Fine-Scale Source Apportionment Including Diesel-Related Elemental and Organic Constituents of PM2.5 across Downtown Pittsburgh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Tracer Selection
2.3. Sample Analysis
2.4. Source Apportionment
3. Results
3.1. Factor Analysis/Source Apportionment
3.2. LUR Models for Factor Scores
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sydbom, A.; Blomberg, A.; Parnia, S.; Stenfors, N.; Sandstrom, T.; Dahlen, S.E. Health effects of diesel exhaust emissions. Eur. Respir. J. 2001, 17, 733–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesterberg, T.W.; Long, C.M.; Bunn, W.B.; Lapin, C.A.; McClellan, R.O.; Valberg, P.A. Health effects research and regulation of diesel exhaust: An historical overview focused on lung cancer risk. Inhal. Toxicol. 2012, 24 (Suppl. 1), 1–45. [Google Scholar] [CrossRef]
- Kagawa, J. Health effects of diesel exhaust emissions—A mixture of air pollutants of worldwide concern. Toxicology 2002, 181–182, 349–353. [Google Scholar] [CrossRef]
- Ristovski, Z.D.; Miljevic, B.; Surawski, N.C.; Morawska, L.; Fong, K.M.; Goh, F.; Yang, I.A. Respiratory health effects of diesel particulate matter. Respirology 2012, 17, 201–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jedrychowski, W.A.; Majewska, R.; Spengler, J.D.; Camann, D.; Roen, E.L.; Perera, F.P. Prenatal exposure to fine particles and polycyclic aromatic hydrocarbons and birth outcomes: A two-pollutant approach. Int. Arch. Occup. Environ. Health 2017, 90, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Power, M.C.; Weisskopf, M.G.; Alexeeff, S.E.; Coull, B.A.; Spiro, A.; Schwartz, J. Traffic-related air pollution and cognitive function in a cohort of older men. Environ. Health Perspect. 2011, 119, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Gerlofs-Nijland, M.E.; van Berlo, D.; Cassee, F.R.; Schins, R.P.F.; Wang, K.; Campbell, A. Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain. Part. Fibre Toxicol. 2010, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nejad, S.H.; Takechi, R.; Mullins, B.J.; Giles, C.; Larcombe, A.N.; Bertolatti, D.; Rumchev, K.; Dhaliwal, S.; Mamo, J. The effect of diesel exhaust exposure on blood–brain barrier integrity and function in a murine model. J. Appl. Toxicol. 2014, 35, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, X.; Jigami, J.; Hasegawa, X.; Suzuki, A.K.; Zhang, Y.; Fujitani, Y.; Nagaoka, K.; Watanabe, G.; Taya, K. Effect of nanoparticle-rich diesel exhaust on testosterone biosynthesis in adult male mice. Inhal. Toxicol. 2012, 24, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Langrish, J.P.; Unosson, J.; Bosson, J.; Barath, S.; Muala, A.; Blackwell, S.; Soderberg, S.; Pourazar, J.; Megson, I.L.; Treweeke, A.; et al. Altered nitric oxide bioavailability contributes to diesel exhaust inhalation-induced cardiovascular dysfunction in man. J. Am. Heart Assoc. 2013, 2, e004309. [Google Scholar] [CrossRef] [PubMed]
- Mehus, A.A.; Reed, R.J.; Lee, V.S.; Littau, S.R.; Hu, C.; Lutz, E.A.; Burgess, J.L. Comparison of Acute Health Effects From Exposures to Diesel and Biodiesel Fuel Emissions. J. Occup. Environ. Med. 2015, 57, 705–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruts, B.; van Etten, L.; Tornqvist, H.; Blomberg, A.; Sandstrom, T.; Mills, N.L.; Borm, P.J. Exposure to diesel exhaust induces changes in EEG in human volunteers. Part. Fibre. Toxicol. 2008, 5, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campen, M.J.; McDonald, J.D.; Gigliotti, A.P.; Seilkop, S.K.; Reed, M.D.; Benson, J.M. Cardiovascular effects of inhaled diesel exhaust in spontaneously hypertensive rats. Cardiovasc. Toxicol. 2003, 3, 353–361. [Google Scholar] [CrossRef]
