only a single rabies virus variant circulating in complex carnivore communities of the Serengeti. Proc. Biol. Sci. B 2007, 274, 2123–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanzania National Bureau of Statistics. Available online: http://www.nbs.go.tz/ (accessed on 5 December 2018).
- Wandeler, A.I.; Matter, H.C.; Kappeler, A.; Budde, A. The ecology of dogs and canine rabies: A selective review. Rev. Sci. Tech. 1993, 12, 51–71. [Google Scholar] [CrossRef] [PubMed]
- Coleman, P.G.; Dye, C. Immunization coverage required to prevent outbreaks of dog rabies. Vaccine 1996, 14, 185–186. [Google Scholar] [CrossRef]
- Jibat, T.; Hogeveen, H.; Mourits, M.C.M. Review on dog rabies vaccination coverage in Africa: A question of dog accessibility or cost recovery? PLoS Negl. Trop. Dis. 2015, 9, e0003447. [Google Scholar] [CrossRef]
- Government of the United Republic of Tanzania. Guidelines for Surveillance of Prioritized Zoonotic Diseases for Human and Animal Health in the United Republic of Tanzania; Internal document of the Government of Tanzania; Government of the United Republic of Tanzania: Dodoma, Tanzania, 2018; p. 41.
- Government of the United Republic of Tanzania. National Rabies Control Strategy 2017; Draft; Internal document of the Government of Tanzania; Government of the United Republic of Tanzania: Dodoma, Tanzania, 2017; p. 77.
- Sullivan, K.M.; Pezzullo, J.C.; Dean, A.G.; Mir, R.A. Sample size for a proportion or descriptive study. Open Source Statistics for Public Health, OpenEpi Version 3.01. 2013. Available online: https://www.openepi.com/SampleSize/SSPropor.htm (accessed on 13 January 2019).
- Agresti, A.; Coull, B.A. Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions. Am. Stat. 1998, 52, 119–126. [Google Scholar] [CrossRef]
- Coleman, P.G.; Fevre, E.M.; Cleaveland, S. Estimating the public health impact of rabies. Emerg. Infect. Dis. 2004, 10, 140–142. [Google Scholar] [CrossRef]
- Knobel, D.L.; Cleaveland, S.; Coleman, P.G.; Fèvre, E.M.; Meltzer, M.I.; Miranda, M.E.; Shaw, A.; Zinsstag, J.; Meslin, F.-X. Re-evaluating the burden of rabies in Africa and Asia. Bull. World Health Organ. 2005, 83, 360–368. [Google Scholar]
- Masiira, B.; Makumbi, I.; Matovu, J.K.B.; Ario, A.R.; Nabukenya, I.; Kihembo, C.; Kaharuza, F.; Musenero, M.; Mbonye, A. Long term trends and spatial distribution of animal bite injuries and deaths due to human rabies infection in Uganda, 2001–2015. PLoS ONE 2018, 13, e0198568. [Google Scholar] [CrossRef]
- Undurraga, E.A.; Meltzer, M.I.; Tran, C.H.; Atkins, C.Y.; Etheart, M.D.; Millien, M.F.; Adrien, P.; Wallace, R.M. Cost-effectiveness evaluation of a novel integrated bite case management program for the control of human rabies, Haiti 2014–2015. Am. J. Trop. Med. Hyg. 2017, 96, 1307–1317. [Google Scholar] [CrossRef]
- Borse, R.H.; Atkins, C.Y.; Gambhir, M.; Undurraga, E.A.; Blanton, J.D.; Kahn, E.B.; Dyer, J.L.; Rupprecht, C.E.; Meltzer, M.I. Cost-effectiveness of dog rabies vaccination programs in East Africa. PLoS Negl. Trop. Dis. 2018, 12, e0006490. [Google Scholar] [CrossRef]
- Burdon-Bailey, J.L.; Gamble, L.; Gibson, A.D.; Bronsvoort, B.Md.; Handel, I.G.; Mellanby, R.J.; Mazeri, S. A rabies lesson improves rabies knowledge amongst primary school children in Zomba, Malawi. PLoS Negl. Trop. Dis. 2018, 12, e0006293. [Google Scholar] [CrossRef]
- Dasgupta, A.; Das, S.; Das, M.K.; Kumar, A.; Shahbabu, B.; Sarkar, K.; Sarkar, I. Effectiveness of health education on knowledge regarding rabies among health workers of West Bengal. Int. J. Health Sci. Res. 2014, 4, 26–34. [Google Scholar]
- World Health Organization (WHO). WHO Expert Consultation on Rabies; WHO Technical Report Series; 3rd Report, No. 1012; World Health Organization (WHO Technical Report Series): Geneva, Switzerland, 2018; Available online: apps.who.int/iris/bitstream/handle/10665/272364/9789241210218-eng.pdf?ua=1 (accessed on 25 October 2018).
