Variations in Obesity Rates between US Counties: Impacts of Activity Access, Food Environments, and Settlement Patterns
Abstract
1. Introduction
1.1. Urban Environment and Obesity
1.2. Contribution of This Study
1.3. Geographical Dimensions of Obesity Variation in the US
2. Methods: Bayesian Regression Analysis of US County Obesity Rates
2.1. Regression Methods
2.2. Methods: Defining Environmental Indicators and their Relevance to Obesity
3. Results: Environmental Indicators, Geographic Categories, and County Obesity Rates
3.1. Regression Using Geographic Categories Only
3.2. Extended Regression
4. Discussion
5. Conclusions
Conflicts of Interest
References
- Cynthia, L.; Ogden, C.; Carroll, M.; Fryar, C.; Flegal, K. Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief 2015, 219, 1–8. [Google Scholar]
- Sidney, S.; Quesenberry, C.; Jaffe, M.; Sorel, M.; Nguyen-Huynh, M.; Kushi, L.; Go, A.S.; Rana, J. Recent trends in cardiovascular mortality in the United States and public health goals. JAMA Cardiol. 2016, 1, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B. Using research on the obesity pandemic as a guide to a unified vision of nutrition. Public Health Nutr. 2005, 8, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Bensimhon, D.; Kraus, W.; Donahue, M. Obesity and physical activity: A review. Am. Heart J. 2006, 151, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Egger, G.; Swinburn, B. An “ecological” approach to the obesity pandemic. BMJ Br. Med. J. 1997, 315, 477. [Google Scholar] [CrossRef]
- Moon, G. Residential Environments and Obesity—Estimating Causal Effects; Chapter 12; Pearce J Routledge: London, UK, 2010. [Google Scholar]
- Townshend, T.; Lake, A. Obesogenic urban form: Theory, policy and practice. Health Place 2009, 15, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.; Dannenberg, A.; Frumkin, H. Health and the built environment: 10 years after. Am. J. Public Health 2013, 103, 1542–1544. [Google Scholar] [CrossRef] [PubMed]
- Elinder, L.; Jansson, M. Obesogenic environments–aspects on measurement and indicators. Public Health Nutr. 2009, 12, 307–315. [Google Scholar] [PubMed]
- Pascual, C.; Regidor, E.; Astasio, P.; Ortega, P.; Navarro, P.; Domínguez, V. The association of current and sustained area-based adverse socioeconomic environment with physical inactivity. Soc. Sci. Med. 2007, 65, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Rundle, A.; Field, S.; Park, Y. Personal and neighborhood socio-economic status and indices of neighborhood walkability predict body mass index in New York City. Soc. Sci. Med. 2008, 67, 1951–1958. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Rehm, C.; Solet, D. Disparities in obesity rates: Analysis by ZIP code area. Soc. Sci. Med. 2007, 65, 2458–2463. [Google Scholar] [CrossRef] [PubMed]
- Hillemeier, M.; Lynch, J.; Harper, S.; Casper, M. Measuring contextual characteristics for community health. Health Serv. Res. 2003, 38, 1645–1718. [Google Scholar] [CrossRef] [PubMed]
- Pouliou, T.; Elliott, S.J. An exploratory spatial analysis of overweight and obesity in Canada. Prev. Med. 2009, 48, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Moudon, A.; Cook, A.; Drewnowski, A. The spatial clustering of obesity: Does the built environment matter? J. Hum. Nutr. Diet. 2015, 28, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Best, N. Bayesian ecological modelling. In Disease Mapping and Risk Assessment for Public Health; Chapter 14; Lawson, A., Biggeri, A., Böhning, D., Lesaffre, E., Viel, J., Bertollini, R., Eds.; John Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Loftin, C.; Ward, S. A spatial autocorrelation model of the effects of population density on fertility. Am. Sociol. Rev. 1983, 48, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Ladabaum, U.; Mannalithara, A.; Myer, P.; Singh, G. Obesity, abdominal obesity, physical activity, and caloric intake in US adults: 1988 to 2010. Am. J. Med. 2014, 127, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.; Popkin, B. Time use and physical activity: A shift away from movement across the globe. Obes. Rev. 2012, 13, 659–680. [Google Scholar] [CrossRef] [PubMed]
- Binkley, J.; Eales, J.; Jekanowski, M. The relation between dietary change and rising US obesity. Int. J. Obes. 2000, 24, 1032–1039. [Google Scholar] [CrossRef]
