Quantification of Protozoa and Viruses from Small Water Volumes
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Collection and Preparation
| Trial | Cryptosporidium per 200 µL | Giardia per 200 µL | Poliovirus per mL | |||
|---|---|---|---|---|---|---|
| qPCR | IMS/IFA | qPCR | IMS/IFA | qPCR | Plaque Assay | |
| A | 240 | 232 | 184 | 128 | − | − |
| B | 372 | 102 | 367 | 262 | 634 | − |
| C | 452 | − | 384 | − | 834 | 240 |
2.2. Filtration Setup and Procedure
2.3. Elution and Analysis of Protozoa from Top Membrane
2.4. Elution and Analysis of Viruses from Bottom Membrane
2.5. Reverse Transcription and Quantitative PCR Analysis
| Target (Ref.) | Sequence 5′–3′ |
|---|---|
| Giardia spp. [42] | |
| Primer G101 | CATCCGCGAGGAGGTCAA |
| Primer G102 | GCAGCCATGGTGTCGATCT |
| Probe G103 | 6FAM-AAGTCCGCCGACAACATGTACCTAACGA-IB |
| Cryptosporidium spp. [42] | |
| Primer C104 | CAAATTGATACCGTTTGTCCTTCTG |
| Primer C105 | GGCATGTCGATTCTAATTCAGCT |
| Probe C106 | 6FAM-TGCCATACATTGTTGTCCTGACAAATTGAAT-IB |
| Poliovirus [43] | |
| Primer P107 | CCTCCGGCCCCTGAATG |
| Primer P108 | ACCGGATGGCCAATCCAA |
| Probe P109 | 6FAM-CGACTACTTTGGGTGTCCGTGTTTCC-IB |
| Internal control nucleic acid (This study) | |
| Primer P110 | CATGATAAGGTTTTGAGCTCTGTGTATTG |
| Primer P111 | TCCTTTTTGTGCATAACCTGATTTAA |
| Probe P112 | 6FAM- ACATATGTAAAAGAGAGCTTC-MGBNFQ |
3. Results
| Trial/Replicate | Percent Recovery | |||
|---|---|---|---|---|
| Cryptosporidium | Giardia | |||
| qPCR | IMS/IFA | qPCR | IMS/IFA | |
| A1 | 55 | 61 | 98 | 34 |
| A2 | 51 | 52 | 49 | 38 |
| B1 | 23 | 116 | 40 | 34 |
| B2 | 39 | 145 | 2 | 20 |
| B3 | 22 | 83 | 61 | 13 |
| C1 | 85 | − | 16 | − |
| C2 | 56 | − | 48 | − |
| C3 | 52 | − | 25 | − |
| C4 | 23 | − | 31 | − |
| Average | 45 | 91 | 41 | 28 |
| Std. Deviation | 21 | 39 | 26 | 11 |
| Trial/Replicate | Poliovirus Percent Recovery | |
|---|---|---|
| qPCR | Plaque Assay | |
| B1 | 86 | − |
| B2 | 106 | − |
| C1 | 13 | 75 |
| C2 | 68 | 41 |
| C3 | 22 | 83 |
| C4 | 34 | |
| Average | 55 | 67 |
| Std. Deviation | 37 | 22 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pruss, A.; Kay, D.; Fewtrell, L.; Bartram, J. Estimating the burden of disease from water, sanitation, and hygiene at a global level. Environ. Health Perspect. 2002, 110, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Shuval, H. Estimating the global burden of thalassogenic diseases: Human infectious diseases caused by wastewater pollution of the marine environment. J. Water Health 2003, 1, 53–64. [Google Scholar] [PubMed]
- Fong, T.T.; Lipp, E.K. Enteric viruses of humans and animals in aquatic environments: Health risks, detection, and potential water quality assessment tools. Microbiol. Mol. Biol. Rev. 2005, 69, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Wait, D.A.; Sobsey, M.D. Comparative survival of enteric viruses and bacteria in atlantic ocean seawater. Water Sci. Technol. 2001, 43, 139–142. [Google Scholar] [PubMed]