- Nemmar, A.; Al-Maskari, S.; Ali, B.H.; Al-Amri, I.S. Cardiovascular and lung inflammatory effects induced by systemically administered diesel exhaust particles in rats. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2007, 292, L664–L670. [Google Scholar] [CrossRef] [PubMed]
- Brito, J.M.; Belotti, L.; Toledo, A.C.; Antonangelo, L.; Silva, F.S.; Alvim, D.S.; Andre, P.A.; Saldiva, P.H.; Rivero, D.H. Acute cardiovascular and inflammatory toxicity induced by inhalation of diesel and biodiesel exhaust particles. Toxicol. Sci. Off. J. Soc. Toxicol. 2010, 116, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Goodson, J.M.; Weldy, C.S.; MacDonald, J.W.; Liu, Y.; Bammler, T.K.; Chien, W.M.; Chin, M.T. In utero exposure to diesel exhaust particulates is associated with an altered cardiac transcriptional response to transverse aortic constriction and altered DNA methylation. FASEB J. 2017, 31, 4935–4945. [Google Scholar] [CrossRef] [PubMed]
- Anenberg, S.C.; Schwartz, J.; Shindell, D.; Amann, M.; Faluvegi, G.; Klimont, Z.; Janssens-Maenhout, G.; Pozzoli, L.; Van Dingenen, R.; Vignati, E.; et al. Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls. Environ. Health Perspect. 2012, 120, 831–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control. Monitoring of Diesel Particulate Exhaust in the Workplace. Available online: https://www.cdc.gov/niosh/docs/2003-154/pdfs/chapter-q.pdf (accessed on 27 September 2018).
- Noll, J.D.; Bugarski, A.D.; Patts, L.D.; Mischler, S.E.; McWilliams, L. Relationship between elemental carbon, total carbon, and diesel particulate matter in several underground metal/non-metal mines. Environ. Sci. Technol. 2007, 41, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Cyrys, J.; Heinrich, J.; Hoek, G.; Meliefste, K.; Lewne, M.; Gehring, U.; Bellander, T.; Fischer, P.; van Vliet, P.; Brauer, M.; et al. Comparison between different traffic-related particle indicators: Elemental carbon (EC), PM2.5 mass, and absorbance. J. Expo. Anal. Environ. Epidemiol. 2003, 13, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Keuken, M.P.; Jonkers, S.; Zandveld, P.; Voogt, M.; van den Elshout, S. Elemental carbon as an indicator for evaluating the impact of traffic measures on air quality and health. Atmos. Environ. 2012, 61, 1–8. [Google Scholar] [CrossRef]
- Clougherty, J.E.; Houseman, E.A.; Levy, J.I. Examining intra-urban variation in fine particle mass constituents using GIS and constrained factor analysis. Atmos. Environ. 2009, 43, 5545–5555. [Google Scholar] [CrossRef]
- Levy, J.I.; Clougherty, J.E.; Baxter, L.K.; Houseman, E.A.; Paciorek, C.J. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis. Res. Rep. Health Eff. Inst. 2010, 152, 5–80. [Google Scholar]
- Stanek, L.W.; Sacks, J.D.; Dutton, S.J.; Dubois, J.B. Attributing health effects to apportioned components and sources of particulate matter: An evaluation of collective results. Atmos. Environ. 2011, 45, 5655–5663. [Google Scholar] [CrossRef]
- Tunno, B.J.; Dalton, R.; Michanowicz, D.R.; Shmool, J.L.; Kinnee, E.; Tripathy, S.; Cambal, L.; Clougherty, J.E. Spatial patterning in PM2.5 constituents under an inversion-focused sampling design across an urban area of complex terrain. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Tunno, B.J.; Michanowicz, D.R.; Shmool, J.L.C.; Tripathy, S.; Kinnee, E.; Cambal, L.; Chubb, L.; Roper, C.; Clougherty, J.E. Spatial Patterns in Rush-Hour vs. Work-Week Diesel-Related Pollution across a Downtown Core. Int. J. Environ. Res. Public Health 2018, 15, E1968. [Google Scholar] [CrossRef] [PubMed]