- Atuman, Y.J.; Ogunkoya, A.B.; Adawa, D.A.Y.; Nok, A.J.; Biallah, M.B. Dog ecology, dog bites and rabies vaccination rates in Bauchi State, Nigeria. Int. J. Vet. Sci. Med. 2014, 2, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Kitala, P.; John, M.; Kyule, M.; Cuthuma, J.; Perry, B.; Wandeler, A. Dog ecology and demography information to support the planning of rabies control in Machakos District, Kenya. Acta Trop. 2001, 78, 217–230. [Google Scholar] [CrossRef]
- Bingham, J. Canine rabies ecology in Southern Africa. Emerg. Infect. Dis. 2015, 11, 1337–1342. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Rabies in Moshi Rural District, Kilimanjaro, United Republic of Tanzania, 28th April–31st August 2018; Mission Report; Internal report produced for the Government of Tanzania, Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; p. 38. [Google Scholar]
- Fasina, F.O.; Mtui-Malamsha, N.; Mahiti, G.R.; Sallu, R.; OleNeselle, M.; Rubegwa, B.; Makonnen, Y.J.; Kafeero, F.; Ruheta, M.; Nonga, H.E.; et al. Where and when to vaccinate? Interdisciplinary design and evaluation of the 2018 Tanzanian anti-rabies campaign. Submitted to. Zoonoses Public Health 2019. (under review). [Google Scholar]
- Mansfield, K.L.; Andrews, N.; Goharriz, H.; Goddard, T.; McElhinney, L.M.; Brown, K.E.; Fooks, A.R. Rabies pre-exposure prophylaxis elicits long-lasting immunity in humans. Vaccine 2016, 34, 5959–5967. [Google Scholar] [CrossRef]
- Gilbert, A.T.; Petersen, B.W.; Recuenco, S.; Niezgoda, M.; Gómez, J.; Laguna-Torres, V.A.; Rupprecht, C. Evidence of rabies virus exposure among humans in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 2012, 87, 206–215. [Google Scholar] [CrossRef]
- Moore, S.M.; Wilkerson, M.J.; Davis, R.D.; Wyatt, C.R.; Briggs, D.J. Detection of cellular immunity to rabies antigens in human vaccines. J. Clin. Immunol. 2006, 26, 533–545. [Google Scholar] [CrossRef]
- Moore, S.M.; Hanlon, C.A. Rabies-specific antibodies: Measuring surrogates of protection against a fatal disease. PLoS Negl. Trop. Dis. 2010, 4, e595. [Google Scholar] [CrossRef]
- Sikes, R.K.; Peacock, G.V.; Acha, P.; Arko, R.J.; Dierks, R. Rabies vaccines: Duration-of-immunity study in dogs. J. Am. Vet. Med. Assoc. 1971, 159, 1491–1499. [Google Scholar] [CrossRef]
- Moore, S.M.; Gilbert, A.; Vos, A.; Freuling, C.M.; Ellis, C.; Kliemt, J.; Muller, T. Rabies virus antibodies from oral vaccination as a correlate of protection against lethal infection in wildlife. Trop. Med. Infect. Dis. 2017, 2, 31. [Google Scholar] [CrossRef]
- Schneider, M.C.; Belotto, A.; Adé, M.P.; Hendrickx, S.; Leanes, L.F.; Freitas Rodrigues, M.J.; Medina, G.; Correa, E. Current status of human rabies transmitted by dogs in Latin America. Cad. Saude Publica 2007, 23, 2049–2063. [Google Scholar] [CrossRef]
- Velasco-Villa, A.; Escobar, L.E.; Sanchez, A.; Shi, M.; Streicker, D.G.; Gallardo-Romero, N.F.; Vargas-Pino, F.; Gutierrez-Cedillo, V.; Damon, I.; Emerson, G. Successful strategies implemented towards the elimination of canine rabies in the Western Hemisphere. Antivir. Res. 2017, 143, 1–12. [Google Scholar] [CrossRef]
- Sambo, M.; Cleaveland, S.; Ferguson, H.; Lembo, T.; Simon, C.; Urassa, H.; Hampson, K. The burden of rabies in tanzania and its impact on local communities. PLoS Negl. Trop. Dis. 2013, 7, e2510. [Google Scholar] [CrossRef]
Demography of Respondents | ||||
Variable (n) | Category (n) | Percentage ± SE | 95% CI | |
Gender of the respondents (215) | Male (198) | 92.0 ± 1.8 | 88.5–95.7 | |
