Effects of Varying Particle Sizes and Different Types of LDH-Modified Anthracite in Simulated Test Columns for Phosphorous Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
| Parameters | TP | TDP | Phosphate | 
|---|---|---|---|
| Concentration | 0.94~3.91 | 0.33~2.29 | 0.30~1.94 | 
| Average | 2.06 | 1.37 | 0.98 | 
| Standard deviation | 0.73 | 0.49 | 0.44 | 
| Chemical Compositions | SiO2 | Al2O3 | Fe2O3 | CaO | SO3 | CO3 | 
|---|---|---|---|---|---|---|
| Percentage Composition (Small Size) | 12.10 | 10.14 | 2.12 | 0.73 | 4.60 | 68.47 | 
| Percentage Composition (Medium Size) | 19.35 | 14.21 | 4.26 | 1.78 | 0.75 | 53.14 | 
| Percentage Composition (Large Size) | 16.54 | 13.46 | 2.72 | 0.99 | 4.32 | 60.07 | 

2.2. Methods of Coating Modification
| Modification Methods | 
|---|
| FeCl3 + CaCl2 + Anthracites | 
| FeCl3 + ZnCl2 + Anthracites | 
| FeCl3 + MgCl2 + Anthracites | 
| CoCl3 + CaCl2 + Anthracites | 
| CoCl3 + ZnCl2 + Anthracites | 
| CoCl3 + MgCl2 + Anthracites | 
| AlCl3 + CaCl2 + Anthracites | 
| AlCl3 + ZnCl2 + Anthracites | 
| AlCl3 + MgCl2 + Anthracites | 
| Original Anthracites | 
2.3. Property Analysis Methods of Modified Anthracites Coated with LDHs
2.4. Adsorption Isotherms Experiment
3. Results and Discussion
3.1. Apparent Characteristics of Anthracite before and after Modification


3.2. Adsorption Isotherms
| Adsorbent (Medium Size Anthracite) | Freundlich Equation | Langmuir Equation | ||||
|---|---|---|---|---|---|---|
| 1/n | lgK | R2 | Γ0 | A | R2 | |
| CaFe-LDHs | 0.612 | 0.923 | 0.911 | 43.10 | 4.142 | 0.956 | 
| ZnFe-LDHs | 0.314 | 1.407 | 0.918 | 40.00 | 0.172 | 0.906 | 
| MgFe-LDHs | 0.351 | 1.231 | 0.975 | 37.31 | 0.672 | 0.973 | 
| CaCo-LDHs | 0.489 | 1.262 | 0.900 | 44.64 | 0.955 | 0.932 | 
| ZnCo-LDHs | 0.347 | 1.733 | 0.916 | 65.79 | 0.059 | 0.958 | 
| MgCo-LDHs | 0.283 | 1.052 | 0.996 | 20.79 | 0.482 | 0.908 | 
| CaAl-LDHs | 0.278 | 1.220 | 0.904 | 32.47 | 0.526 | 0.987 | 
| ZnAl-LDHs | 0.238 | 1.516 | 0.978 | 48.78 | 0.102 | 0.969 | 
| MgAl-LDHs | 0.265 | 1.449 | 0.956 | 43.67 | 0.135 | 0.976 | 
| original anthracites | 0.198 | 1.488 | 0.916 | 39.53 | 0.0316 | 0.956 | 
3.3. Removal of Phosphorus Pollutants
3.3.1. Removal of Total Phosphorus


| Size | TP | PP | TDP | Phosphate | 
|---|---|---|---|---|
| Small | 0.000 *** | 0.215 | 0.372 | 0.044 * | 
| Medium | 0.248 | 0.740 | 0.096 | 0.024 * | 
| Large | 0.007 *** | 0.000 *** | 0.000 *** | 0.008 *** | 
3.3.2. Removal of Total Dissolved Phosphorus