- Tunno, B.J.; Shmool, J.L.C.; Michanowicz, D.R.; Tripathy, S.; Chubb, L.G.; Kinnee, E.; Cambal, L.; Roper, C.; Clougherty, J.E. Spatial variation in diesel-related elemental and organic PM2.5 components during workweek hours across a downtown core. Sci. Total Environ. 2016, 573, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Shmool, J.L.; Michanowicz, D.R.; Cambal, L.; Tunno, B.; Howell, J.; Gillooly, S.; Roper, C.; Tripathy, S.; Chubb, L.G.; Eisl, H.M.; et al. Saturation sampling for spatial variation in multiple air pollutants across an inversion-prone metropolitan area of complex terrain. Environ. Health 2014, 13, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, J.C.; Yu, J.Z.; Watson, J.G.; Ho, S.S.; Bohannan, T.L.; Hays, M.D.; Fung, K.K. The application of thermal methods for determining chemical composition of carbonaceous aerosols: A review. J. Environ. Sci. Health Part. A 2007, 42, 1521–1541. [Google Scholar] [CrossRef] [PubMed]
- Nielson, T. Reactivity of polycyclic aromatic hydrocarbons toward nitrating species. Environ. Sci. Technol. 1984, 18, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Tsapakis, M.; Stephanou, E.G. Collection of gas and particle semi-volatile organic compounds: Use of an oxidant denuder to minimize polycyclic aromatic hydrocarbons degradation during high-volume air sampling. Atmos. Environ. 2003, 37, 4935–4944. [Google Scholar] [CrossRef]
- Esteve, W.; Budzinski, H.; Villenave, E. Relative rate constants for the heterogeneous reactions of NO2 and OH radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 2: PAHs adsorbed on diesel particulate exhaust SRM 1650a. Atmos. Environ. 2006, 40, 201–211. [Google Scholar] [CrossRef]
- Galarneau, E. Source specificty and atmospheric processing of airborne PAHs: Implications for source apportionment. Atmos. Environ. 2008, 42, 8139–8149. [Google Scholar] [CrossRef]
- Caricchia, A.M.; Chiavarini, S.; Pezza, M. PAHs in the urban atmospheric particulate matter in the city of Naples (Italy). Atmos. Environ. 1999, 33, 3731–3738. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, X.-M.; Xie, Z.-Q.; Xiang, C.-H.; Mai, B.-X.; Sun, L.-G.; Zheng, M.; Sheng, G.-Y.; Fu, J.-M.; Poschl, U. Atmospheric polycyclic aromatic hydrocarbons observed over the North Pacific Ocean and the Arctic area: Spatial distribution and source identification. Atmos. Environ. 2007, 41, 2061–2072. [Google Scholar] [CrossRef]
- ISO 9835:1993, Ambient Air—Determination of a Black Smoke Index. Available online: https://www.iso.org/standard/17715.html (accessed on 1 September 2017).
- Yan, B.; Kennedy, D.; Miller, R.L.; Cowin, J.P.; Jung, K.H.; Perzanowski, M.; Balletta, M.; Perera, F.P.; Kinney, P.L.; Chillrud, S.N. Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components. Atmos. Environ. 2011, 45, 7478–7486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton, K.L.; Caruso, J.A. Liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A 1999, 856, 243–258. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Pritchett, L.C.; Pierson, W.R.; Frazier, C.A.; Purcell, R.G. The DRI thermal/optical reflectance carbon analysis system: Description, evaluation and applications in U.S. air quality studies. Atmos. Environ. 1993, 27A, 1185–1201. [Google Scholar] [CrossRef]
- van Drooge, B.L.; Nikolova, I.; Ballesta, P.P. Thermal desorption gas chromatography-mass spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from ambient air particulate matter. J. Chromatogr. A 2009, 1216, 4030–4039. [Google Scholar] [CrossRef] [PubMed]
- Schneider, W.; Moortgat, G.K.; Tyndall, G.S.; Burrows, J.P. Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K. J. Photochem. Photobiol. Chem. 1987, 40, 195–217. [Google Scholar] [CrossRef]
- Grosse, D.; McKernan, J. Passive Samplers for the Investigations of Air Quality: Method Description, Implementation, and Comparison to Alternative Sampling Methods; U.S. Environmental Protection Agency: Washington, DC, USA, 2014. [Google Scholar]
- Environmental Protection Agency (EPA). EPA Positive Matrix Factorization (PMF) Model. Available online: http://www.epa.gov/heasd/research/pmf.html (accessed on 27 September 2018).