- Hendrickson, D.; Smith, C.; Eikenberry, N. Fruit and vegetable access in four low-income food deserts communities in Minnesota. Agric. Hum. Values 2006, 23, 371–383. [Google Scholar] [CrossRef]
- Walker, R.; Keane, C.; Burke, J. Disparities and access to healthy food in the United States: A review of food deserts literature. Health Place 2010, 16, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J.; Hiscock, R.; Blakely, T.; Witten, K. The contextual effects of neighbourhood access to supermarkets and convenience stores on individual fruit and vegetable consumption. J. Epidemiol. Community Health 2008, 62, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Hilmers, A.; Hilmers, D.; Dave, J. Neighborhood disparities in access to healthy foods and their effects on environmental justice. Am. J. Public Health 2012, 102, 1644–1654. [Google Scholar] [CrossRef] [PubMed]
- Pucher, J.; Buehler, R.; Bassett, D.R.; Dannenberg, A.L. Walking and cycling to health: A comparative analysis of city, state, and international data. Am. J. Public Health 2010, 100, 1986–1992. [Google Scholar] [CrossRef] [PubMed]
- Kearney, J. Food consumption trends and drivers. Philos. Trans. Royal Soc. Lond. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Lopez, R. Urban sprawl and risk for being overweight or obese. Am. J. Public Health 2004, 94, 1574–1579. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, B. Analysis of Urban Growth and Sprawl from Remote Sensing Data; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Bengston, D.; Fletcher, J.; Nelson, K. Public policies for managing urban growth and protecting open space: Policy instruments and lessons learned in the United States. Landsc. Urban Plan. 2004, 69, 271–286. [Google Scholar] [CrossRef]
- Chiu, M.; Shah, B.; Rezai, M.; Austin, P.; Tu, J. Neighbourhood walkability and risk of obesity. Can. J. Diabetes 2014, 38, S39. [Google Scholar] [CrossRef]
- Zhang, M. On the Cul-de-Sac vs. Checker-board street network: Search for sustainable urban form. Int. Rev. Spat. Plan. Sustain. Dev. 2013, 1, 1–6. [Google Scholar] [CrossRef]
- Frank, L.; Andresen, M.; Schmid, T. Obesity relationships with community design, physical activity, and time spent in cars. Am. J. Prev. Med. 2004, 27, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Buehler, R.; Pucher, J.; Merom, D.; Bauman, A. Active travel in Germany and the US: Contributions of daily walking and cycling to physical activity. Am. J. Prev. Med. 2011, 41, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.; Pucher, J.; Buehler, R.; Thompson, D.; Crouter, S. Walking, cycling, and obesity rates in Europe, North America, and Australia. J. Phys. Act. Health 2008, 5, 795–814. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, S.; King, D.; Yuan, R. A note on the relationship between obesity and driving. Transp. Policy 2011, 18, 772–776. [Google Scholar] [CrossRef]
- Gutiérrez-Fisac, J.; Rodríguez Artalejo, F.; Guallar-Castillon, P.; Banegas Banegas, J.; del Rey Calero, J. Determinants of geographical variations in body mass index (BMI) and obesity in Spain. Int. J. Obes. Relat. Metab. Disord. 1999, 23, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.; Mokdad, A.; Giles, W.; Galuska, D.; Serdula, M. Geographic variation in the prevalence of obesity, diabetes, and obesity-related behaviors. Obesity 2005, 13, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Schuurman, N.; Peters, P.; Oliver, L. Are obesity and physical activity clustered? A spatial analysis linked to residential density. Obesity 2009, 17, 2202–2209. [Google Scholar] [CrossRef] [PubMed]
- Kinge, J.; Steingrímsdóttir, Ó.; Strand, B.; Kravdal, Ø. Can socioeconomic factors explain geographic variation in overweight in Norway? SSM Popul. Health 2016, 2, 333–340. [Google Scholar] [CrossRef]
- Myers, C.; Slack, T.; Martin, C.; Broyles, S.; Heymsfield, S. Regional disparities in obesity prevalence in the United States: A spatial regime analysis. Obesity 2015, 23, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Centre for Disease Control (CDC) County Data Indicators. Available online: https://www.cdc.gov/diabetes/data/countydata/countydataindicators.html (accessed on 10 June 2017).
