Heat and Humidity in the City: Neighborhood Heat Index Variability in a Mid-Sized City in the Southeastern United States
Abstract
:1. Introduction
1.1. The Urban Heat Island
1.2. Assessing UHI and Thermal Comfort
1.3. Urban Health
1.4. Assessing the Role of Urban Neighborhood Characteristics in Knoxville, Tennessee on Heat Index
2. Materials and Methods
2.1. Site Descriptions and Data Collection
Neighborhood | Population Density (People/sq km) | Approximate Mean Income (USD) | Qualitative Description |
---|---|---|---|
Lonsdale | 5941 | 22,950 | Medium density housing with parks and open space |
Burlington | 4971 | 29,447 | Medium density housing with parks and open space |
Vestal | 3322 | 24,456 | Medium density housing with parks, open space, and shopping centers |
West Hills | 2052 | 42,147 | Medium density housing with parks, open space, and a large amount of shopping centers and highway access |
2.2. Data
2.3. Data Processing
2.3.1. Calculation of Imperviousness and Tree Cover
2.3.2. Calculation of Heat Index
2.3.3. Statistical Analysis
3. Results and Discussion
3.1. Descriptive Statistics
Neighborhood | Lonsdale | West Hills | Vestal | Burlington | Downtown | Ijams | ||||
---|---|---|---|---|---|---|---|---|---|---|
Station Designation | MV | HV | MV | HV | MV | HV | MV | HV | ||
Elevation (m) | 290.8 | 293.7 | 316.4 | 312.2 | 288.5 | 280.4 | 355.9 | 316.1 | 286.4 | 290.0 |
Latitude | 35.980 | 35.984 | 35.936 | 35.937 | 35.922 | 35.929 | 35.988 | 35.993 | 35.964 | 35.956 |
Longitude | −83.962 | −83.957 | −84.043 | −84.030 | −83.922 | −83.916 | −83.878 | −83.875 | −83.918 | −83.866 |
Sample Size | 145 | 153 | 153 | 148 | 153 | 153 | 153 | 148 | 153 | 153 |
T | 28.73 | 28.38 | 28.16 | 27.74 | 28.94 | 28.56 | 28.69 | 27.56 | 29.66 | 28.77 |
RH | 53.61 | 55.62 | 58.14 | 63.00 | 55.68 | 57.31 | 56.46 | 59.62 | 51.52 | 62.46 |
HI | 29.94 | 29.79 | 29.81 | 29.61 | 30.63 | 30.42 | 30.32 | 28.86 | 31.12 | 31.46 |
Max HI | 37.98 | 39.24 | 39.3 | 39.82 | 41.17 | 40.52 | 40.94 | 36.94 | 40.98 | 43.62 |
Min HI | 16.32 | 16.60 | 18.48 | 18.01 | 16.78 | 19.60 | 16.62 | 17.66 | 17.17 | 18.14 |
HI Standard Deviation | 4.12 | 4.18 | 4.38 | 4.70 | 4.40 | 4.46 | 4.47 | 3.92 | 4.14 | 4.86 |
3.2. Imperviousness and Tree Cover
Neighborhood | Station Designation | Imperviousness | Tree Cover |
---|---|---|---|
Lonsdale | MV | 48.8 | 7.2 |
HV | 32.3 | 28.2 | |
West Hills | MV | 23.1 | 33.0 |
HV | 20.1 | 60.1 | |
Vestal | MV | 41.7 | 7.2 |
HV | 16.9 | 51.3 | |
Burlington | MV | 25.6 | 27.0 |
HV | 18.0 | 47.2 | |
Downtown | − | 84.0 | 4.6 |
Ijams | − | 3.6 | 78.8 |
3.3. Inter-Neighborhood Variability
Neighborhood | Downtown | Ijams | Lonsdale | West Hills | Vestal | Burlington |
---|---|---|---|---|---|---|
Downtown | − | 0.34 | −1.25 | −0.48 | −0.59 | −1.52 |
Ijams | −0.34 | − | −1.60 | −0.83 | −0.82 | −1.86 |
Lonsdale | 1.25 | 1.60 | − | 0.82 | 0.77 | −0.27 |
West Hills | 0.48 | 0.83 | −0.82 | − | −0.11 | −1.03 |
Vestal | 0.59 | 0.82 | −0.77 | 0.11 | − | −0.92 |
Burlington | 1.52 | 1.86 | 0.27 | 1.03 | 0.92 | − |
3.4. Intra-Neighborhood Variability
Neighborhood | Heat Index | Temperature | Relative Humidity |
---|---|---|---|
Lonsdale | −0.021 | −0.235 | 2.409 |
West Hills | 1.657 | −0.061 | 4.317 |
Vestal | −0.208 | −0.386 | 1.631 |
Burlington | −1.467 | −1.136 | 3.171 |
3.5. Data Distribution
3.6. Interacting Effects of Neighborhood and Tree Cover
Variables | MS | F-Value | Significance |
---|---|---|---|
Neighborhood | 21.94 | 2.210 | 0.066 |
Tree Cover | 88.49 | 8.913 | 0.002 |
Neighborhood * Tree | 14.69 | 1.480 | 0.228 |
Variables | MS | F-Value | Significance |
---|---|---|---|
Neighborhood | 1659.1 | 9.876 | <0.001 |
Tree Cover | 1165.2 | 6.937 | 0.009 |
Neighborhood * Tree | 48.6 | 0.289 | 0.749 |