Female (17) | 8.0 ± 1.8 | 4.3–11.5 | ||
Gender of the head of household (215) | Male (197) | 91.7 ± 1.9 | 88.0–95.5 | |
Female (18) | 8.3 ± 1.9 | 4.5–12.0 | ||
Level of education (215) | No formal education (7) | 3.3 ± 1.2 | 0.9–5.8 | |
Up to Primary (135) | 62.8 ± 3.3 | 56.3–69.3 | ||
Up to Secondary (58) | 26.7 ± 3.1 | 20.6–32.7 | ||
Up to Tertiary (15) | 7.1 ± 1.8 | 3.6–10.7 | ||
Median | Mean ± SE | (Min, Max) | ||
Age Respondent (215) | 36 | 39.3 ± 1.2 | 36.9; 41.6 | |
Age Household head (202) | 50 | 51.6 ± 1.1 | 49.4; 53.8 | |
Total household size (185) | 5 | 5.5 ± 1.9 | 5.2; 5.9 | |
Description of Owned Animals | ||||
Variable (n) | Mean ± SE | 95% CI | Median | (Min, Max) |
Dogs per household (211) | 2.0 ± 0.1 | 1.8–2.2 | 1 | 1; 8 |
Cats per household (32) | 1.7 ± 0.2 | 1.3–2.2 | 1 | 1; 7 |
Pigs per household (37) | 4.9 ± 0.7 | 3.5–6.3 | 3 | 1; 15 |
Goats per household (96) | 6.1 ± 0.8 | 4.5–7.7 | 4 | 1; 53 |
Sheep per household (26) | 6.5 ± 1.9 | 2.6–10.3 | 4 | 1; 50 |
Cattle per household (109) | 3.1 ± 0.3 | 2.4–3.7 | 2 | 1; 30 |
Chickens per household * | 18.5 ± 2.8 | 13.0–24.0 | 11 | 2; 120 |
Dogs and cats combined per household | 2.3 ± 0.1 | 2.0–2.5 | 2 | 1; 14 |
Variable | Number | Proportion ± SE | 95% CI |
---|---|---|---|
Animal variables | |||
Awareness of rabies in animals | 215 | 94.4 ± 1.6 | 91.3–97.5 |
Rabies affects animals | 215 | 89.8 ± 2.1 | 85.7–93.9 |
Know rabies sign in animals | 215 | 55.8 ± 3.4 | 49.1–62.5 |
Own animals affected | 215 | 14.9 ± 2.4 | 10.1–19.7 |
Rabies vaccination conducted | 211 | 37.4 ± 3.3 | 30.9–44.0 |
Human variables | |||
Rabies affect humans | 215 | 78.6 ± 2.8 | 73.1–84.1 |
Know rabies sign in humans | 215 | 42.3 ± 3.4 | 35.7–49.0 |
Aware of transmission in humans and animals | 215 | 75.4 ± 3.0 | 69.5–81.2 |
Family members have been bitten by a suspected rabid dog | 214 | 15.4 ± 2.5 | 10.5–20.3 |
Family members have been affected by rabies | 215 | 7.4 ± 1.8 | 3.9–11.0 |
Aware of family member bitten by a suspected rabid dog | |||
Post-dog bite actions taken was correct | 33 | 60.6 ± 8.6 | 43.0–78.2 |
PEP injection received | 33 | 75.8 ± 7.9 | 60.3–91.9 |
Patient recovered | 33 | 72.7 ± 7.9 | 56.7–88.8 |
Patient succumbed (died) | 33 | 15.2 ± 6.3 | 2.2–28.1 |
Other animals affected | 33 | 3.0 ± 3.0 | −3.1–9.2 |
Aware of non-family member bitten by a suspected rabid dog | |||
Aware of another person bitten by a suspected rabid dog | 33 | 39.4 ± 8.6 | 21.8–57.0 |
Post-dog bite actions taken was correct | 33 | 58.3 ± 14.9 | 25.6–91.1 |
PEP injection received | 33 | 24.2 ± 7.6 | 8.8–39.7 |
Patient recovered | 33 | 24.2 ± 7.6 | 8.8–39.7 |
Patient succumbed (died) | 33 | 9.1 ± 5.1 | −1.3–19.4 |
Reported incidence | 33 | 12.1 ± 5.8 | 0.4–23.9 |
Variables | Positive (%) | 95% CI (%) | Negative (%) | 95% CI (%) |
---|---|---|---|---|
Total sample (n = 278) | 94 (33.8) | 28.5–39.6 | 184 (66.2) | 60.4–71.5 |
Vaccination history | ||||
Yes (n = 88; 31.7%) | 34 (38.6) | 29.1–49.1 | 54 (61.4) | 50.9–70.9 |
No (n = 190; 68.3%) | 60 (31.6) | 25.4–38.5 | 130 (68.4) | 61.5–74.6 |
Potentially risky dogs (60 + 54)/278 | 114 (41.0) | 35.4–46.9 |
(a) | ||||
Variable | Category | Odds Ratio | 95% CI | p-Value |
Gender/sex of the dog | Female versus male | 0.71 | 0.37–1.37 | 0.30 |
Age of animal | Young versus adult (over 6 months) | 1.65 | 0.33–8.19 | 0.54 |
Park/Game reserve available in the vicinity | Available versus not available | 0.64 | 0.28–1.46 | 0.29 |
Proportion of dogs and cats in the household livestock population | <50% versus ≥50% | 1.71 | 0.92–3.18 | 0.09 |