- Robert Wood Johnson Foundation and University of Wisconsin. Learn More About Access to Exercise Opportunities. Available online: http://www.countyhealthrankings.org/measure/learn/access-exercise-opportunities; https://uwphi.pophealth.wisc.edu/publications/index.htm (accessed on 15 June 2017).
- Robert Wood Johnson Foundation and University of Wisconsin. Food Environment Index. Available online: http://www.countyhealthrankings.org/measure/food-environment-index (accessed on 15 June 2017).
- Garden, F.; Jalaludin, B. Impact of urban sprawl on overweight, obesity, and physical activity in Sydney, Australia. J. Urban Health 2009, 86, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Lakerveld, J.; Rebah, M.; Mackenbach, J.; Charreire, H.; Compernolle, S.; Glonti, K.; Bardos, H.; Rutter, H.; De Bourdeaudhuij, I.; Brug, J.; et al. Obesity-related behaviours and BMI in five urban regions across Europe: Sampling design and results from the SPOTLIGHT cross-sectional survey. BMJ Open 2015, 5, e008505. [Google Scholar] [CrossRef] [PubMed]
- Etzioni, R.; Kadane, J. Bayesian statistical methods in public health and medicine. Annu. Rev. Public Health 1995, 16, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, L. Mapping Obesity and Poverty in the United States. PLOS Blogs, Public Health Perspectives. 2015. Available online: http://blogs.plos.org/publichealth/2015/09/28/obesity-poverty/ (accessed on 22 June 2017).
- Levine, J. Poverty and Obesity in the U.S. Diabetes 2011, 60, 2667–2668. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.; Spicer, P.; Peercy, M. Obesity, diabetes, and birth outcomes among American Indians and Alaska natives. Mater. Child Health J. 2016, 20, 2548–2556. [Google Scholar] [CrossRef] [PubMed]
- Ingram, D.; Franco, S. 2013 NCHS Urban-rural classification scheme for counties. Vital Health Stat. 2012, 2, 1–73. [Google Scholar]
- Drewnowski, A.; Specter, S. Poverty and obesity: The role of energy density and energy costs. Am. J. Clin. Nutr. 2004, 79, 6–16. [Google Scholar] [PubMed]
- Wilkinson, R.; Marmot, M. (Eds.) Social Determinants of Health: The Solid Facts; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Martin, M.; Lippert, A. Feeding her children, but risking her health: The intersection of gender, household food insecurity and obesity. Soc. Sci. Med. 2012, 74, 1754–1764. [Google Scholar] [CrossRef] [PubMed]
- Lunn, D.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS—A Bayesian modelling framework: Concepts, structure, and extensibility. Stat. Comput. 2000, 10, 325–337. [Google Scholar] [CrossRef]
- Walter Applied Spatial Ecology Laboratory. Manual of Applied Spatial Ecology, Chapter 9. Available online: http://ecosystems.psu.edu/research/labs/walter-lab/manual/complete-manual-pdf (accessed on 15 June 2017).
- Eksler, V. Exploring spatial structure behind the road mortality of regions in Europe. Appl. Spat. Anal. Policy 2008, 1, 133–150. [Google Scholar] [CrossRef]
- Van Ravenzwaaij, D.; Cassey, P.; Brown, S. A simple introduction to Markov Chain Monte-Carlo sampling. Psychon. Bull. Rev. 2017. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.; Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 1997, 7, 434–455. [Google Scholar]
- USDA ERS—Food Environment Atlas. Available online: https://www.ers.usda.gov/data-products/food-environment-atlas (accessed on 15 June 2017).
- Robert Wood Johnson Foundation and University of Wisconsin. Available online: http://www.countyhealthrankings.org/ (accessed on 15 June 2017).
