Contribution of Organically Grown Crops to Human Health
Abstract
:1. Introduction—Organic Agriculture Today and in the Future
2. Important Factors for Public Health—Impact of Nutritional Compounds from Crops
3. Content of Compounds in Various Crops Compared to Daily Intake
Crop | Amount of Nutritionally Important Compounds | ||||
---|---|---|---|---|---|
Fe | Zn | Caro | Vit E | Phe | |
Apple | 2–16 [29] * | 1–3 [29] | <0.1 [40] | 692–1,212 [49] | |
Orange | 1–16 [29] | 2–10 [29] | <0.1 [40] | 1,080–1,170 [24] | |
Banana | 6–20 [3]° | 4–11 [3]° | 1–94 [41] | <0.1 [40] | 1,060–1,190 [24,50] |
Black Currant | 1–2 [31] | 0.2–0.4 [31] | 60–70 [44] | 19,200–31,800 [51] | |
Strawberry | 3–7 [32] | 1–2 [32] | 0.5 [56] | <0.1 [40] | 2,230–2,270 [24] |
Sea Buckthorn | 4–10 [33] | 24–38 [33] | 120–1,425 [45] | 324–452 [37] | 21,310–55,380 [60] |
Rose Hips | 11–118 [34] | 7–14 [34] | 42–1,024 [46] | 110–205 [38] | 59,210–122,390 [61] |
Carrots | 33–37 [35] | 24–38 [35] | 10–90 [47] | <0.1 [40] | 83–85 [24] |
Tomato | 0.5–1.4 [53] | 0.1–0.3 [53] | 80–90 [47] | <0.1 [40] | 235–239 [24] |
Spinach | 188–1,255 [54] | 40–141 [54] | 110–160 [47] | 322–329 [24] | |
Pea | 4–5 [36] | 2–4 [36] | <0.1 [40] | ||
Lentils | 63–105 [55] | 32–39 [55] | |||
Wheat | 18–38 [8] | 21–39 [8] | 3–4 [57] | 6–12 [9] | 2,710–3,016 [57] |
Rice | 1–27 [27] | 13–44 [27] | 1–37 [43] | 17–24 [39] | 146–4,222 [48] |
Maize | 11–34 [28] | 14–45 [28] | 1–34 [42] | ||
Oats | 45–46 [52] | 29–31 [52] |
4. Comparison of Compounds in Organic and Conventional Crops
Crop | Weight (g) | Nutritionally Important Compounds | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fe | Zn | Caro | Vit E | Phe | |||||||
Intake (mg) | % of Req | Intake (mg) | % of Req | Intake (mg) | % of Req | Intake (mg) | % of Req | Intake (mg) | % of Req | ||
Daily requirements (mg) | 10 [23] | 10 [23] | 0.6 [22] (Vit A) | 10 [22] | 500 [24] | ||||||
1 Apple | 125–150 [68] | 0.2–2.4 | 2.5–24 | 0.1–0.4 | 1.2–4.5 | <0.02 | <0.2 | 83–181 | 16–36 | ||
1 Orange | 175 [68] | 0.2–2.8 | 1.8–28 | 0.3–1.7 | 3.5–17 | <0.02 | <0.2 | 189–205 | 37–41 | ||
1 Banana | 150 [68] | 0.2–3.0 | 2.0–30 | 0.6–1.6 | 6.0–16 | 0.1–14 | 17–>100 | <0.01 | <0.1 | 159–178 | 31–36 |
1 L Black Currant berries | 500 [68] | 0.5–1.0 | 5.0–10 | 1.0–2.0 | 10–20 | 3.0–3.5 | >100 | 9,600–15,900 | >100 | ||
1 L Strawberries | 500 [68] | 1.5–3.5 | 15–35 | 0.5–1.0 | 5–10 | 0.02 | 3.3 | <0.05 | <0.5 | 1,115–1,135 | >100 |
10 Sea Buckthorn berries | 12.5–14.3 | 0.1–0.1 | 5.0–14 | 0.3–0.5 | 3.0–3.5 | 1.5–20 | >100 | 4.1–6.5 | 41–65 | 266–791 | 53–>100 |
10 Rose Hips | 14–80 | 0.1–9.4 | 15–94 | 0.1–1.1 | 1.0–11 | 0.6–82 | >100 | 1.5–16.4 | 15–>100 | 829–9,791 | >100 |
1 Carrots | 75–100 [68] | 2.5–3.7 | 25–37 | 1.8–3.8 | 18–38 | 0.7–9 | >100 | <0.01 | <0.1 | 6.2–8.5 | 1.2–1.7 |
1 Tomato | 80 [68] | <0.1 | <1.1 | <0.02 | <0.2 | 6.4–7.2 | >100 | <0.01 | <0.1 | 18.8–19.1 | 3.7–3.8 |
1 L Peas | 800 [68] | 3.2–4.0 | 32–40 | 1.6–3.2 | 16–32 | <0.08 | <0.8 | ||||
1 L Lentils | 800–900 [68] | 50–94 | >100 | 25–35 | >100 | ||||||
1 L Wheat | 800 [68] | 14–30 | >100 | 17–31 | >100 | 2.4–3.2 | >100 | 4.8–9.6 | 48–96 | 2,168–2,412 | >100 |
1 L Rice | 720-850 [68] | 0.7–23 | 7–>100 | 9–37 | 90–>100 | 0.7–31 | >100 | 12–20 | >100 | 105–3,588 | 21–>100 |
1 L Maize | 750-800 [68] | 8–27 | 80–>100 | 10–36 | >100 | 0.7–27 | >100 |
5. Additional Human Health Related Issues in Crops—Chemicals and Heavy Metals
6. Health Biomarkers in Whole Organisms and in vitro Studies
7. Conclusions—Do Organically Produced Crops Contribute to Human Health?
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Lotter, D. Organic agriculture. J. Sustainable Agr. 2003, 21, 59–128. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Organic Agriculture. Available online: http://www.fao.org/unfao/bodies/COAG/COAG15/X0075E.htm#P99_8218 (accessed on 7 December 2013).