New dog or cats # | No new introduction versus New introduction | 0.84 | 0.45–1.58 | 0.59 |
Livestock observed mixed with wildlife 1 | No versus Yes | 2.73 | 0.80–9.34 | 0.11 |
Total household population (humans) | >5 persons versus ≤5 persons | 1.76 | 0.88–3.48 | 0.11 |
Sighted wild animals in the vicinity | No versus Yes | 0.89 | 0.45–1.78 | 0.75 |
Level of education (head of household) | Secondary or above versus Up to primary | 0.71 | 0.38–1.33 | 0.28 |
Shelter for dogs at night | No versus Yes | 1.46 | 0.66–3.24 | 0.35 |
Household members aware of rabies | No versus Yes | 1.10 | 0.27–4.41 | 0.89 |
Household members have knowledge of rabies | No versus Yes | 2.14 | 0.69–6.67 | 0.19 |
Animals in the household previously affected by rabies | No versus Yes | 0.87 | 0.39–1.95 | 0.73 |
Know that rabies affects humans | No versus Yes | 1.01 | 0.49–2.08 | 0.99 |
Household member was previously affected by rabies | No versus Yes | 0.31 | 0.07–1.40 | 0.13 |
Aware of transmission of rabies | No versus Yes | 0.77 | 0.38–1.56 | 0.47 |
Household member was previously bitten by rabies | No versus Yes | 0.49 | 0.17–1.38 | 0.18 |
Aware of community member bitten by a dog | No versus Yes | 1.04 | 0.50–2.15 | 0.92 |
Report previous incidence known | No versus Yes | 1.07 | 0.31–3.71 | 0.91 |
Observed dog roaming | No versus Yes | 1.93 | 0.78–4.77 | 0.15 |
Own dog scavenged | No versus Yes | 2.13 | 0.85–5.33 | 0.11 |
(b) | ||||
Variable * | Z-Score | Odds Ratio | 95% CI | p-Value |
Dogs and cats are more than 50% of the household livestock population | 2.45 | 2.24 | 1.17–4.28 | 0.01 |
Livestock (dog & cats) observed to mix with wildlife | 1.96 | 3.62 | 1.00–13.13 | 0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mtui-Malamsha, N.; Sallu, R.; Mahiti, G.R.; Mohamed, H.; OleNeselle, M.; Rubegwa, B.; Swai, E.S.; Makungu, S.; Otieno, E.G.; Lupindu, A.M.; et al. Ecological and Epidemiological Findings Associated with Zoonotic Rabies Outbreaks and Control in Moshi, Tanzania, 2017–2018. Int. J. Environ. Res. Public Health 2019, 16, 2816. https://doi.org/10.3390/ijerph16162816
Mtui-Malamsha N, Sallu R, Mahiti GR, Mohamed H, OleNeselle M, Rubegwa B, Swai ES, Makungu S, Otieno EG, Lupindu AM, et al. Ecological and Epidemiological Findings Associated with Zoonotic Rabies Outbreaks and Control in Moshi, Tanzania, 2017–2018. International Journal of Environmental Research and Public Health. 2019; 16(16):2816. https://doi.org/10.3390/ijerph16162816
Chicago/Turabian StyleMtui-Malamsha, Niwael, Raphael Sallu, Gladys R. Mahiti, Hussein Mohamed, Moses OleNeselle, Bachana Rubegwa, Emmanuel S. Swai, Selemani Makungu, Edward G. Otieno, Athuman M. Lupindu, and et al. 2019. "Ecological and Epidemiological Findings Associated with Zoonotic Rabies Outbreaks and Control in Moshi, Tanzania, 2017–2018" International Journal of Environmental Research and Public Health 16, no. 16: 2816. https://doi.org/10.3390/ijerph16162816
APA StyleMtui-Malamsha, N., Sallu, R., Mahiti, G. R., Mohamed, H., OleNeselle, M., Rubegwa, B., Swai, E. S., Makungu, S., Otieno, E. G., Lupindu, A. M., Komba, E., Mdegela, R., Assenga, J. A., Bernard, J., Marandu, W., Warioba, J., Makondo, Z., Chang’a, J., Mramba, F., ... Fasina, F. O. (2019). Ecological and Epidemiological Findings Associated with Zoonotic Rabies Outbreaks and Control in Moshi, Tanzania, 2017–2018. International Journal of Environmental Research and Public Health, 16(16), 2816. https://doi.org/10.3390/ijerph16162816