- Dinour, L.; Bergen, D.; Yeh, M. The Food insecurity—Obesity paradox: A review of the literature and the role food stamps may play. J. Am. Diet. Assoc. 2007, 107, 1952–1961. [Google Scholar] [CrossRef] [PubMed]
- Ewing, R.; Hamidi, S. Measuring sprawl 2014. In Smart Growth America and Metropolitan Research Center; University of Utah: Salt Lake City, UT, USA, 2014. [Google Scholar]
- Myers, C.; Slack, T.; Martin, C.; Broyles, S.; Heymsfield, S. Change in obesity prevalence across the United States is influenced by recreational and healthcare contexts, food environments, and Hispanic populations. PLoS ONE 2016, 11, e0148394. [Google Scholar] [CrossRef] [PubMed]
- Michimi, A.; Wimberly, M. Spatial patterns of obesity and associated risk factors in the conterminous US. Am. J. Prev. Med. 2010, 39, e1–e12. [Google Scholar] [CrossRef] [PubMed]
- Befort, C.; Nazir, N.; Perri, M. Prevalence of obesity among adults from rural and urban areas of the United States: Findings from NHANES (2005–2008). J. Rural Health 2012, 28, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.; You, W.; Zoellner, J. Disparities in obesity among rural and urban residents in a health disparate region. BMC Public Health 2014, 14, 1051. [Google Scholar] [CrossRef] [PubMed]
- Taylor, W.; Poston, W.; Jones, L.; Kraft, M. Environmental justice: Obesity, physical activity, and healthy eating. J. Phys. Act. Health 2006, 3 (Suppl. 1), S30–S54. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.; Jilcott, S.; Floyd, M.; Moore, J. County-level disparities in access to recreational resources and associations with adult obesity. J. Park Recreat. Adm. 2011, 29, 39–54. [Google Scholar]
- Kamphuis, C.; Van Lenthe, F.; Giskes, K.; Huisman, M.; Brug, J.; Mackenbach, J. Socioeconomic differences in lack of recreational walking among older adults: The role of neighbourhood and individual factors. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Humpel, N.; Owen, N.; Leslie, E. Environmental factors associated with adults’ participation in physical activity: A review. Am. J. Prev. Med. 2002, 22, 188–199. [Google Scholar] [CrossRef]
- Crane, R. Is there a quiet revolution in women's travel? Revisiting the gender gap in commuting. J. Am. Plan. Assoc. 2007, 73, 298–316. [Google Scholar] [CrossRef]
- Gielen, E.; Riutort-Mayol, G.; Palencia-Jiménez, J.; Cantarino, I. An urban sprawl index based on multivariate and Bayesian factor analysis with application at the municipality level in Valencia. Environ. Plan. B 2017. [Google Scholar] [CrossRef]
- Franklin, B.; Jones, A.; Love, D.; Puckett, S.; Macklin, J.; White-Means, S. Exploring mediators of food insecurity and obesity: A review of recent literature. J. Community Health 2012, 37, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, J.; Johnson, C.; Dean, W.; Horel, S. Association between proximity to and coverage of traditional fast-food restaurants and non-traditional fast-food outlets and fast-food consumption among rural adults. Int. J. Health Geogr. 2011, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Sedgwick, P. Ecological studies: Advantages and disadvantages. BMJ Br. Med. J. (Online) 2014, 2, 348. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Rehm, C.; Moudon, A.; Arterburn, D. The geography of diabetes by census tract in a large sample of insured adults in king county, Washington, 2005–2006. Prev. Chronic Disease 2014, 11, E125. [Google Scholar] [CrossRef] [PubMed]