- International Federation of Organic Agriculture Movements (IFOAM). IFOAM International Federation of Organic Agriculture Annual Report 2007; International Federation of Organic Agriculture Movements: Bonn, Germany, 2007. [Google Scholar]
- United States Department of Agriculture (USDA). Report and Recommendations on Organic Farming; United States Department of Agriculture: Washington, DC, USA, 1980. [Google Scholar]
- United States Department of Agriculture (USDA). Organic Agriculture. Organic Policy. Available online: http://www.ers.usda.gov/topics/natural-resources-environment/organic-agriculture/organic-policy.aspx (accessed on 20 December 2013).
- European Comission. European Action Plan for Organic Farming. Available online: http://ec.europa.eu/agriculture/organic/eu-policy/action-plan_en (accessed on 20 December 2013).
- Willer, H.; Kilcher, L. The World of Organic Agriculture—Statistics and Emerging Trends 2012; Research Institute of Organic Agriculture (FiBL),International Federation of Organic Agriculture Movements (IFOAM): Bonn, Germany, 2012. [Google Scholar]
- Hussain, A.; Larsson, H.; Kuktaite, R.; Johansson, E. Mineral composition of organically grown wheat genotypes: Contribution to daily minerals intake. Int. J. Environ. Res. Public Health 2010, 7, 3442–3456. [Google Scholar] [CrossRef]
- Hussain, A.; Larsson, H.; Olsson, M.E.; Kuktaite, R.; Grausgruber, H.; Johansson, E. Is organically produced wheat a source of tocopherols and tocotrienols for health food? Food Chem. 2012, 132, 1789–1795. [Google Scholar] [CrossRef]
- Hussain, A.; Larsson, H.; Kuktaite, R.; Johansson, E. Healthy food from organic wheat: Choice of genotypes for production and breeding. J. Sci. Food Agr. 2012, 92, 2826–2832. [Google Scholar] [CrossRef]
- Benbrook, C.; Zhao, X.; Yáñez, J.; Davies, N.; Andrews, P. New Evidence Confirms the Nutritional Superiority of Plant-based Organic Foods. Available online: http://www.organic-center.org (assessed on 20 December 2013).
- World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Welch, R.M. The impact of mineral nutrients in food crops on global human health. Plant Soil 2002, 247, 83–90. [Google Scholar] [CrossRef]
- Grusak, M.A.; DellaPenna, D. Improving the nutrient composition of plants to enhance human nutrition and health. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 1999, 50, 133–161. [Google Scholar] [CrossRef]
- Welch, R.M.; Graham, R.D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 2004, 55, 353–364. [Google Scholar] [CrossRef]
- Bazzano, L.A.; He, J.; Ogden, L.G.; Loria, C.M.; Vupputuri, S.; Myers, L.; Whelton, P.K. Fruit and vegetable intake and risk of cardiovascular disease in US adults: The first national health and nutrition examination survey epidemiologic follow-up study. Amer. J. Clin. Nutr. 2002, 76, 93–99. [Google Scholar]
- Slavin, J. Whole grains and human health. Nutr. Res. Rev. 2004, 17, 99–110. [Google Scholar] [CrossRef]
- Tharanathan, R.N.; Mahadevamma, S. Grain legumes—A boon to human nutrition. Trends Food Sci. Technol. 2003, 14, 507–518. [Google Scholar] [CrossRef]
- Traber, M.G.; Sies, H. Vitamin E in humans: Demand and delivery. Ann. Rev. Nutr. 1996, 16, 321–347. [Google Scholar] [CrossRef]
- Mattoo, A.K.; Shukla, V.; Fatima, T.; Handa, A.K.; Yachha, S.K. Genetic engineering to enhance crop-based phytonutrients (nutraceuticals) to alleviate diet-related diseases. Adv. Exp. Med. Biol. 2010, 698, 122–143. [Google Scholar] [CrossRef]
- Pinheiro, M.M.; Ciconelli, R.M.; Chaves, G.V.; Aquino, L.; Juzwiak, C.R.; Genaro, P.D.; Ferraz, M.B. Antioxidant Intake among Brazilian adults—The Brazilian osteoporosis study (BRAZOS): A cross-sectional study. Nutr. J. 2011, 10. [Google Scholar] [CrossRef]
- Recommended Daily Intake of Vitamins and Minerals. Available online: http://www.lenntech.com/recommended-daily-intake.htm (assessed on 27 January 2014).