Variables | MS | F-Value | Significance |
---|---|---|---|
Neighborhood | 109.75 | 5.777 | <0.001 |
Tree Cover | 84.41 | 4.443 | 0.035 |
Neighborhood * Tree | 41.39 | 2.179 | 0.114 |
3.7. Extreme Heat Variability
Variables | MS | F-Value | Significance |
---|---|---|---|
Neighborhood | 109.75 | 5.777 | <0.001 |
Tree Cover | 84.41 | 4.443 | 0.035 |
Neighborhood * Tree | 41.39 | 2.179 | 0.114 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Imtiaz, S.; Ur-Rehman, Z. Death Toll from Karachi, Pakistan, Heat Wave Tops 800. The New York Times 2015. Available online: http://www.nytimes.com/2015/06/25/world/asia/pakistan-heat-wave-death-toll-rises.html?_r=0 (accessed on 14 June 2015).
- Dousset, B.; Gourmelon, F.; Laaidi, K.; Zeghnoun, A.; Giraudet, E.; Bretin, P.; Mauri, E.; Vandentorren, S. Satellite monitoring of summer heat waves in the Paris metropolitan area. Int. J. Climatol. 2011, 31, 313–323. [Google Scholar] [CrossRef]
- Bell, M.L.; O’Neill, M.S.; Ranjit, N.; Borja-Aburto, V.H.; Cifuentes, L.A.; Gouveia, N.C. Vulnerability to heat-related mortality in Latin America: A case-crossover study in Sao Paulo, Brazil, Santiago, Chile, and Mexico City, Mexico. Int. J. Epidemiol. 2008, 37, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Luber, G.; McGeehin, M. Climate change and extreme heat events. Am. J. Prev. Med. 2008, 35, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.E.; Knappenberger, P.C.; Michaels, P.J.; Novicoff, W.M. Changing heat-related mortality in the United States. Environ. Health Perspect. 2003, 111, 1712–1718. [Google Scholar] [CrossRef] [PubMed]
- Southeast Climate Consortium. National climate assessment regional technical input report series: Climate of the southeast United States, variability, change, impacts, and vulnerability; Ingram, K.T., Dow, K., Carter, L., Anderson, J., Eds.; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Clarke, J.F. Some effects of the urban structure on heat mortality. Environ. Res. 1972, 5, 93–104. [Google Scholar] [CrossRef]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Oke, T.R. The energenic basis of the urban heat island. Quart. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar]
- Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef]
- Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 2006, 63, 2847–2863. [Google Scholar] [CrossRef] [PubMed]
- Mallick, J.; Rahman, A. Impact of population density on the surface temperature and micro-climate of Delhi. Curr. Sci. India 2012, 102, 1708–1713. [Google Scholar]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge, Taylor and Francis e-Library: London, UK, 1987; pp. 1–154. [Google Scholar]
- Aida, M. Urban albedo as a function of the urban structure—A model experiment. Bound. Layer Meteorol. 1982, 23, 405–413. [Google Scholar] [CrossRef]
- Shukla, J.; Mintz, Y. Influence of land-surface evapotranspiration on Earth’s climate. Sci. News 1982, 215, 1498–1501. [Google Scholar] [CrossRef] [PubMed]
- Taha, H.; Akbari, H.; Rosenfeld, A.; Huang, J. Residential cooling loads and the urban heat island—The effects of Albedo. Build. Environ. 1988, 23, 271–283. [Google Scholar] [CrossRef]
- Oleson, K.W.; Monaghan, A.; Wilhelmi, O.; Barlage, M.; Brunsell, N.; Feddema, J.; Hu, L.; Steinhoff, D.F. Interactions between urbanization, heat stress, and climate change. Clim. Chang. 2015, 129, 525–541. [Google Scholar] [CrossRef]
- Ellis, K.N.; Hathaway, J.M.; Reyes Mason, L.; Howe, D.A.; Epps, T.H.; Brown, V.M. Summer temperature variability across four urban neighborhoods in Knoxville, Tennessee, USA. Theor. Appl. Climatol. 2015, 1–10. [Google Scholar] [CrossRef]
- Jenerette, D.G.; Harlan, S.L.; Brazel, A.; Jones, N.; Larsen, L.; Stefanov, W.L. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc. Ecol. 2007, 22, 353–365. [Google Scholar] [CrossRef]