- Swinburn, B.; Egger, G.; Raza, F. Dissecting obesogenic environments: The development and application of a framework for identifying and prioritizing environmental interventions for obesity. Prev. Med. 1999, 29, 563–570. [Google Scholar] [CrossRef] [PubMed]
Poverty Quintile * | Urban-rural Category ** | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Males | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | All |
1 | 28.0 | 30.4 | 30.5 | 29.0 | 27.6 | 31.7 | 30.3 | 31.9 | 31.3 | 29.9 |
2 | 29.8 | 29.8 | 30.4 | 31.5 | 28.5 | 31.9 | 31.3 | 30.6 | 31.5 | 30.8 |
3 | 30.6 | 30.6 | 31.4 | 32.3 | 33.1 | 31.6 | 30.6 | 30.9 | 31.1 | 31.2 |
4 | 29.3 | 31.5 | 31.8 | 32.1 | 31.3 | 32.8 | 32.1 | 32.7 | 31.1 | 31.8 |
5 | 31.3 | 32.5 | 30.9 | 32.2 | 32.7 | 33.5 | 33.4 | 33.4 | 33.5 | 33.0 |
All Counties | 29.1 | 30.9 | 31.1 | 31.7 | 31.2 | 32.5 | 31.7 | 32.1 | 31.7 | 31.3 |
Females | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | All |
1 | 25.9 | 28.4 | 27.9 | 27.0 | 24.9 | 28.9 | 27.7 | 28.7 | 27.9 | 27.4 |
2 | 28.6 | 28.3 | 28.4 | 29.4 | 26.3 | 29.9 | 29.0 | 28.2 | 28.9 | 28.8 |
3 | 30.1 | 29.6 | 30.4 | 30.8 | 31.6 | 30.1 | 28.7 | 28.8 | 28.8 | 29.8 |
4 | 30.1 | 31.8 | 31.5 | 31.3 | 30.5 | 32.1 | 31.0 | 32.3 | 29.5 | 31.3 |
5 | 36.0 | 33.5 | 32.4 | 33.6 | 36.0 | 35.2 | 34.5 | 36.1 | 33.9 | 34.5 |
All Counties | 28.2 | 30.1 | 30.1 | 30.8 | 30.5 | 31.9 | 30.5 | 31.3 | 29.8 | 30.3 |
Males | Majority Race/Ethnic Category | ||||
---|---|---|---|---|---|
Poverty Quintile * | White N-H | Black N-H | Hispanic | Other | All |
1 | 29.9 | 31.1 | 30.7 | 33.3 | 29.9 |
2 | 30.9 | 30.3 | 28.5 | 27.9 | 30.8 |
3 | 31.2 | 33.2 | 29.4 | 29.9 | 31.2 |
4 | 31.9 | 29.0 | 28.2 | 30.0 | 31.8 |
5 | 33.0 | 34.5 | 28.8 | 34.3 | 33.0 |
All counties | 31.3 | 34.1 | 28.8 | 32.8 | 31.3 |
Females | Majority Race/Ethnic Category | ||||
Poverty Quintile * | White N-H | Black N-H | Hispanic | Other | All |
1 | 27.3 | 35.9 | 28.2 | 33.3 | 27.4 |
2 | 28.9 | 31.2 | 25.5 | 25.6 | 28.8 |
3 | 29.8 | 37.7 | 27.1 | 30.4 | 29.8 |
4 | 31.4 | 34.3 | 26.3 | 29.3 | 31.3 |
5 | 33.8 | 42.2 | 26.8 | 36.6 | 34.5 |
All counties | 30.0 | 41.4 | 26.8 | 34.0 | 30.3 |
Poverty Quintile * | Census Division ** | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Males | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | All |
1 | 26.4 | 28.4 | 30.6 | 32.8 | 28.2 | 31.0 | 30.0 | 24.3 | 27.5 | 29.9 |
2 | 26.0 | 31.6 | 31.8 | 32.9 | 29.1 | 31.8 | 31.5 | 26.6 | 26.1 | 30.8 |
3 | 29.9 | 31.4 | 32.4 | 32.6 | 31.4 | 33.3 | 31.7 | 26.9 | 27.1 | 31.2 |