- Clougherty, J.E.; Kheirbek, I.; Eisl, H.M.; Ross, Z.; Pezeshki, G.; Gorczynski, J.E.; Johnson, S.; Markowitz, S.; Kass, D.; Matte, T. Intra-urban spatial variability in wintertime street-level concentrations of multiple combustion-related air pollutants: The New York City Community Air Survey (NYCCAS). J. Expo. Sci. Environ. Epidemiol. 2013, 23, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Tunno, B.J.; Michanowicz, D.R.; Shmool, J.L.; Kinnee, E.; Cambal, L.; Tripathy, S.; Gillooly, S.; Roper, C.; Chubb, L.; Clougherty, J.E. Spatial variation in inversion-focused vs. 24-h integrated samples of PM and black carbon across Pittsburgh, PA. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Qu, L.; Liu, S.; Gao, J.; Wang, J.; Wanga, F.; Zhang, P.; Bai, Z.; Xu, X. Chemical characteristics of particulate matter emitted from a heavy duty diesel engine and correlation among inorganic and PAH components. Fuel 2014, 116, 655–661. [Google Scholar] [CrossRef]
- Noll, J.; Gilles, S.; Wu, H.W.; Rubinstein, E. The relationship between elemental carbon and diesel particulate matter in underground metal/nonmetal mines in the United States and coal mines in Australia. J. Occup. Environ. Hyg. 2015, 12, 205–211. [Google Scholar] [CrossRef] [PubMed]
- MSHA. Compilation of Standards Addressing Diesel Particulate Matter Exposure of Underground Metal. and Nonmental Miners; DPM Outreach Seminars: Arlington, VA, USA, 2006.
- Fromme, H.; Oddoy, A.; Piloty, M.; Krause, M.; Lahrz, T. Polycyclic aromatic hydrocarbons (PAH) and diesel engine emission (elemental carbon) inside a car and a subway train. Sci. Total Environ. 1998, 217, 165–173. [Google Scholar] [CrossRef]
- Tokiwa, H.; Otofuji, T.; Nakagawa, R.; Horikawa, K.; Maeda, T.; Sano, N.; Izumi, K.; Otsuka, H. Dinitro derivatives of pyrene and fluoranthene in diesel emission particulates and their tumorigenicity in mice and rats. Dev. Toxicol. Environ. Sci. 1986, 13, 253–270. [Google Scholar] [PubMed]
- Kuusimaki, L.; Peltonen, K.; Mutanen, P.; Savela, K. Analysis of particle and vapour phase PAHs from the personal air samples of bus garage workers exposed to diesel exhaust. Ann. Occup. Hyg. 2003, 47, 389–398. [Google Scholar] [PubMed]
Source Category for LUR Modeling | Covariates Examined (All buffers tested from 25 m to 200 m) | Data Source |
---|---|---|
Traffic density indicators | Mean density of annualized average traffic Mean density traffic (primary and secondary roads) Number of signaled intersections Annualized average traffic/Aspect ratio | Pennsylvania Spatial Data Access (PASDA, 2014) Southwestern Pennsylvania Commission (SPC, 2011) |
Road-specific measures | Mean beta index of road complexity and connectivity Distance to nearest intersection Number of intersections Distance to nearest major road Summed length of primary roadways Summed length of primary and secondary roadways Width of roadways | TeleAtlas StreetMap (2014) PASDA (2014) |
Truck, Bus, and Diesel | Mean density of bus traffic Distance to nearest bus route Distance to nearest bus stop Bus stop use (total number of trips) Mean density of heavy truck traffic on nearest primary roadway | Google Transit Feed (7/14) PASDA (2014) |
Industrial emissions | Mean density of SO2 emissions Mean density of PM2.5 emissions Mean density of NOx emissions Mean density of VOC emissions | National Emissions Inventory (NEI, 2011) |
Land use/Built environment | Total area of commercial parcels Total area of industrial parcels Total area of industrial and commercial parcels Distance to nearest park Summed area of parks Building counts Distance to nearest building Mean percentage of imperviousness | Allegheny County Office of Property Assessments (AC OPA, 2013) SPC (2011) Allegheny County Department of Public Works (DPW) National Land Cover Database (NLCD, 2011) |