- Wilhelmi, O.V.; Hayden, M.H. Connecting people and place: A new framework for reducing urban vulnerability to extreme heat. Environ. Res. Lett. 2010, 5, 1–7. [Google Scholar] [CrossRef]
- Harlan, S.L.; Ceclet-Barreto, J.H.; Stefanov, W.L.; Petitti, D.B. Neighborhood effects on heat deaths: Social and environmental predictors of vulnerability in Maricopa county, Arizona. Environ. Health Perspect. 2013, 121, 197–204. [Google Scholar] [PubMed]
- Huang, G.; Xhou, W.; Cadenasso, M.J. Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover, and neighborhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manag. 2011, 92, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Uejio, C.K.; Wilhelmi, O.V.; Golden, J.S.; Mills, D.M.; Gulino, S.P.; Samenow, J.P. Intra-urban societal vulnerability to extreme heat: The role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health Place 2011, 17, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.; Li, F.; et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Grimmond, C.S.B.; Roth, M.; Oke, T.R.; Au, Y.C.; Best, M.; Betts, R.; Carmichael, G.; Cleugh, H.; Dabberdt, W.; Emmanuel, R.; et al. Climate and more sustainable cities: Climate information for improved planning and management of cities (Producers/Capabilies Perspective). Procedia Environ. Sci. 2010, 1, 247–274. [Google Scholar] [CrossRef]
- Georgescu, M.; Moustaoui, M.; Mahalov, A.; Dudhia, J. Summer-time climate impacts of projected megapolitan expansion in Arizona. Nat. Clim. Chang. 2012, 3, 37–41. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Chuang, W.; Gober, P. Vulnerabilty to extreme heat in Metropolitan Phoenix: Spatial, temporal, and demographic dimensions. Prof. Geogr. 2011, 64, 286–302. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, H.; Li, P.; Yin, Z. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Sullivan, J.; Collins, J.M. The use of low-cost data logging temperatures sensors in the evaluation of an urban heat island in Tampa, Florida. Pap. Appl. Geogr. Conf. 2009, 32, 252–261. [Google Scholar]
- Lo, C.P.; Quattrochi, D.A.; Luvall, J.C. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. Int. J. Remote Sens. 1997, 18, 287–304. [Google Scholar] [CrossRef]
- Laaidi, K.; Zeghnoun, A.; Dousset, B.; Bretin, P.; Vandentorren, S.; Giraudet, E.; Beaudeau, P. The Impact of heat islands on mortality in Paris during the August 2003 heat wave. Environ. Health Perspect. 2012, 120, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Hondula, D.M.; Davis, R.E.; Leisten, M.J.; Saha, M.V.; Veazey, L.M.; Wegner, C.R. Fine-scale spatial variability of heat-related mortality in Philadelphia County, USA, from 1983–2008: A case-series analysis. Environ. Health 2012, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hondula, D.M.; Davis, R.E.; Rocklov, J.; Saha, M.V. A time series approach for evaluating intra-city heat-related mortality. J. Epidemiol. Commun. Health 2013, 67, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Kuras, E.R.; Hondula, D.M.; Brown-Saracino, J. Heterogeneity in individually experienced temperatures (IETs) within an urban neighborhood: Insights from a new approach to measuring heat exposure. Int. J. Biometeorol. 2015, 59, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
- Brasche, S.; Bischof, W. Daily time spent indoors in German homes—Baseline data for the assessment of indoor exposure of German Occupants. Int. J. Hyg. Environ. Health 2005, 208, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.L.; Schwartz, J.; Dockery, D.W. The relationship between indoor and outdoor temperature, apparent temperature, relative humidity, and absolute humidity. Indoor Air 2014, 24, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Ripley, E.A.; Archibold, O.W.; Bretell, D.L. Temporal and spatial temperature patterns in Saskatoon. Weather 1996, 51, 398–405. [Google Scholar] [CrossRef]