4 | 31.5 | 30.4 | 32.3 | 32.6 | 31.2 | 33.7 | 33.0 | 27.4 | 28.2 | 31.8 |
5 | 21.2 | 26.0 | 31.7 | 33.9 | 32.3 | 35.2 | 33.6 | 27.6 | 29.0 | 33.0 |
All counties | 27.0 | 30.4 | 31.7 | 32.9 | 30.9 | 34.1 | 32.5 | 26.4 | 27.5 | 31.3 |
Females | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | All |
1 | 23.4 | 24.5 | 29.3 | 29.2 | 27.2 | 30.3 | 27.1 | 22.0 | 26.4 | 27.4 |
2 | 24.4 | 28.5 | 30.7 | 30.0 | 28.5 | 31.6 | 29.3 | 24.2 | 24.8 | 28.8 |
3 | 29.9 | 28.2 | 31.3 | 30.7 | 31.0 | 32.8 | 29.8 | 24.6 | 26.0 | 29.8 |
4 | 31.0 | 27.1 | 31.7 | 31.4 | 31.7 | 34.1 | 31.7 | 25.5 | 27.6 | 31.3 |
5 | 22.3 | 28.9 | 31.7 | 34.0 | 35.1 | 38.4 | 33.1 | 27.1 | 28.1 | 34.5 |
All counties | 25.0 | 27.1 | 30.7 | 30.2 | 31.7 | 35.5 | 31.0 | 24.4 | 26.5 | 30.3 |
Persons | Males | Females | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean | 2.5% | 97.5% | Mean | 2.5% | 97.5% | Mean | 2.5% | 97.5% | |
% variation explained | 33 | 29 | 38 | 28 | 21 | 33 | 38 | 32 | 43 |
% of residual variation spatially structured | 63 | 59 | 68 | 64 | 59 | 69 | 65 | 61 | 70 |
Intercept | 26.4 | 23.1 | 29.8 | 26.3 | 23.3 | 29.5 | 26.5 | 22.7 | 30.4 |
Urbanicity 1 | |||||||||
Metro counties, 250,000 to 1 million pop. | 0.44 | −1.29 | 1.82 | 0.74 | −0.26 | 1.92 | 0.26 | −1.06 | 1.48 |
Metro counties, fewer than 250,000 pop. | 0.30 | −1.18 | 1.40 | 0.61 | −0.51 | 1.94 | 0.12 | −1.38 | 1.58 |
Urban pop. >20,000, adjacent to metro area | 1.10 | −0.47 | 2.46 | 1.42 | 0.33 | 2.71 | 0.99 | −0.35 | 2.41 |
Urban pop. >20,000, not adj. metro area | 1.05 | −0.49 | 2.56 | 1.27 | 0.04 | 2.78 | 0.94 | −0.60 | 2.63 |
Urban pop., 2500 to 19,999, adj. metro area | 1.17 | −0.79 | 2.54 | 1.54 | 0.42 | 2.97 | 1.14 | −0.25 | 2.89 |
Urban pop., 2500 to 19,999, not adj. metro area | 0.43 | −1.94 | 1.48 | 0.65 | −0.83 | 1.64 | 0.08 | −1.76 | 1.28 |
Rural or <2500 urban pop., adj. metro area | 1.05 | −0.15 | 2.65 | 1.34 | 0.23 | 2.70 | 0.98 | −0.37 | 2.77 |
Rural or <2500 urban pop., not adj. metro area | 0.38 | −1.40 | 1.57 | 0.83 | −0.24 | 1.98 | 0.05 | −1.38 | 1.39 |
Census division 2 | |||||||||
Middle Atlantic | 2.27 | −0.75 | 5.14 | 3.64 | 1.26 | 6.22 | 1.31 | −1.49 | 4.52 |
East North Central | 2.32 | −1.19 | 5.43 | 2.72 | −0.50 | 5.71 | 2.08 | −1.66 | 5.56 |
West North Central | 3.52 | 0.05 | 6.65 | 4.55 | 1.23 | 7.75 | 2.32 | −1.55 | 6.16 |
South Atlantic | 1.75 | −1.55 | 4.72 | 2.48 | −0.31 | 5.28 | 0.98 | −2.30 | 4.20 |
East South Central | 4.37 | 0.71 | 7.24 | 4.70 | 1.66 | 7.77 | 3.97 | 0.33 | 7.61 |
West South Central | 4.04 | −0.05 | 7.16 | 5.59 | 2.62 | 8.77 | 2.24 | −1.19 | 5.91 |
Mountain | −0.45 | −4.11 | 3.07 | 0.13 | −2.92 | 3.40 | −0.99 | −4.56 | 2.95 |
Pacific | −2.30 | −6.36 | 1.81 | −2.39 | −5.73 | 1.19 | −2.39 | −6.18 | 1.66 |
County majority ethnicity/race 3 | |||||||||
Black N-H | 2.66 | 1.59 | 3.82 | 0.72 | −0.38 | 1.74 | 4.23 | 2.11 | 5.76 |
Hispanic | 0.92 | −0.21 | 2.35 | 0.90 | −0.20 | 2.12 | 1.04 | −0.49 | 2.96 |
Other | 5.30 | 3.69 | 6.99 | 3.90 | 2.40 | 5.47 | 6.54 | 4.49 | 8.57 |