3.3.3. Removal of Phosphate



4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kivaisi, A.K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review. Ecol. Eng. 2001, 16, 545–560. [Google Scholar] [CrossRef]
- Sani, A.; Scholz, M.; Babatunde, A.; Wang, Y. Impact of water quality parameters on the clogging of vertical-Flow constructed wetlands treating urban wastewater. Water Air Soil Pollut. 2013, 224. [Google Scholar] [CrossRef]
- Yalcuk, A.; Pakdil, N.B.; Turan, S.Y. Performance evaluation on the treatment of olive mill waste water in vertical subsurface flow constructed wetlands. Desalination 2010, 262, 209–214. [Google Scholar] [CrossRef]
- Kurzbaum, E.; Kirzhner, F.; Armon, R. Improvement of water quality using constructed wetland systems. Rev. Environ. Health 2012, 27, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Prochaska, C.A.; Zouboulis, A.I. Removal of phospates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate. Ecol. Eng. 2006, 26, 293–303. [Google Scholar] [CrossRef]
- Liu, Y. Synthesis and application of layered double hydroxides. Chem. Ind. Times 2005, 19, 59–62. [Google Scholar]
- Goh, K.H.; Lim, T.T.; Dong, Z.L. Application of layered double hydroxides for removal of oxyanions: A review. Water Res. 2008, 42, 1343–1368. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhao, N.; Yang, G.; Tian, L.; Wang, R. Removal of fluoride ions from aqueous solution by the calcination product of Mg-Al-Fe hydrotalcite-like compound. Desalination 2011, 268, 20–26. [Google Scholar] [CrossRef]
- Nie, H.Q.; Hou, W.G. Methods and applications for delamination of layered double hydroxides. Acta Phys. Chim. Sin. 2011, 27, 1783–1796. [Google Scholar]
- Yu, W.H.; Ni, Z.M.; Guo, Z.Q.; Zhou, C.H.; Ge, Z.H. Advances in studies of the technology of preparing hydrotalcites. J. Zhejiang Univ. Technol. 2004, 32, 306–310. [Google Scholar]
- McKenzie, A.L.; Fishel, C.T.; Davis, R.J. Investigation of the surface structure and basic properties of calcined hydrotalcites. J. Catal. 1992, 138, 547–561. [Google Scholar] [CrossRef]
- Imamura, S.; Shono, M.; Okamoto, N.; Hamada, A.; Ishida, S. Effect of cerium on the mobility of oxygen on manganese oxides. Appl. Catal. A 1996, 142, 279–288. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, X.R.; Wang, X.Z.; Zhao, B.; Chen, A.; Sun, D. Phosphate adsorption from sewage sludge filtrate using Zinc-aluminum layered double hydroxides. J. Hazard. Mater. 2009, 169, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllidis, K.S.; Peleka, E.N.; Komvokis, V.G.; Mavros, P.P. Iron-modified hydrotalcite-like materials as highly efficient phosphate sorbents. J. Colloid Interface Sci. 2010, 342, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Ashekuzzaman, S.M.; Jiang, J.Q. Study on the sorption-desorption-regeneration performance of Ca-, Mg- and CaMg-based layered double hydroxides for removing phosphate from water. Chem. Eng. J. 2014, 246, 95–105. [Google Scholar] [CrossRef]
- Chitrakar, R.; Tezuka, S.; Sonoda, A.; Sakane, K.; Ooi, K.; Hirotsu, T. Synthesis and phosphate uptake behavior of Zr4+ incorporated MgAl-layered double hydroxides. J. Colloid Interface Sci. 2007, 313, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Liu, X.T.; Xu, L. Purification effect of vertical flow constructed wetlands using modified substrates coated by MgFe-LDHs. China Environ. Sci. 2013, 33, 1407–1412. [Google Scholar]
- Westholm, L.J. Substrates for phosphorus removal-potential benefits for on-site wastewater treatment. Water Res. 2006, 40, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Babatunde, A.O.; Zhao, Y.Q.; Burke, A.M.; Morris, M.A.; Hanrahan, J.P. Characterization of aluminium-based water treatment residual for potential phosphorus removal in engineered wetlands. Environ. Pollut. 2009, 157, 2830–2836. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.X. Problems and countermeasures of phosphorus removal in constructed wetland. Environ. Sci. Manag. 2012, 37, 107–109. [Google Scholar]
- Park, J.H.; Jung, D.I. Removal of total phosphorus (TP) from municipal wastewater using loess. Desalination 2011, 269, 104–110. [Google Scholar] [CrossRef]
- Liu, Z.Y.; You, Z.Y.; Xiao, X.Q.; Zhang, D. Current researches on influencing factors of phosphorus removal by substrates in constructed wetland. Technol. Water Treat. 2011, 37, 50–54. [Google Scholar]
- Brix, H.; Arias, C.A.; Del, B.M. Media selection for sustainable phosphorus removal in subsurface flow constructed wetland. Water Sci. Technol. 2001, 44, 47–54. [Google Scholar] [PubMed]
- Wang, Z.; Liu, C.X.; Dong, J.; Liu, L.; Li, P.Y.; Zhang, J.Y. Screening of phosphate-removing filter media for use in constructed wetlands and their phosphorus removal capacities. China Environ. Sci. 2013, 33, 227–233. [Google Scholar]
- Xiong, J.B.; Mahmood, Q. Adsorptive removal of phosphate from aqueous media by peat. Desalination 2010, 259, 59–64. [Google Scholar] [CrossRef]
- Zhang, X.L. Studies on Performance of Purification and Influence on Clogging of Vertical Flow Constructed Wetlands with Different Filter Media. Ph.D. Thesis, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China, 2007. [Google Scholar]
- Sun, Q.; Zheng, Z.; Zhou, T. The procedure of wastewater treatment for constructed wetland. Pollut. Control Technol. 2001, 14, 20–23. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chen, Q.; Guo, L.; Huang, H.; Ruan, C. Effects of Varying Particle Sizes and Different Types of LDH-Modified Anthracite in Simulated Test Columns for Phosphorous Removal. Int. J. Environ. Res. Public Health 2015, 12, 6788-6800. https://doi.org/10.3390/ijerph120606788
Zhang X, Chen Q, Guo L, Huang H, Ruan C. Effects of Varying Particle Sizes and Different Types of LDH-Modified Anthracite in Simulated Test Columns for Phosphorous Removal. International Journal of Environmental Research and Public Health. 2015; 12(6):6788-6800. https://doi.org/10.3390/ijerph120606788
Chicago/Turabian StyleZhang, Xiangling, Qiaozhen Chen, Lu Guo, Hualing Huang, and Chongying Ruan. 2015. "Effects of Varying Particle Sizes and Different Types of LDH-Modified Anthracite in Simulated Test Columns for Phosphorous Removal" International Journal of Environmental Research and Public Health 12, no. 6: 6788-6800. https://doi.org/10.3390/ijerph120606788
APA StyleZhang, X., Chen, Q., Guo, L., Huang, H., & Ruan, C. (2015). Effects of Varying Particle Sizes and Different Types of LDH-Modified Anthracite in Simulated Test Columns for Phosphorous Removal. International Journal of Environmental Research and Public Health, 12(6), 6788-6800. https://doi.org/10.3390/ijerph120606788
 
         
                                                
 
       