- Unger, J.; Sumeghy, Z.; Zoboki, J. Temperature cross-section features in an urban area. Atmos. Res. 2001, 58, 117–127. [Google Scholar] [CrossRef]
- Mohsin, T.; Gough, W. Characterization and estimation of urban heat island at Toronto: Impact of the choice of rural sites. Theor. Appl. Climatol. 2012, 108, 105–117. [Google Scholar] [CrossRef]
- Burt, J.E.; O’Rourke, P.A.; Terjung, W.H. The relative influence of urban climates on outdoor human energy budgets and skin temperature II. Man in an urban environment. Int. J. Biometeorol. 1982, 26, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Malachaire, J.; Kampmann, B.; Havenith, G.; Mehnert, P.; Gebhardt, H.J. Criteria for estimating acceptable exposure times in hot working environments: A review. Int. Arch. Occup. Environ. Health 2000, 73, 215–220. [Google Scholar] [CrossRef]
- Heisler, G.M. Trees and human comfort in urban areas. J. For. 1974, 72, 466–469. [Google Scholar]
- Mayer, H.; Hoppe, P. Thermal comfort of man in different urban environments. Theor. Appl. Climatol. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- National Weather Service, Weather Prediction Center: The Heat Index Equation. Available online: http://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml (accessed on 3 April 2015).
- Hajat, S.; Sheridan, S.C.; Allen, M.J.; Pascal, M.; Laaidi, K.; Yagouti, A.; Bickis, U.; Tobias, A.; Bourque, D.; Armstrong, B.G.; et al. Heat-health warning systems: A comparison of the predictive capacity of different approaches to identifying dangerously hot days. Am. J. Public Health 2010, 100, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Giannopoulou, K.; Livada, I.; Santamouris, M.; Saliari, M.; Assimakopoulos, M.; Caouris, Y. The influence of air temperature and humidity on human thermal comfort over the greater Athens area. Sustain. Cities Soc. 2014, 10, 184–194. [Google Scholar] [CrossRef]
- Steadman, R.G. The assessment of sultriness. Part 1: A temperature-humidity index based on human physiology and clothing science. J. Appl. Meteor. 1979, 18, 861–873. [Google Scholar] [CrossRef]
- Ketterer, C.; Matzarakis, A. Human-biometeorological assessment of the urban heat island in a city with complex topography—The case of Stuttgart, Germany. Urban Clim. 2014, 10, 573–584. [Google Scholar] [CrossRef]
- Fischer, E.M.; Oleson, K.W.; Lawrence, D.M. Contrasting urban and rural heat stress responses to climate change. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Kalkstein, L.S.; Green, J. An evaluation of climate/mortality relationships in large U.S. cities and the possible impact of climate change. Environ. Health Perspect. 1997, 105, 84–93. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, M.S.; Ebi, K.L. Temperature extremes and health: Impacts of climate variability and change in the United States. J. Occup. Environ. Med. 2009, 51, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Berko, J.; Ingram, D.D.; Saha, S.; Parker, J.D. Deaths attributed to heat, cold, and other weather events in the United States, 2006–2010. Natl. Health Statist. Rep. 2014, 76, 1–13. [Google Scholar]
- O’Neill, M.S.; Zanobetti, A.; Schwartz, J. Disparities by race in heat-related mortality in four U.S. cities: The role of air conditioning prevalence. J. Urban Health 2005, 82, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Smargiassi, A.; Fournier, M.; Griot, C.; Baudouin, Y.; Kosatsky, T. Prediction of the indoor temperatures of an urban area with an in-time regression mapping approach. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.E.; Mann, J.K.; Alfasso, R.; English, P.B.; King, G.C.; Lincoln, R.A.; Margolis, H.G.; Rubado, D.J.; Sabato, J.E.; West, N.; et al. Evaluation of a heat vulnerability index on Abnormally hot days: An environmental public health tracking study. Environ. Health Perspect. 2012, 120, 715–750. [Google Scholar] [CrossRef] [PubMed]