County poverty level 4 | |||||||||
Quintile 2 | 0.48 | −1.21 | 1.30 | 0.33 | −1.19 | 1.13 | 0.23 | −3.06 | 1.67 |
Quintile 3 | 1.30 | 0.31 | 2.08 | 0.93 | −0.21 | 1.68 | 1.45 | −0.89 | 2.64 |
Quintile 4 | 1.65 | 0.56 | 2.48 | 0.98 | −0.45 | 1.77 | 1.89 | −0.77 | 3.21 |
Quintile 5 | 2.57 | 1.67 | 3.37 | 1.52 | 0.46 | 2.29 | 3.41 | 1.41 | 4.58 |
Variances first order interactions, geographic categories | |||||||||
Urbanicity*division | 0.021 | 0.003 | 0.084 | 0.028 | 0.003 | 0.109 | 0.021 | 0.003 | 0.088 |
Urbanicity*majority ethnic | 0.256 | 0.004 | 1.612 | 0.227 | 0.004 | 0.912 | 0.362 | 0.004 | 1.477 |
Urbanicity*poverty status | 0.073 | 0.006 | 0.205 | 0.056 | 0.005 | 0.169 | 0.104 | 0.009 | 0.286 |
Division*majority ethnic | 0.094 | 0.003 | 0.649 | 0.078 | 0.003 | 0.472 | 0.175 | 0.003 | 1.289 |
Division*poverty status | 0.129 | 0.005 | 0.409 | 0.120 | 0.007 | 0.369 | 0.189 | 0.013 | 0.549 |
Majority ethnic*poverty status | 0.064 | 0.003 | 0.560 | 0.056 | 0.003 | 0.446 | 0.340 | 0.003 | 2.211 |
Persons | Males | Females | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean | 2.5% | 97.5% | Mean | 2.5% | 97.5% | Mean | 2.5% | 97.5% | |
% variation explained | 56 | 52 | 60 | 50 | 43 | 54 | 62 | 57 | 65 |
% of residual variation spatially structured | 49 | 41 | 55 | 53 | 46 | 60 | 50 | 44 | 57 |
Intercept | 25.1 | 22.4 | 27.8 | 24.3 | 21.6 | 26.9 | 25.4 | 22.0 | 28.7 |
Environmental indices | |||||||||
Inactivity | 15.2 | 14.2 | 16.3 | 12.8 | 11.9 | 13.8 | 18.0 | 16.8 | 19.1 |
Adequate exercise access | −0.98 | −1.44 | −0.50 | −1.13 | −1.56 | −0.68 | −0.8 | −1.3 | −0.3 |
Ratio fast food to grocery outlets | 1.58 | 0.57 | 2.57 | 1.58 | 0.63 | 2.51 | 1.6 | 0.5 | 2.7 |
Groceries per head | −1.65 | −3.36 | 0.06 | −1.13 | −2.75 | 0.45 | −1.9 | −3.8 | 0.0 |
Food environment index | −2.32 | −3.40 | −1.27 | −0.68 | −1.74 | 0.35 | −3.9 | −5.1 | −2.7 |
% restaurants that are fast food | 1.23 | 0.57 | 1.88 | 0.98 | 0.37 | 1.61 | 1.5 | 0.8 | 2.2 |
Concentration score | −16.5 | −20.0 | −13.1 | −19.7 | −23.0 | −16.4 | −13.8 | −17.6 | −9.9 |
Urbanicity 1 | |||||||||
Metro counties, 250,000 to 1 million pop. | 0.16 | −1.0 | 1.2 | 0.31 | −0.51 | 1.25 | −0.04 | −1.27 | 1.06 |
Metro counties, fewer than 250,000 pop. | −0.14 | −1.5 | 0.8 | 0.05 | −0.95 | 0.89 | −0.30 | −1.65 | 0.75 |
Urban pop. >20,000, adjacent to metro area | 0.41 | −0.6 | 1.5 | 0.57 | −0.34 | 1.85 | 0.34 | −0.88 | 2.03 |
Urban pop. >20,000, not adj. metro area | 0.52 | −0.6 | 1.7 | 0.67 | −0.23 | 1.79 | 0.43 | −0.73 | 1.83 |
Urban pop., 2500 to 19,999, adj. metro area | 0.48 | −0.6 | 1.8 | 0.58 | −0.29 | 1.56 | 0.40 | −0.75 | 1.78 |
Urban pop., 2500 to 19,999, not adj. metro area | −0.17 | −1.6 | 0.8 | −0.02 | −1.13 | 0.76 | −0.38 | −2.00 | 0.68 |
Rural or <2500 urban pop., adj. metro area | 0.29 | −0.8 | 1.5 | 0.41 | −0.44 | 1.69 | 0.31 | −0.82 | 2.02 |
Rural or <2500 urban pop., not adj. metro area | −0.14 | −1.3 | 0.8 | 0.19 | −0.86 | 1.07 | −0.37 | −1.93 | 0.72 |
Census division 2 | |||||||||