- German Nutrition Society. Referenzwerte. fur die Nährstoffzufuhr, 1. Auflage, 1st ed.; Umschau/Braus: Frankfurt, Germany, 2001. [Google Scholar]
- Chun, O.K.; Kim, D.-O.; Smith, N.; Schroeder, D.; Han, J.H. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. J. Sci. Food Agr. 2005, 85, 1715–1724. [Google Scholar] [CrossRef]
- Bjelakovic, G.; Nikolova, D.; Gluud, C. Antioxidant supplements and mortality. Curr. Opin. Clin. Nutr. Met. Care 2014, 17, 40–44. [Google Scholar]
- Omenn, G.S.; Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Glass, A.; Keogh, J.P.; Meyskens, F.L.; Valanis, B.; Williams, J.H.; Barnhart, S.; Hammar, S. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 1996, 334, 1150–1155. [Google Scholar] [CrossRef]
- Jiang, S.L.; Wu, J.G.; Thang, N.B.; Feng, Y.; Yang, W.E.; Shi, C.H. Genotypic variation of mineral elements contents in rice (Oryza. sativa L.). Eur. Food Res. Technol. 2008, 228, 115–122. [Google Scholar] [CrossRef]
- Menkir, A. Genetic variation for grain mineral content in tropical-adapted maize inbred lines. Food Chem. 2008, 110, 454–464. [Google Scholar] [CrossRef]
- Özcan, M.M.; Harmankaya, M.; Gezgin, S. Mineral and heavy metal contents of the outer and inner tissues of commonly used fruits. Environ. Monit. Assess. 2012, 184, 313–320. [Google Scholar] [CrossRef]
- Davey, M.W.; van den Bergh, I.; Markham, R.; Swennen, R.; Keulemans, J. Genetic variability in Musa fruit provitamin A carotenoids, lutein and mineral micronutrient contents. Food Chem. 2009, 115, 806–813. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Ionica, M.E. Ascorbic acid, anthocyanins, organic acids and mineral content of some black and red currant cultivar. Fruits 2011, 66, 353–362. [Google Scholar] [CrossRef]
- Wasim, M.; Khalid, N.; Asif, A.; Arif, M.; Zaidi, J.H. Elemental characterization of strawberry grown in Islamabad by k0-instrumental neutron activation analysis and atomic absorption spectrophotometry and its dietary assessment. J. Radioanal. Nucl. Chem. 2012, 292, 1153–1159. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E.; Ozdemir, O.; Sengul, M. The genotypic effects on the chemical composition and antioxidant activity of sea buckthorn(Hippophae rhamnoides L.) berries grown in Turkey. Sci. Hort. 2007, 115, 27–33. [Google Scholar] [CrossRef]
- Kazaz, S.; Baydar, H.; Erbas, S. Variations in chemical compositions of Rosa damascene Mill. and Rosa canina L. fruits. Czech. J. Food Sci. 2009, 27, 178–184. [Google Scholar]
- Smolen, S.; Wlodzimierz, S.; Rozek, S.; Ledwozyw-Smolen, I.; Strzetelski, P. Preliminary evaluation of the influence of iodine and nitrogen fertilization on the effectiveness of iodine biofortification and mineral composition of carrot storage roots. J. Elem. 2011, 16, 275–285. [Google Scholar]
- Wang, N.; Hatcher, D.W.; Gawalko, E.J. Effect of variety and processing on nutrients and certain anti-nutrients in field peas (Pisum. sativum). Food Chem. 2008, 111, 132–138. [Google Scholar] [CrossRef]
- Andersson, S.C.; Rumpunen, K.; Johansson, E.; Olsson, M.E. Tocopherols and tocotrienols in Sea Buchthorn (Hoppophae. rhamnoides) berries during ripening. J. Agric. Food Chem. 2008, 56, 6701–6706. [Google Scholar] [CrossRef]
- Andersson, S.C.; Olsson, M.E.; Gustavsson, K.-E.; Johansson, E.; Rumpunen, K. Tocopherols in rose hips (Rosa spp.) during ripening. J. Sci. Food Agric. 2012, 92, 2116–2121. [Google Scholar] [CrossRef]
- Heinemann, R.J.B.; Xu, Z.M.; Godber, J.S.; Lanfer-Marquez, U.M. Tocopherols, tocotrienols and gamma-oryzanol contents in Japonica and Indica subspecies of rice (Oryza sativa L.) cultivated in Brazil. Cereal Chem. 2008, 85, 243–247. [Google Scholar] [CrossRef]
- Chun, J.; Lee, J.; Ye, L.; Exler, J.; Eitenmiller, R.R. Tocopherol and tocotrienol contents of raw and processed fruits and vegetables in the United States diet. J. Food Compos. Anal. 2006, 19, 196–204. [Google Scholar] [CrossRef]
- Englberger, L.; Lyons, G.; Foley, W.; Daniells, J.; Aalbergsberg, B.; Dolodolotawake, U.; Watoto, C.; Iramu, E.; Taki, B.; Wehi, F.; Warito, P.; Taylor, M. Carotenoid and riboflavin content of banana cultivars from Makira Solomon Island. J. Food Compos. Anal. 2010, 23, 624–632. [Google Scholar] [CrossRef]
- Aluru, M.; Xu, Y.; Guo, R.; Wang, Z.; Li, S.; White, W.; Wang, K.; Rodermel, S. Generation of transgenic maize with enhanced provitamin A content. J. Exp. Bot. 2008, 59, 3551–3562. [Google Scholar] [CrossRef]
- Paine, J.A.; Shipton, C.A.; Chaggar, S.; Howells, R.M.; Kennedy, M.J.; Vernon, G.; Wright, S.Y.; Hinchliffe, E.; Adams, J.L.; Silverstone, A.L.; Drake, R. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotech. 2005, 23, 482–487. [Google Scholar] [CrossRef]
- Tabart, J.; Kevers, C.; Evers, D.; Dommes, J. Ascorbic acid, phenolic acid, flavonoid, and carotenoid profiles of selected extracts from Ribes. nigrum. J. Agric. Food Chem. 2011, 59, 4763–4770. [Google Scholar] [CrossRef]
- Andersson, S.C.; Olsson, M.E.; Johansson, E.; Rumpunen, K. Carotenoids in sea buckthorn (Hippophae. rhamnoides L.) berries during ripening and use of pheophytin a as a maturity marker. J. Agric. Food Chem. 2009, 57, 250–258. [Google Scholar] [CrossRef]