Transportation facilities | Distance to nearest active railroad Summed line length of active railroads Distance to nearest bus depot Summed area of parking lots and garages Distance to river centerline | SPC (2011) Google Transit (2014) AC OPA (2013) PASDA (National Hydrography Dataset, 2014) |
Potential modifying factors | ||
Structural modifiers | Aspect ratio: building height/ roadway width Mean building heights | DPW |
Topography | Average elevation Average slope Mean percentage of tree canopy | National Elevation Dataset (NED, 2013) NLCD (2011) |
Meteorology | Temperature Relative humidity Frequency of inversions Wind direction Wind speed | Obtained from sampler Univ. of Wyoming, Dept. of Atm. Science (2013) National Oceanic and Atmospheric Administration (NOAA, 2013) |
Factor (% variance) | Proposed Sources | Final LUR Model Covariates (R2) | Covariates Most Strongly Correlated with Factor Scores (r) |
---|---|---|---|
1 (50%) | Traffic-related (organic compounds, benzene and toluene, Cd, La, Mn, total EC and OC, total hopanes, PAHs, and steranes) | Building density, 75 m Parking garages, 125 m (R2 = 0.30) | Building density (r = 0.44) Roadway width, 75 m (r = 0.39) Commercial land use, 75 m (r = 0.35) Parking garages, 125 m (r = 0.30) |
2 (24%) | Traffic-related (elemental constituents) | No spatial covariates with p < 0.05 | Distance near intersection (r = −0.36) |
3 (7%) | Diesel (BC, fluoranthene, NO2, pyrene, total carbon) | Bus density, 50 m Truck density, 200 m (R2 = 0.75) | Bus density, 50 m (r = 0.83) Bus stop use, 200 m (r = 0.80) Truck density, 200 m (r = 0.63) Signaled intersections, 125 m (r = 0.62) |
4 (4%) | Fuel oil (Ni, V) | No spatial covariates with p < 0.05 | Tree canopy, 75 m (r = −0.33) Imperviousness, 150 m (r = 0.30) |
5 (3%) | Motor vehicle (benzene, Cd, La, toluene) | Signaled intersections, 125 m Commercial land use, 50 m Distance near intersection (R2 = 0.44) | Signaled intersections, 125 m (r = 0.42) Commercial land use, 50 m (r = 0.42) Distance near intersection (r = −0.42) Building density, 25 m (r = 0.42) |
Factor (% variance) | Proposed Sources | Final LUR Modeling Covariates (R2) | Covariates Most Strongly Correlated with Factor Scores (r) |
---|---|---|---|
1 (38%) | Traffic-related elemental Fuel oil (Ni, V) | Bus stop use, 100 m (R2 = 0.38) | Bus stop use, 100 m (r = 0.61) Bus density, 100 m (r = 0.53) Signaled intersections, 125 m (r = 0.44) Commercial land use, 200 m (r = 0.39) |
2 (18%) | Diesel (benzo[ghi]fluoranthene, chrysene, Cr, fluoranthene, Mn, pyrene, total carbon, total EC, Zn) | Bus density, 50 m (R2 = 0.54) | Bus density, 50 m (r = 0.74) Bus stop use, 75 m (r = 0.74) Commercial land use, 175 m (r = 0.47) Signaled intersections, 75 m (r = 0.45) |
3 (9%) | Diesel (benz[a]anthracene, BC, hopanes, NO2, total PAHs, total steranes) | Truck density, 200 m Aspect ratio, 50 m (R2 = 0.39) | Aspect ratio, 50 m (r = 0.53) Truck density, 200 m (r = 0.50) Traffic density, 200 m (r = 0.49) |
4 (6%) | Brake/ tire wear (Cu, Mo, Sb) | Primary and secondary roadways, 125 m (R2 = 0.13) | Bus density (r = 0.38) Primary and secondary roadways, 125 m (r = 0.37) Truck density, 25 m (r = 0.36) |
5 (4%) | Benzene, norhopane | Truck density, 25 m Bus stop use, 100 m (R2 = 0.21) | Bus stop use, 100 m (r = 0.31) Truck density, 25 m (r = 0.30) Parking garages, 150 m (r = 0.28) |
6 (3%) | Benzo[a]pyrene, indeno[123-cd] pyrene | Imperviousness, 50 m Primary roadways, 125 m (R2 = 0.30) | Imperviousness, 50 m (r = 0.43) Primary roadways, 125 m (r = 0.38) Parking garages, 200 m (r = 0.35) |