Middle Atlantic | 0.46 | −1.5 | 2.6 | 2.29 | 0.36 | 4.37 | −0.60 | −2.82 | 1.80 |
East North Central | −0.70 | −3.0 | 1.9 | 0.52 | −1.99 | 3.07 | −0.76 | −3.66 | 2.15 |
West North Central | 0.21 | −2.2 | 2.9 | 2.36 | −0.09 | 5.07 | −0.90 | −3.72 | 2.19 |
South Atlantic | −0.47 | −2.8 | 2.0 | 1.10 | −1.41 | 3.51 | −1.24 | −4.09 | 1.54 |
East South Central | 0.12 | −2.2 | 2.6 | 1.74 | −0.69 | 4.24 | −0.68 | −3.49 | 2.21 |
West South Central | −0.32 | −2.8 | 2.2 | 2.49 | 0.16 | 5.26 | −2.67 | −5.38 | 0.55 |
Mountain | −3.40 | −6.0 | −0.5 | −1.73 | −4.36 | 1.01 | −4.16 | −7.15 | −1.05 |
Pacific | −3.15 | −5.9 | 0.3 | −2.34 | −4.98 | 0.68 | −2.99 | −6.04 | 0.47 |
County majority ethnicity/race 3 | |||||||||
Black N-H | 2.25 | 1.2 | 3.1 | 0.72 | −0.15 | 1.62 | 3.48 | 1.63 | 4.77 |
Hispanic | 0.30 | −0.6 | 1.3 | 0.41 | −0.47 | 1.35 | 0.41 | −0.80 | 1.79 |
Other | 3.41 | 2.1 | 4.8 | 3.11 | 1.85 | 4.33 | 3.52 | 1.79 | 5.13 |
County poverty level 4 | |||||||||
Quintile 2 | 0.07 | −1.1 | 0.7 | 0.09 | −0.66 | 0.70 | −0.39 | −4.02 | 0.82 |
Quintile 3 | 0.44 | −0.3 | 1.1 | 0.43 | −0.26 | 0.99 | 0.18 | −1.86 | 1.16 |
Quintile 4 | 0.57 | −0.4 | 1.2 | 0.41 | −0.54 | 1.02 | 0.33 | −2.25 | 1.39 |
Quintile 5 | 1.04 | 0.3 | 1.7 | 0.69 | 0.02 | 1.31 | 1.09 | −0.92 | 2.05 |
Variances first order interactions, geographic categories | |||||||||
Urbanicity*division | 0.011 | 0.002 | 0.033 | 0.011 | 0.003 | 0.040 | 0.013 | 0.003 | 0.046 |
Urbanicity*majority ethnic | 0.164 | 0.004 | 0.813 | 0.137 | 0.004 | 0.655 | 0.258 | 0.004 | 1.120 |
Urbanicity*poverty status | 0.036 | 0.004 | 0.122 | 0.018 | 0.003 | 0.060 | 0.068 | 0.005 | 0.205 |
Division*majority ethnic | 0.033 | 0.003 | 0.216 | 0.031 | 0.003 | 0.164 | 0.048 | 0.003 | 0.340 |
Division poverty status | 0.026 | 0.003 | 0.109 | 0.028 | 0.003 | 0.109 | 0.043 | 0.004 | 0.166 |
Majority ethnic*poverty status | 0.043 | 0.003 | 0.287 | 0.037 | 0.003 | 0.218 | 0.272 | 0.003 | 1.919 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Congdon, P. Variations in Obesity Rates between US Counties: Impacts of Activity Access, Food Environments, and Settlement Patterns. Int. J. Environ. Res. Public Health 2017, 14, 1023. https://doi.org/10.3390/ijerph14091023
Congdon P. Variations in Obesity Rates between US Counties: Impacts of Activity Access, Food Environments, and Settlement Patterns. International Journal of Environmental Research and Public Health. 2017; 14(9):1023. https://doi.org/10.3390/ijerph14091023
Chicago/Turabian StyleCongdon, Peter. 2017. "Variations in Obesity Rates between US Counties: Impacts of Activity Access, Food Environments, and Settlement Patterns" International Journal of Environmental Research and Public Health 14, no. 9: 1023. https://doi.org/10.3390/ijerph14091023
APA StyleCongdon, P. (2017). Variations in Obesity Rates between US Counties: Impacts of Activity Access, Food Environments, and Settlement Patterns. International Journal of Environmental Research and Public Health, 14(9), 1023. https://doi.org/10.3390/ijerph14091023