- Andersson, S.C.; Rumpunen, K.; Johansson, E.; Olsson, M.E. Carotenoid content and composition in rose hips (Rosa spp.) during ripening, determination of suitable maturity marker and implications for health promoting food products. Food Chem. 2011, 128, 689–696. [Google Scholar] [CrossRef]
- Reif, C.; Arrigoni, E.; Schärer, H.; Nyström, L.; Hurrell, R.F. Carotenoid database of commonly eaten Swiss vegetables and their estimated contribution to carotenoid intake. J. Food Compos. Anal. 2013, 29, 64–72. [Google Scholar] [CrossRef]
- Shao, Y.F.; Xu, F.F.; Sun, X.; Bao, J.S.; Beta, T. Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering. Food Chem. 2014, 143, 90–96. [Google Scholar] [CrossRef]
- Volz, R.K.; McGhie, T.K. Genetic variability in apple fruit polyphenol composition in Malus × domestica and Malus sieversii germplasm grown in New Zealand. J. Agric. Food Chem. 2011, 59, 11509–11521. [Google Scholar] [CrossRef]
- Patthamakanokporn, O.; Puwastien, P.; Nitithamyong, A.; Sirichakwal, P.P. Changes of antioxidant activity and total phenolics compounds during storage of selected fruits. J. Food Compos. Anal. 2008, 21, 241–248. [Google Scholar] [CrossRef]
- Vagiri, M.; Ekholm, A.; Oberg, E.; Johansson, E.; Andersson, S.C.; Rumpunen, K. Phenols and ascorbic acid in black currants (Ribes nigrum L.): Variation due to genotype, location, and year. J. Agr. Food Chem. 2013, 61, 9298–9306. [Google Scholar] [CrossRef]
- Ciolek, A.; Makarska, E.; Wesolowski, M.; Cierpiala, R. Content of selected nutrients in wheat, barley and oat grain from organic and conventional farming. J. Elementol. 2012, 17, 181–189. [Google Scholar]
- Ordonez-Santos, L.E.; Vazquez-Oderiz, M.L.; Romero-Rodriguez, M.A. Micronutrient contents in organic and conventional tomatoes (Solanum. lycopersicum L.). Int. J. Food Sci. Technol. 2011, 46, 1561–1568. [Google Scholar] [CrossRef]
- Citak, S.; Sonmez, S. Mineral contents of organically and conventionally grown spinach (Spinacea oleracea L.) during two successive seasons. J. Agr. Food Chem. 2009, 57, 7892–7898. [Google Scholar] [CrossRef]
- Gunes, A.; Inal, A.; Adak, M.S.; Alpaslan, M.; Bagci, E.G.; Erol, T.; Pilbeam, D.J. Mineral nutrition of wheat, chickpea and lentil as affected by mixed cropping and soil moisture. Nutr. Cycl. Agroecosyst. 2007, 78, 83–96. [Google Scholar] [CrossRef]
- Cardoso, P.C.; Tomazini, A.P.B.; Stringheta, P.C.; Ribeiro, S.M.R.; Pinheiro-Sant’Ana, H.M. Vitamin C and carotenoids in organic and conventional fruits grown in Brazil. Food Chem. 2011, 126, 411–416. [Google Scholar] [CrossRef]
- Konopka, I.; Tanska, M.; Faron, A.; Stepien, A.; Wojtkowiak, K. Comparison of the phenolic compounds, carotenoids and tocochromanols content in wheat grain under organic and mineral fertilization regimes. Molecules 2012, 17, 12341–12356. [Google Scholar] [CrossRef]
- Maiani, G.; Caston, M.J.P.; Catasta, G.; Toti, E.; Cambrodon, I.G.; Bysted, A.; Granado-Lorencio, F.; Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M. Carotenoids: Actual knowledge on food sources, intake, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 2009, 53, 194–218. [Google Scholar] [CrossRef]
- O’Neill, M.E.; Carroll, Y.; Corridan, B.; Olmedilla, B.; Granado, F.; Blanco, I.; van den Berg, H.; Hininger, I.; Rousell, A,M.; Chopra, M. A European carotenoid database to assess carotenoid intakes and its use in a five-country comparative study. Brit. J. Nutr. 2011, 85, 499–507. [Google Scholar]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea Buckthorn (Hippophae. rhamnoides L.) during maturation. J. Agr. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- Gao, X.; Björk, L.; Trajkovski, V.; Uggla, M. Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. J. Sci. Food Agr. 2000, 80, 2021–2027. [Google Scholar] [CrossRef]
- Johansson, E.; Prieto-Linde, M.-L.; Gissén, C. Influences of weather, cultivar and fertilizer rate on grain protein accumulation in field-grown wheat, and relations to grain water content and falling number. J. Sci. Food Agr. 2008, 88, 2011–2018. [Google Scholar] [CrossRef]
- Malik, A.H.; Prieto-Linde, M.L.; Kuktaite, R.; Andersson, A.; Johansson, E. Individual and interactive effects of cultivar maturation time, nitrogen regime and temperature level on accumulation of wheat grain proteins. J. Sci. Food Agr. 2011, 91, 2192–2200. [Google Scholar]
- Francisco, M.; Cartea, M.E.; Soengas, P.; Velasco, P. Effect of genotype and environmental conditions on health-promoting compounds in Vrassica rapa. J. Agr. Food Chem. 2011, 59, 2421–2431. [Google Scholar] [CrossRef]
- Labuschagne, M.T.; Mkhatywa, N.; Wentzel, B.; Johansson, E.; van Biljon, A. Tocochromanol concentration, protein composition and baking quality of white flour of South African wheat cultivars. J. Food Compos. Anal. 2014, 33, 127–131. [Google Scholar] [CrossRef]
- Mpofu, A.; Sapirstein, H.D.; Beta, T. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. J. Agr. Food Chem. 2006, 1265–1270. [Google Scholar] [CrossRef]
- Anttonen, M.J.; Karjalainen, R.O. Environmental and genetic variation of phenolic compounds in red raspberry. J. Food Compos. Anal. 2005, 18, 759–769. [Google Scholar] [CrossRef]
- Receptfavoriter. Available online: http://receptfavoriter.se/matartiklar/matt-och-vikt-pa-olika-livsmedel.html (assessed on 11 January 2014).