7 (3%) | Toluene and total OC | No spatial covariates with p < 0.05 | Railroads, 200 m (r = 0.32) |
8 (3%) | Benzo[e]pyrene | Commercial land use, 200 m (R2 = 0.11) | Commercial land use, 100 m (r = 0.33) |
9 (2%) | Coal (Se) | No spatial covariates with p < 0.05 | No covariates with r > 0.15 |
Factor (% variance) | Proposed Sources | Final LUR Modeling Covariates (R2) | Covariates Most Strongly Correlated with Factor Scores (r) |
---|---|---|---|
1 (36%) | Traffic-related elemental | Signaled intersections, 125 m (R2 = 0.07) | Bus stop use, 100 m (r = 0.34) Signaled intersections, 125 m (r = 0.27) Commercial land use, 25 m (r = 0.25) Bus density, 25 m (r = 0.25) |
2 (16%) | Diesel (chrysene, fluoranthene, Mn, pyrene, total carbon, total EC, Zn) | Bus density, 200 m Commercial land use, 25 m (R2 = 0.37) | Signaled intersections, 200 m (r = 0.57) Bus stop use, 200 m (r = 0.56) Bus density, 200 m (r = 0.55) Truck density, 200 m (r = 0.51) |
3 (11%) | Brake/ tire wear (Cu, Mo, Sb) | Primary and secondary roadways, 50 m (R2 = 0.10) | Primary and secondary roadways, 50 m (r = 0.23) |
4 (7%) | Traffic-related organic (benz[a]anthracene, hopanes, total PAHs) | Traffic density, 200 m (R2 = 0.06) | Traffic density, 200 m (r = 0.25) Primary and secondary roadways, 200 m (r = 0.25) |
5 (5%) | Traffic-related organic (benzo[a]pyrene, benzo[e]pyrene, benzo[ghi]perylene, indeno[123-cd]pyrene, and total steranes) | Primary roadways, 125 m PM2.5 emissions, (R2 = 0.19) | Primary roadways, 125 m (r = 0.33) Road complexity, 150 m (r = 0.30) PM2.5 emissions (r = 0.30) |
6 (4%) | Diesel (norhopane, toluene, total hopanes, total OC) | Bus density, 200 m (R2 = 0.10) | Bus stop use, 175 m (r = 0.35) Bus density, 200 m (r = 0.32) Truck density, 200 m (r = 0.30) |
7 (3%) | Benzo[ghi]fluoranthene, NO2 | Temperature Bus density, 200 m (R2 = 0.73) | Temperature (r = −0.81) Wind speed (r = 0.56) Bus density, 200 m (r = 0.23) |
8 (3%) | Coal (Ni, Se) | Commercial land use, 25 m Building density, 25 m Railroads, 200 m (R2 = 0.11) | Commercial land use, 25 m (r = 0.40) Building density, 50 m (r = 0.33) Railroads, 200 m (r = 0.29) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tunno, B.J.; Tripathy, S.; Kinnee, E.; Michanowicz, D.R.; Shmool, J.L.; Cambal, L.; Chubb, L.; Roper, C.; Clougherty, J.E. Fine-Scale Source Apportionment Including Diesel-Related Elemental and Organic Constituents of PM2.5 across Downtown Pittsburgh. Int. J. Environ. Res. Public Health 2018, 15, 2177. https://doi.org/10.3390/ijerph15102177
Tunno BJ, Tripathy S, Kinnee E, Michanowicz DR, Shmool JL, Cambal L, Chubb L, Roper C, Clougherty JE. Fine-Scale Source Apportionment Including Diesel-Related Elemental and Organic Constituents of PM2.5 across Downtown Pittsburgh. International Journal of Environmental Research and Public Health. 2018; 15(10):2177. https://doi.org/10.3390/ijerph15102177
Chicago/Turabian StyleTunno, Brett J., Sheila Tripathy, Ellen Kinnee, Drew R. Michanowicz, Jessie LC Shmool, Leah Cambal, Lauren Chubb, Courtney Roper, and Jane E. Clougherty. 2018. "Fine-Scale Source Apportionment Including Diesel-Related Elemental and Organic Constituents of PM2.5 across Downtown Pittsburgh" International Journal of Environmental Research and Public Health 15, no. 10: 2177. https://doi.org/10.3390/ijerph15102177
APA StyleTunno, B. J., Tripathy, S., Kinnee, E., Michanowicz, D. R., Shmool, J. L., Cambal, L., Chubb, L., Roper, C., & Clougherty, J. E. (2018). Fine-Scale Source Apportionment Including Diesel-Related Elemental and Organic Constituents of PM2.5 across Downtown Pittsburgh. International Journal of Environmental Research and Public Health, 15(10), 2177. https://doi.org/10.3390/ijerph15102177