- Wetz, J.J.; Lipp, E.K.; Griffin, D.W.; Lukasik, J.; Wait, D.; Sobsey, M.D.; Scott, T.M.; Rose, J.B. Presence, infectivity, and stability of enteric viruses in seawater: Relationship to marine water quality in the florida keys. Mar. Pollut. Bull. 2004, 48, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, T.D.; Nowosielski, K.; Cuvelier, M.; Hartz, A.; Green, M.; Esiobu, N.; McCorquodale, D.S.; Fleisher, J.M.; Rogerson, A. Prevalence and distribution of fecal indicator organisms in south florida beach sand and preliminary assessment of health effects associated with beach sand exposure. Mar. Pollut. Bull. 2007, 54, 1472–1482. [Google Scholar] [CrossRef] [PubMed]
- Elmir, S.M.; Wright, M.E.; Abdelzaher, A.; Solo-Gabriele, H.M.; Fleming, L.E.; Miller, G.; Rybolowik, M.; Peter Shih, M.T.; Pillai, S.P.; Cooper, J.A.; et al. Quantitative evaluation of bacteria released by bathers in a marine water. Water Res. 2007, 41, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.C.; Chu, W. PCR detection of pathogenic viruses in southern California urban rivers. J. Appl. Microbiol. 2004, 97, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Pant, A.; Mittal, A.K. Monitoring of pathogenicity of effluents from the uasb based sewage treatment plant. Environ. Monit. Assess. 2007, 133, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.B.; Huffman, D.E.; Gennaccaro, A. Risk and control of waterborne cryptosporidiosis. FEMS Microbiol. Rev. 2002, 26, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.M.; Adams, W.N.; O’Malley, M.L.; Lear, D.W. Human pathogenic viruses at sewage sludge disposal sites in the middle atlantic region. Appl. Environ. Microbiol. 1984, 48, 758–763. [Google Scholar] [PubMed]
- Bonilla, T.D.; Nowosielski, K.; Esiobu, N.; McCorquodale, D.S.; Rogerson, A. Species assemblages of enterococcus indicate potential sources of fecal bacteria at a south florida recreational beach. Mar. Pollut. Bull. 2006, 52, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Desmarais, T.R.; Solo-Gabriele, H.M.; Palmer, C.J. Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Appl. Environ. Microbiol. 2002, 68, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Hartz, A.; Cuvelier, M.; Nowosielski, K.; Bonilla, T.D.; Green, M.; Esiobu, N.; McCorquodale, D.S.; Rogerson, A. Survival potential of Escherichia coli and enterococci in subtropical beach sand: Implications for water quality managers. J. Environ. Qual. 2008, 37, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Solo-Gabriele, H.M.; Wolfert, M.A.; Desmarais, T.R.; Palmer, C.J. Sources of Escherichia coli in a coastal subtropical environment. Appl. Environ. Microbiol. 2000, 66, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Craun, G.F.; Calderon, R.L.; Craun, M.F. Outbreaks associated with recreational water in the united states. Int. J. Environ. Health Res. 2005, 15, 243–262. [Google Scholar] [CrossRef] [PubMed]
- Harwood, V.J.; Levine, A.D.; Scott, T.M.; Chivukula, V.; Lukasik, J.; Farrah, S.R.; Rose, J.B. Validity of the indicator organism paradigm for pathogen reduction in reclaimed water and public health protection. Appl. Environ. Microbiol. 2005, 71, 3163–3170. [Google Scholar] [CrossRef] [PubMed]
- Hlavsa, M.C.; Roberts, V.A.; Anderson, A.R.; Hill, V.R.; Kahler, A.M.; Orr, M.; Garrison, L.E.; Hicks, L.A.; Newton, A.; Hilborn, E.D.; et al. Surveillance for waterborne disease outbreaks and other health events associated with recreational water—United States, 2007–2008. Morb. Mortal. Wkly. Rep. Surveill. Summ. 2011, 60, 1–32. [Google Scholar]