- Lester, G.E.; Saftner, R.A. Organically vs. conventionally grown produce: common production inputs, nutritional quality, and nitrogen delivery between the two systems. J. Agr. Food Chem. 2011, 59, 10401–10406. [Google Scholar] [CrossRef]
- Harker, F.R. Organic food claims cannot be substantiated through testing of samples intercepted in the marketplace: A horticulturalist’s opinion. Food Qual. Pref. 2004, 15, 91–95. [Google Scholar] [CrossRef]
- Huber, M.; Rembialkowska, E.; Srednicka, D.; Bugel, S.; van de Vijver, L.P.L. Organic food and impact on human health: Assessing the status quo and prospects of research. J. Life Sci. 2011, 58, 103–109. [Google Scholar]
- Dangour, D.A.; Dodhia, S.K.; Hayter, A.; Allen, E.; Lock, K.; Uauy, R. Nutritional quality of organic foods: A systematic review. Amer. J. Clin. Nutr. 2009, 90, 680–685. [Google Scholar] [CrossRef]
- Woese, K.; Lange, D.; Boess, C.; Bogl, K.W. A comparison of organically and conventionally grown foods—Results of a review of the relevant literature. J. Sci. Food Agric. 1997, 74, 281–293. [Google Scholar] [CrossRef]
- Smith-Spangler, C.; Brandeau, M.L.; Hunter, G.; Clay Bavinger, J.; Pearson, M.; Echbach, P.J.; Sundaram, V.; Liu, H.; Schirmer, P.; Stave, C.; Olkin, I.; Bravata, D.M. Are organic foods safer or healthier than conventional alternatives? A systematic review. Annal. Int. Med. 2012, 157, 348–366. [Google Scholar] [CrossRef]
- Watson, C.A.; Walker, R.L.; Stockdale, E.A. Research in organic production systems—Past, present and future. J. Agric. Sci. 2008, 146, 1–19. [Google Scholar]
- Murphy, K.M.; Campbell, K.G.; Lyon, S.R.; Jones, S.S. Evidence of varietal adaptation to organic farming systems. Field Crop. Res. 2007, 102, 172–177. [Google Scholar] [CrossRef]
- Van Bueren, E.T.L.; Struik, P.C.; Tiemens-Hulscher, M.; Jacobsen, E. Concepts of intrinsic value and integrity of plants in organic plant breeding and propagation. Crop. Sci. 2003, 43, 1922–1929. [Google Scholar] [CrossRef]
- Vrcek, I.V.; Cepo, D.V.; Rasic, D.; Peraica, M.; Zuntar, I.; Bojic, M.; Mendas, G.; Medic-Saric, M. A comparison of the nutritional value and food safety of organically and conventionally produced wheat flours. Food Chem. 2014, 143, 522–529. [Google Scholar] [CrossRef]
- Kristl, J.; Krajnc, A.U.; Kramberger, B.; Mlakar, S.G. Strawberries from integrated and organic production: Mineral contents and antioxidant activity. Acta Chim. Slov. 2013, 60, 19–25. [Google Scholar]
- Martinez-Ballesta, M.C.; Dominguez-Perles, R.; Moreno, D.A.; Muries, B.; Alcaraz-Lopez, C.; Bastias, E.; Garcia-Viguera, C.; Carvajal, M. Minerals in plant food: Effect of agricultural practices and role in human health: A review. Agron. Sustain. Dev. 2010, 30, 295–309. [Google Scholar] [CrossRef]
- He, Z.Q.; Shankle, M.; Zhang, H.; Way, T.R.; Tewolde, H.; Uchimiya, M. Mineral composition of cottonseed is affected by fertilization management practices. Agron. J. 2013, 105, 341–350. [Google Scholar] [CrossRef]
- Akbaba, U.; Sahin, Y.; Turkez, H. Comparison of element contents in haricot beans grown under organic and conventional farming regimes for human nutrition and health. Acta Scientiarum Polonorum-Hortorum Cultus 2012, 11, 117–125. [Google Scholar]
- Lo Scalzo, R.; Picchi, V.; Migliori, C.A.; Campanelli, G. Variations in the phytochemical contents and antioxidant capacity of organically and conventionally grown Italian cauliflower (Brassica oleracea L. subsp botrytis): Results from a three-year field study. J. Agr. Food Chem. 2013, 61, 10335–10344. [Google Scholar] [CrossRef]
- Borguini, R.G.; Bastos, D.H.M.; Moita-Neto, J.M.; Capasso, F.S.; Torres, E.A.F.D. Antioxidant potential of tomatoes cultivated in organic and conventional systems. Braz. Arch. Biol. Technol. 2013, 56, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Hallmann, E.; Rembialkowska, E. Characterisation of antioxidant compounds in sweet bell pepper (Capsicum annuum L.) under organic and conventional growing systems. J. Sci. Food Agric. 2012, 92, 2409–2415. [Google Scholar] [CrossRef]
- Chebrolu, K.K.; Jayaprakasha, G.K.; Jifon, J.; Patil, B.S. Production system and storage temperature influence grapefruit vitamin C, limonoids, and carotenoids. J. Agric. Food Chem. 2012, 60, 7096–7103. [Google Scholar] [CrossRef]