- Tamerius, J.D.; Perzanowski, M.S.; Acosta, L.M.; Jacobson, J.S.; Goldstein, I.F.; Quinn, J.W.; Rundle, A.G.; Shaman, J. Socioeconomic and outdoor meteorological determinants of indoor temperature and humidity in New York City Dwellings. Weather Clim. Soc. 2013, 5, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Gubernot, D.M.; Anderson, G.B.; Hunting, K.L. The epidemiology of occupational heat exposure in the United States: A review of the literature and assessment of research needs in a changing climate. Int. J. Biometeorol. 2014, 58, 1779–1788. [Google Scholar] [CrossRef] [PubMed]
- Barnett, A.G.; Tong, S.; Clements, A.C.A. What measure of temperature is the best predictor of mortality? Environ. Res. 2010, 110, 604–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenney, W.L.; Hodgson, J.L. Heat tolerance, thermoregulation, and ageing. Sports Med. 1987, 4, 446–456. [Google Scholar] [CrossRef] [PubMed]
- United States Census Bureau: State and County Quickfacts. Available online: http://quickfacts.census.gov/qfd/states/47/4740000.html (accessed on 16 September 2015).
- United States Census Bureau: American Fact Finder. Available online: http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk (accessed on 16 September 2015).
- National Weather Service Weather Forecast Office, Morristown, TN: Knoxville Climate Normals and Records. Available online: http://www.srh.noaa.gov/mrx/?n=tysclimate (accessed on 1 September 2015).
- National Weather Service, National Oceanic and Atmospheric Administration: NWS Heat Index. Available online: http://www.nws.noaa.gov/om/heat/heat_index.shtml (accessed on 1 September 2015).
- United States Census Bureau: American Fact Finder, 2011 Census. Available online: http://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml (accessed on 3 April 2015).
- National Climatic Data Center: Climate Science: Investigating Climatic and Environmental Processes, The Diurnal Cycle. Available online: http://www.ncdc.noaa.gov/paleo/ctl/clisci0.html (accessed on 1 September 2015).
- Linden, J. Nocturnal cool Island in the Sahelian city of Ouagadougou, Burkina Faso. Int. J. Climatol. 2011, 31, 605–620. [Google Scholar] [CrossRef]
- Linden, J.; Esper, J.; Holmer, B. Using land cover, population, and night light data for assessing local temperature differences in Mainz, Germany. J. Appl. Meteorol. Clim. 2015, 54, 658–670. [Google Scholar] [CrossRef]
- Stewart, I.; Oke, T. Thermal differentiation of local climate zones using temperature observations from urban and rural field sites. In Proceedings of the Ninth Symposium on Urban Environment, Keystone, USA, August 2–6 2010; Available online: https://ams.confex.com/ams/19Ag19BLT9Urban/webprogram/Paper173127.html (accessed on 19 September 2015).
- Gallo, K.P.; Easterling, D.R.; Peterson, T.C. The influence of land use/land cover on climatological values of the diurnal temperature range. J. Climatol. 1996, 9, 2941–2944. [Google Scholar] [CrossRef]
- Li, R.; Roth, M. Spatial variation of the canopy-level urban heat island in Singapore. In Proceedings of the Seventh International Conference on Urban Climate, Yokohama, Japan, 29 June–3 July 2009.
- Rothfusz, L.P. The Heat Index “Equation” or, More Than You Ever Wanted to Know About Heat Index”. Technical Attachment, 1990. Available online: http://www.srh.noaa.gov/images/ffc/pdf/ta_htindx.PDF (accessed on 15 November 2015).