- Adams, D.A.; Gallagher, K.M.; Jajosky, R.A.; Kriseman, J.; Sharp, P.; Anderson, W.J.; Aranas, A.E.; Mayes, M.; Wodajo, M.S.; Onweh, D.H.; et al. Summary of notifiable diseases-United States, 2011. MMWR Morb. Mortal. Wkly. Rep. 2013, 60, 1–117. [Google Scholar] [PubMed]
- Karanis, P.; Kourenti, C.; Smith, H. Waterborne transmission of protozoan parasites: A worldwide review of outbreaks and lessons learnt. J. Water Health 2007, 5, 1–38. [Google Scholar] [PubMed]
- Payment, P.; Plante, R.; Cejka, P. Removal of indicator bacteria, human enteric viruses, Giardia cysts, and Cryptosporidium oocysts at a large wastewater primary treatment facility. Can. J. Microbiol. 2001, 47, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Dziuban, E.J.; Liang, J.L.; Craun, G.F.; Hill, V.; Yu, P.A.; Painter, J.; Moore, M.R.; Calderon, R.L.; Roy, S.L.; Beach, M.J.; et al. Surveillance for waterborne disease and outbreaks associated with recreational water–United States, 2003–2004. Morb. Mortal. Wkly. Rep. Surveill. Summ. 2006, 55, 1–30. [Google Scholar]
- Yoder, J.S.; Blackburn, B.G.; Craun, G.F.; Hill, V.; Levy, D.A.; Chen, N.; Lee, S.H.; Calderon, R.L.; Beach, M.J. Surveillance for waterborne-disease outbreaks associated with recreational water–United States, 2001–2002. Morb. Mortal. Wkly. Rep. Surveill. Summ. 2004, 53, 1–22. [Google Scholar]
- Yavuz, B.M.; Jones, R.M.; DeFlorio-Barker, S.; Vannoy, E.; Dorevitch, S. Receiver-operating characteristics analysis: A new approach to predicting the presence of pathogens in surface waters. Environ. Sci. Technol. 2014, 48, 5628–5635. [Google Scholar] [CrossRef] [PubMed]
- Abdelzaher, A.M.; Wright, M.E.; Ortega, C.; Solo-Gabriele, H.M.; Miller, G.; Elmir, S.; Newman, X.; Shih, P.; Bonilla, J.A.; Bonilla, T.D.; et al. Presence of pathogens and indicator microbes at a non-point source subtropical recreational marine beach. Appl. Environ. Microbiol. 2010, 76, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Dorevitch, S.; Doi, M.; Hsu, F.C.; Lin, K.T.; Roberts, J.D.; Liu, L.C.; Gladding, R.; Vannoy, E.; Li, H.; Javor, M.; et al. A comparison of rapid and conventional measures of indicator bacteria as predictors of waterborne protozoan pathogen presence and density. J. Environ. Monit.: JEM 2011, 13, 2427–2435. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Ortega, C.; Solo-Gabriele, H.M.; Abdelzaher, A.; Wright, M.; Deng, Y.; Stark, L.M. Correlations between microbial indicators, pathogens, and environmental factors in a subtropical estuary. Mar. Pollut. Bull. 2009, 58, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
- Hill, V.R.; Polaczyk, A.L.; Hahn, D.; Narayanan, J.; Cromeans, T.L.; Roberts, J.M.; Amburgey, J.E. Development of a rapid method for simultaneous recovery of diverse microbes in drinking water by ultrafiltration with sodium polyphosphate and surfactants. Appl. Environ. Microbiol. 2005, 71, 6878–6884. [Google Scholar] [CrossRef] [PubMed]
- Morales-Morales, H.A.; Vidal, G.; Olszewski, J.; Rock, C.M.; Dasgupta, D.; Oshima, K.H.; Smith, G.B. Optimization of a reusable hollow-fiber ultrafilter for simultaneous concentration of enteric bacteria, protozoa, and viruses from water. Appl. Environ. Microbiol. 2003, 69, 4098–4102. [Google Scholar] [CrossRef] [PubMed]