- Bunea, C.I.; Pop, N.; Babes, A.C.; Matea, C.; Dulf, F.V.; Bunea, A. Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera) cultivated in organic and conventional systems. Chem. Central J. 2012, 6, 66. [Google Scholar] [CrossRef]
- Yuri, J.A.; Maldonado, F.J.; Razmilic, I.; Neira, A.; Quilodran, A.; Palomo, I. Concentrations of total phenols and antioxidant activity in apple do not differ between conventional and organic orchard management. J. Food Agr. Environ. 2012, 10, 207–216. [Google Scholar]
- Picchi, V.; Migliori, C.; lo Scalzo, R.; Campanelli, G.; Ferrari, V.; di Cesare, L.F. Phytochemical content in organic and conventionally grown Italian cauliflower. Food Chem. 2012, 130, 501–509. [Google Scholar] [CrossRef]
- Soltoft, M.; Bysted, A.; Madsen, K.H.; Mark, A.B.; Bugel, S.G.; Nielsen, J.; Knuthsen, P. Effects of organic and conventional growth systems on the content of carotenoids in carrot roots, and on intake and plasma status of carotenoids in humans. J. Sci. Food Agr. 2011, 91, 767–775. [Google Scholar] [CrossRef]
- Stracke, B.A.; Ruefer, C.E.; Watzl, B. Polyphenol and carotenoid content of organically and conventionally produced apples (Malus domestica Bork., Elstar variety) and carrots (Daucus carota L., Narbonne and Nerac varieties). Ernahrungs Umschau 2010, 57, 526–531. [Google Scholar]
- Stracke, B.A.; Eitel, J.; Watzl, B.; Mader, P.; Rufer, C.E. Influence of the production method on phytochemical concentrations in whole wheat (Triticum aestivum L.): A comparative study. J. Agr. Food Chem. 2009, 57, 10116–10121. [Google Scholar] [CrossRef]
- Roose, M.; Kahl, J.; Ploeger, A. Influence of the farming system on the xanthophyll content of soft and hard wheat. J. Agr. Food Chem. 2009, 57, 182–188. [Google Scholar] [CrossRef]
- Caris-Veyrat, C.; Amiot, M.J.; Tyssandier, V.; Grasselly, D.; Buret, M.; Mikolajczak, M.; Guilland, J.C.; Bouteloup-Demange, C.; Borel, P. Influence of organic vs. conventional agricultural practice on the antioxidant microconstituent content of tomatoes and derived purees: Consequences on antioxidant plasma status in humans. J. Agr. Food Chem. 2004, 52, 6503–6509. [Google Scholar] [CrossRef]
- Ranalli, F.; Ranalli, A.; Contento, S.; Casanovas, M.; Antonucci, M.; di Simone, G. Bioactives and nutraceutical phytochemicals naturally occurring in virgin olive oil: The case study of the Nocellara del Belice Italian olive cultivar. Natural Prod. Res. 2013, 27, 1686–1690. [Google Scholar] [CrossRef]
- Tsochatzis, E.D.; Bladenopoulos, K.; Papageorgiou, M. Determination of tocopherol and tocotrienol content of Greek barley varieties under conventional and organic cultivation techniques using validated reverse phase high-performance liquid chromatography method. J. Sci. Food Agr. 2012, 92, 1732–1739. [Google Scholar] [CrossRef]
- Cho, J.Y.; Lee, H.J.; Kim, G.A.; Kim, G.D.; Lee, Y.S.; Shin, S.C.; Park, K.H.; Moon, J.H. Quantitative analyses of individual gamma-Oryzanol (Steryl ferulates) in conventional and organic brown rice (Oryza sativa L.). J. Cereal Sci. 2012, 55, 337–343. [Google Scholar] [CrossRef]
- Dolgun, O.; Ozkan, G.; Erbay, B. Comparison of olive oils derived from certified organic and conventional agricultural methods. Asian J. Chem. 2010, 22, 2339–2348. [Google Scholar]
- Perretti, G.; Finotti, E.; Adamuccio, S.; Della Sera, R.; Montanari, L. Composition of organic and conventionally produced sunflower seed oil. J. Amer. Oil Chem. Soc. 2004, 81, 1119–1123. [Google Scholar] [CrossRef]
- Lombardi-Boccia, G.; Lucarini, M.; Lanzi, S.; Aguzzi, A.; Cappelloni, M. Nutrients and antioxidant molecules in yellow plums (Prunus domestica L.) from conventional and organic productions: A comparative study. J. Agr. Food Chem. 2004, 52, 90–94. [Google Scholar] [CrossRef]
- Carbonaro, M.; Mattera, M.; Nicoli, S.; Bergamo, P.; Cappelloni, M. Modulation of antioxidant compounds in organic vs. conventional fruits (peach, Prunus persica L., and pear, Pyrus communis L.). J. Agr. Food Chem. 2002, 50, 5458–5462. [Google Scholar] [CrossRef]
- Jensen, M.M.; Jorgensen, H.C. Can agricultural cultivation methods influence the healthfulness of crops for foods? J. Agr. Food Chem. 2012, 60, 6383–6390. [Google Scholar] [CrossRef] [Green Version]
- Brazinskiene, V.; Asakaviciute, R.; Miezeliene, A.; Alencikiene, G.; Ivanauskas, L.; Jakstas, V.; Viskelis, P.; Razukas, A. Effect of farming systems on yield, quality parameters and sensory properties of conventionally and organically grown potato (Solanum tuberosum L.) tubers. Food Chem. 2014, 145, 903–909. [Google Scholar] [CrossRef]