- Pielke, R.A. Influence of spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys. 2001, 39, 151–177. [Google Scholar] [CrossRef]
- Scheitlin, K.N.; Dixon, P.G. Diurnal temperature range variability due to land cover and airmass types in the Southeast. J. Appl. Meteorol. Clim. 2010, 49, 879–888. [Google Scholar] [CrossRef]
- Bornstein, R.D. Observations of the urban heat island in New York City. J. Appl. Meteorol. 1968, 7, 575–582. [Google Scholar] [CrossRef]
- Voogt, J.A. Urban heat island. In Encyclopedia of Global Environmental Change: Volume 3—Causes and Consequences of Global Environmental Change; Munn, T., Ed.; John Wiley and Sons: Winchester, UK, 2002; pp. 660–666. [Google Scholar]
- Mason, L.R.; Ellis, K.N.; Hathaway, J.M. Experiences of urban environmental conditions in socially and economically diverse neighborhoods. J. Community Pract. 2016, in press. [Google Scholar]
- Skelhorn, C.; Lindley, S.; Levermore, G. The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landsc. Urban Plan. 2014, 121, 129–140. [Google Scholar] [CrossRef]
- Hart, M.A.; Sailor, D.J. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol. 2009, 95, 397–406. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Stefanov, W.L.; Martin, C.A. Ecosystem services and urban heat riskscape moderation: Water, green spaces, and social inequality in Phoenix, USA. Ecol. Appl. 2011, 21, 2637–2651. [Google Scholar] [CrossRef] [PubMed]
- Middel, A.; Hab, K.; Brazel, A.J.; Martin, C.A.; Guthathakurta, S. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landsc. Urban Plan. 2014, 122, 16–28. [Google Scholar] [CrossRef]
- Georgescu, M.; Morefield, P.S.; Bierwagen, B.G.; Weaver, C.P. Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl. Acad. Sci. USA 2014, 111, 2809–2914. [Google Scholar] [CrossRef] [PubMed]
- Shashua-Bar, L.; Hoffman, M.E. Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy Build. 2000, 31, 221–235. [Google Scholar] [CrossRef]
- Yu, C.; Hien, W.N. Thermal benefits of city parks. Energy Build. 2006, 38, 105–120. [Google Scholar] [CrossRef]
- La Gennusa, M.; Nucara, A.; Rizzo, G.; Scaccianoce, G. The calculation of the mean radiant temperature of a subject exposed to the solar radiation—A generalized algorithm. Build. Environ. 2005, 40, 367–375. [Google Scholar] [CrossRef]
- Oke, T.R. The heat island of the urban boundary layer: Characteristics, causes, and effects. In Proceedings of the NATO Advanced Study Institute on Wind Climate in Cities; Cermak, J.E., Davenport, A.G., Plate, E.J., Viegas, D.X., Eds.; Springer Science: Waldbron, Germany, 1995. [Google Scholar]
- Thorsson, S.; Lindberg, F.; Eliasson, I.; Holmer, B. Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int. J. Climatol. 2007, 27, 1983–1993. [Google Scholar] [CrossRef]
- Hermann, J.; Matzarakis, A. Mean radiant temperature in idealized urban canyons–examples from Freiburg, Germany. Int. J. Biometeorol. 2012, 56, 199–203. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hass, A.L.; Ellis, K.N.; Reyes Mason, L.; Hathaway, J.M.; Howe, D.A. Heat and Humidity in the City: Neighborhood Heat Index Variability in a Mid-Sized City in the Southeastern United States. Int. J. Environ. Res. Public Health 2016, 13, 117. https://doi.org/10.3390/ijerph13010117
Hass AL, Ellis KN, Reyes Mason L, Hathaway JM, Howe DA. Heat and Humidity in the City: Neighborhood Heat Index Variability in a Mid-Sized City in the Southeastern United States. International Journal of Environmental Research and Public Health. 2016; 13(1):117. https://doi.org/10.3390/ijerph13010117
Chicago/Turabian StyleHass, Alisa L., Kelsey N. Ellis, Lisa Reyes Mason, Jon M. Hathaway, and David A. Howe. 2016. "Heat and Humidity in the City: Neighborhood Heat Index Variability in a Mid-Sized City in the Southeastern United States" International Journal of Environmental Research and Public Health 13, no. 1: 117. https://doi.org/10.3390/ijerph13010117
APA StyleHass, A. L., Ellis, K. N., Reyes Mason, L., Hathaway, J. M., & Howe, D. A. (2016). Heat and Humidity in the City: Neighborhood Heat Index Variability in a Mid-Sized City in the Southeastern United States. International Journal of Environmental Research and Public Health, 13(1), 117. https://doi.org/10.3390/ijerph13010117