- Hill, V.R.; Kahler, A.M.; Jothikumar, N.; Johnson, T.B.; Hahn, D.; Cromeans, T.L. Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water samples. Appl. Environ. Microbiol. 2007, 73, 4218–4225. [Google Scholar] [CrossRef] [PubMed]
- Hill, V.R.; Polaczyk, A.L.; Kahler, A.M.; Cromeans, T.L.; Hahn, D.; Amburgey, J.E. Comparison of hollow-fiber ultrafiltration to the usepa viradel technique and usepa method 1623. J. Environ. Qual. 2009, 38, 822–825. [Google Scholar] [CrossRef] [PubMed]
- Olszewski, J.; Winona, L.; Oshima, K.H. Comparison of 2 ultrafiltration systems for the concentration of seeded viruses from environmental waters. Can. J. Microbiol. 2005, 51, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, R.C.; Oshima, K.H. Hollow-fiber ultrafiltration of Cryptosporidium parvum oocysts from a wide variety of 10-L surface water samples. Can. J. Microbiol. 2002, 48, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Haramoto, E.; Katayama, H.; Asami, M.; Akiba, M. Development of a novel method for simultaneous concentration of viruses and protozoa from a single water sample. J. Virol. Methods 2012, 182, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Sassoubre, L.M.; Love, D.C.; Silverman, A.I.; Nelson, K.L.; Boehm, A.B. Comparison of enterovirus and adenovirus concentration and enumeration methods in seawater from southern california, USA and Baja Malibu, Mexico. J. Water Health 2012, 10, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Abdelzaher, A.M.; Solo-Gabriele, H.M.; Palmer, C.J.; Scott, T.M. Simultaneous concentration of enterococci and coliphage from marine waters using a dual layer filtration system. J. Environ. Qual. 2009, 38, 2468–2473. [Google Scholar] [CrossRef] [PubMed]
- Abdelzaher, A.M.; Solo-Gabriele, H.M.; Wright, M.E.; Palmer, C.J. Sequential concentration of bacteria and viruses from marine waters using a dual membrane system. J. Environ. Qual. 2008, 37, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Hsu, B.M.; Huang, C. Ims method performance analyses for Giardia in water under differing conditions. Environ. Monit. Assess. 2007, 131, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Katayama, H.; Shimasaki, A.; Ohgaki, S. Development of a virus concentration method and its application to detection of enterovirus and norwalk virus from coastal seawater. Appl. Environ. Microbiol. 2002, 68, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Betancourt, W.; Gennaccaro, A.L.; Scott, T.M.; Rose, J.B. Assessment of methods for detection of infectious Cryptosporidium oocysts and Giardia cysts in reclaimed effluents. Appl. Environ. Microbiol. 2003, 69, 5380–5388. [Google Scholar] [CrossRef] [PubMed]
- Guy, R.A.; Payment, P.; Krull, U.J.; Horgen, P.A. Real-time pcr for quantification of Giardia and Cryptosporidium in environmental water samples and sewage. Appl. Environ. Microbiol. 2003, 69, 5178–5185. [Google Scholar] [CrossRef] [PubMed]
- DeLeon, R.; Shieh, Y.S.; Baric, R.S.; Sobsey, M.D. Detection of Enteroviruses and Hepatitis a Virus in Environmental Samples by Gene Probes and Polymerase Chain Reaction, Proceedings of Water Quality Conference, San Diego, 1990; American Water Works Association: San Diego, CA, USA, 1990; pp. 839–845.