- Gyore-Kis, G.; Deak, K.; Lugasi, A.; Csur-Varga, A.; Helyes, L. Comparison of conventional and organic tomato yield from a three-year-term experiment. Acta Alimen. 2013, 41, 486–493. [Google Scholar]
- Zuchowski, J.; Jonczyk, K.; Pecio, L.; Oleszek, W. Phenolic acid concentrations in organically and conventionally cultivated spring and winter wheat. J. Sci. Food Agr. 2011, 91, 1089–1095. [Google Scholar] [CrossRef]
- Zuchowski, J.; Kapusta, I.; Szajwaj, B.; Jonczyk, K.; Oleszek, W. Phenolic acid content of organic and conventionally grown winter wheat. Cereal Res. Commun. 2009, 37, 189–197. [Google Scholar] [CrossRef]
- Asami, D.K.; Hong, Y.J.; Barrett, D.M.; Mitchell, A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agr. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef]
- Dimberg, L.H.; Gissen, C.; Nilsson, J. Phenolic compounds in oat grains (Avena sativa L.) grown in conventional and organic systems. Ambio 2005, 34, 331–337. [Google Scholar]
- Crecente-Campo, J; Nunes-Damaceno, M.; Romero-Rodriguez, M.A.; Vazquez-Oderiz, M.L. Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic vs. conventional strawberries (Fragaria × ananassa Duch, cv Selva). J. Food Comp. Anal. 2012, 28, 23–30. [Google Scholar] [CrossRef]
- You, Q.; Wang, B.W.; Chen, F.; Huang, Z.L; Wang, X.; Luo, P.G. Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem. 2011, 125, 201–208. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Veberic, R. The influence of organic/integrated production on the content of phenolic compounds in apple leaves and fruits in four different varieties over a 2-year period. J. Sci. Food Agr. 2010, 90, 2366–2378. [Google Scholar] [CrossRef]
- Zhao, X.; Nichols, J.R.; Williams, K.A.; Wang, W.Q.; Carey, E.E. Comparison of phenolic acids in organically and conventionally grown pac choi (Brassica rapa L. chinensis). J. Sci. Food Agr. 2009, 89, 940–946. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chen, C.T.; Sciarappa, W.; Wang, C.Y.; Camp, M.J. Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. J. Agr. Food Chem. 2008, 56, 5788–5794. [Google Scholar] [CrossRef]
- Amodio, M.L.; Colelli, G.; Hasey, J.K.; Kader, A.A. A comparative study of composition and postharvest performance of organically and conventionally grown kiwifruits. J. Sci. Food Agr. 2007, 87, 1228–1236. [Google Scholar] [CrossRef]
- Chassy, A.W.; Bui, L.; Renaud, E.N.C.; van Horn, M.; Mitchell, A.E. Three-year comparison of the content of antioxidant microconstituents and several quality characteristics in organic and conventionally managed tomatoes and bell peppers. J. Agr. Food Chem. 2006, 54, 8244–8252. [Google Scholar] [CrossRef]
- Woydylo, A.; Oszmianski, J.; Milczarek, M.; Wietrzyk, J. Phenolic profile, antioxidant and antiproliferative activity of black and red currants (Ribes spp.) from organic and conventional cultivation. Int. J. Food Sci. Technol. 2013, 48, 715–726. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Brodzka, A.; Rembialkowska, E. A comparison of the polyphenol and vitamin C content in jams of several varieties of black currants Ribes. nigrum L. from the organic and conventional cultivations. J. Res. Appl. Agr. Eng. 2009, 54, 123–129. [Google Scholar]
- Arbos, K.A.; de Freitas, R.J.S.; Stertz, S.C.; Dornas, M.F. Antioxidant activity and phenolic content in organic and conventional vegetables. Cienc. Tecnol. Aliment. 2010, 30, 501–506. [Google Scholar] [CrossRef]
- Young, J.E.; Zhao, X.; Carey, E.E.; Welti, R.; Yang, S.S.; Wang, W.Q. Phytochemical phenolics in organically grown vegetables. Mol. Nutr. Food Res. 2005, 49, 1136–1142. [Google Scholar] [CrossRef]
- Reganold, J.P.; Andrews, P.K.; Reeve, J.R.; Carpenter-Boggs, L.; Schadt, C.W.; Alldredge, J.R.; Ross, C.F.; Davies, N.M.; Zhou, J. Fruit and soil quality of organic and conventional strawberry agroecosystems. PLoS One 2010, 5. [Google Scholar] [CrossRef]
- Brandt, K.; Leifert, C.; Sanderson, R.; Seal, C.J. Agroecosystem management and nutritional quality of plant foods: The case of organic fruits and vegetables. Crit. Rev. Plant. Sci. 2011, 30, 177–197. [Google Scholar] [CrossRef]
- Nationale berichterstattung Pflanzenschutzmittel rückstände in Lebensmitteln. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. Available online: http://www.bvl.bund.de (accessed on 23 January 2014).