- Knap, A.; Dewailly, E.; Furgal, C.; Galvin, J.; Baden, D.; Bowen, R.E.; Depledge, M.; Duguay, L.; Fleming, L.E.; Ford, T.; et al. Indicators of ocean health and human health: Developing a research and monitoring framework. Environ. Health Perspect. 2002, 110, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Byappanahalli, M.; Fujioka, R. Indigenous soil bacteria and low moisture may limit but allow faecal bacteria to multiply and become a minor population in tropical soils. Water Sci. Technol. 2004, 50, 27–32. [Google Scholar] [PubMed]
- Francy, D.S.; Stelzer, E.A.; Brady, A.M.; Huitger, C.; Bushon, R.N.; Ip, H.S.; Ware, M.W.; Villegas, E.N.; Gallardo, V.; Lindquist, H.D. Comparison of filters for concentrating microbial indicators and pathogens in lake water samples. Appl. Environ. Microbiol. 2013, 79, 1342–1352. [Google Scholar] [CrossRef] [PubMed]
- Keserue, H.A.; Fuchslin, H.P.; Egli, T. Rapid detection and enumeration of Giardia lamblia cysts in water samples by immunomagnetic separation and flow cytometric analysis. Appl. Environ. Microbiol. 2011, 77, 5420–5427. [Google Scholar] [CrossRef] [PubMed]
- Abdelzaher, A.M.; Wright, M.E.; Ortega, C.; Hasan, A.R.; Shibata, T.; Solo-Gabriele, H.M.; Kish, J.; Withum, K.; He, G.; Elmir, S.M.; et al. Daily measures of microbes and human health at a non-point source marine beach. J. Water Health 2011, 9, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Chigor, V.N.; Sibanda, T.; Okoh, A.I. Assessment of the risks for human health of adenoviruses, hepatitis a virus, rotaviruses and enteroviruses in the buffalo river and three source water dams in the eastern cape. Food Environ. Virol. 2014, 6, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Lee, C.; Marion, J.; Wang, Q.; Saif, L.; Lee, J. Occurrence of human enteric viruses at freshwater beaches during swimming season and its link to water inflow. Sci. Total Environ. 2014, 472, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Lechevallier, M.W.; Norton, W.D. Giardia and Cryptosporidium in raw and finished water. J. Amer. Water Works Assoc. 1995, 87, 54–68. [Google Scholar]
- Rose, J.B.; Gerba, C.P.; Jakubowski, W. Survey of potable water-supplies for Cryptosporidium and Giardia. Environ. Sci. Technol. 1991, 25, 1393–1400. [Google Scholar] [CrossRef]
- Betancourt, W.Q.; Duarte, D.C.; Vasquez, R.C.; Gurian, P.L. Cryptosporidium and Giardia in tropical recreational marine waters contaminated with domestic sewage: Estimation of bathing-associated disease risks. Mar. Pollut. Bull. 2014, 85, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Kumar, T.; Onichandran, S.; Lim, Y.A.; Sawangjaroen, N.; Ithoi, I.; Andiappan, H.; Salibay, C.C.; Dungca, J.Z.; Chye, T.T.; Sulaiman, W.Y.; et al. Comparative study on waterborne parasites between malaysia and thailand: A new insight. Amer. J. Trop. Med. Hyg. 2014, 90, 682–689. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonilla, J.A.; Bonilla, T.D.; Abdelzaher, A.M.; Scott, T.M.; Lukasik, J.; Solo-Gabriele, H.M.; Palmer, C.J. Quantification of Protozoa and Viruses from Small Water Volumes. Int. J. Environ. Res. Public Health 2015, 12, 7118-7132. https://doi.org/10.3390/ijerph120707118
Bonilla JA, Bonilla TD, Abdelzaher AM, Scott TM, Lukasik J, Solo-Gabriele HM, Palmer CJ. Quantification of Protozoa and Viruses from Small Water Volumes. International Journal of Environmental Research and Public Health. 2015; 12(7):7118-7132. https://doi.org/10.3390/ijerph120707118
Chicago/Turabian StyleBonilla, J. Alfredo, Tonya D. Bonilla, Amir M. Abdelzaher, Troy M. Scott, Jerzy Lukasik, Helena M. Solo-Gabriele, and Carol J. Palmer. 2015. "Quantification of Protozoa and Viruses from Small Water Volumes" International Journal of Environmental Research and Public Health 12, no. 7: 7118-7132. https://doi.org/10.3390/ijerph120707118
APA StyleBonilla, J. A., Bonilla, T. D., Abdelzaher, A. M., Scott, T. M., Lukasik, J., Solo-Gabriele, H. M., & Palmer, C. J. (2015). Quantification of Protozoa and Viruses from Small Water Volumes. International Journal of Environmental Research and Public Health, 12(7), 7118-7132. https://doi.org/10.3390/ijerph120707118