- Howard, V.; Newby, J. Environmental influences in cancer aetiology. J. Nutr. Env. Med. 2006, 1–59. [Google Scholar]
- Landau-Ossondo, M.; Rabia, N.; Jos-Pelage, J.; Marquet, L.M.; Isidore, Y.; Saint-Aimé, C.; Martin, M.; Irigaray, P.; Belpomme, D. Why pesticides could be a common cause of prostate and breast cancers in the French Carribbean Island, Martinique. An overview on key mechanisms of pesticide—Induced cancer. Biomed. Pharmacother 2009, 63, 383–395. [Google Scholar]
- Ryan, S.D.; Dolatabadi, N.; Chan, S.F.; Zhang, X.F.; Akhtar, M.W.; Parker, J.; Soldner, F.; Sunico, C.R.; Nagar, S.; Talantova, M.; Lee, B.; Lopez, K.; Nutter, A.; Shan, B.; Molokanova, E.; Zhang, Y.Y.; Han, X.M.; Nakamura, T.; Masliah, E.; Yates, J.R.; Nakaniski, N.; Andreyev, A.Y.; Okamoto, S.; Jaenisch, R.; Ambasudhan, R.; Lipton, S.A. Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1 alpha transcription. Cell 2013, 155, 1652–1653. [Google Scholar] [CrossRef]
- McKinlay, R.; Plant, J.A.; Bell, J.N.B.; Voulvoulis, N. Endocrine disrupting pesticides: Implications for risk assessment. Environ. Int. 2008, 34, 168–183. [Google Scholar]
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bertegi, A.; Thomas, O.; Roig, B. Effect of endocrine disruptor pesticides: A review. Int. J. Environ. Res. Public Health. 2011, 8, 2265–2303. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Toepel, K.; Irish, R.; Fenske, R.A.; Barr, D.B.; Bravo, R. Organic diets significantly lower children’s dietary exposure to organophosphorous pesticides. Environ. Health Perspect. 2006, 114, 260–263. [Google Scholar] [CrossRef]
- Lu, C.; Knutson, D.E.; Fisker-Andersen, J.; Fenske, R.A. Biological monitoring survey of organophosphorus pesticide exposure among preschool children in the Seattle Metropolitan area. Environ. Health Perspect. 2001, 109, 299–303. [Google Scholar]
- Magkos, F.; Arvaniti, F. Organic food: Buing more safety or just peace in mind? A critical review of the literature. Crit. Rev. Food Sci. Nutr. 2006, 46, 23–56. [Google Scholar] [CrossRef]
- Zaccone, C.; di Caterina, R.; Rotunno, T.; Quinto, M. Soil-farming system—Food—Health: Effect of conventional and organic fertilizers on heavy metal (Cd, Cr, Cu, Ni, Pb, Zn) content in semolina samples. Soil Till. Res. 2010, 107, 97–105. [Google Scholar] [CrossRef]
- Mansour, S.A.; Belal, M.H.; Abou-Arab, A.A.K.; Gad, M.F. Monitoring of pesticides and heavy metals in cucumber fruits produced from different farming systems. Chemosphere 2009, 75, 601–609. [Google Scholar] [CrossRef]
- Mansour, S.A.; Belal, M.H.; Abou-Arab, A.A.K.; Ashour, H.M.; Gad, M.F. Evaluation of some pollutant levels in conventionally and organically farmed potato tubers and their risks to human health. Food Chem. Toxicol. 2009, 47, 615–624. [Google Scholar] [CrossRef]
- Rossi, F.; Bertuzzi, T.; Comizzoli, S.; Turconi, G.; Roggi, C.; Pagani, M.; Cravedi, P.; Pietri, A. Preliminary survey on composition and quality of conventional and organic wheat. Ital. J. Food Sci. 2006, 18, 355–366. [Google Scholar]
- Muchova, Z.; Jaska, P. The influence of growing conditions on the cadmium and lead accumulation in food wheat. Rostl. Vyroba 1996, 42, 59–62. [Google Scholar]
- Domagala-Swiatkiewicz, I.; Gastol, M. Comparative study on mineral content of organic and conventional carrot, celery and red beet juices. Acta Scientiarum Polonorum—Hortorum Cultus 2012, 11, 173–183. [Google Scholar]
- Vrcek, V.; Vrcek, I.V. Metals in organic and conventional wheat flours determined by an optimized and validated ICP-MS method. Int. J. Food Sci. Technol. 2012, 47, 1777–1783. [Google Scholar] [CrossRef]
- Rossi, F.; Godani, F.; Bertuzzi, T.; Trevisan, M.; Ferrari, F.; Gatti, S. Health-promoting substances and heavy metal content in tomatoes grown with different farming techniques. Eur. J. Nutr. 2008, 47, 266–272. [Google Scholar] [CrossRef]
- Dos Santos, J.S.; dos Santos, M.L.P.; Contil, M.M. Comparative study of metal contents in Brazilian coffees cultivated by conventional and organic agriculture applying principal component analysis. J. Braz. Chem. Soc. 2010, 21, 1468–1476. [Google Scholar] [CrossRef]
- Hussain, A.; Larsson, H.; Kuktaite, R.; Johansson, E. Concentration of some heavy metals in organically grown primitive, old and modern wheat genotypes: Implications for human health. J. Environ. Sci. Health Part. B 2012, 47, 751–758. [Google Scholar] [CrossRef]
- Velimirov, A.; Huber, M.; Lauridsen, C.; Rembialkowska, E.; Seidel, K.; Bügel, S. Feeding trials in organic food quality and health research. J. Sci. Food Agr. 2010, 90, 175–182. [Google Scholar] [CrossRef]
- Paci, G.; Lisi, E.; Bagliacca, M.; Maritan, A. Reproductive performance in a local rabbit population reared under organiconventional system (Tuscany). Ann. Facolta Med. Veterinria Pisa. 2003, 56. Available online: http://eprints.adm.unipi.it/142/1/115.pdf (accessed on 3 April 2014).
- Huber, M.; de Vijver, L.P.L.V.; Parmentier, H.; Savelkoul, H.; Coulier, L.; Wopereis, S.; Verheij, E.; van der Greef, J.; Nierop, D.; Hoogenboom, R.A.P. Effects of organically andconventionally produced feed on biomarkers of health in a chicken model. Brit. J. Nutr. 2010, 103, 663–676. [Google Scholar] [CrossRef]
- Finamore, A.; Britti, M.S.; Roselli, M.; Bellovino, D.; Gaetani, S.; Mengheri, E. Novel approach for food safety evaluation.Results of a pilot experiment to evaluate organic and conventional foods. J. Agr. Food Chem. 2004, 52, 7425–7431. [Google Scholar] [CrossRef]
- Lauridsen, C.; Young, C.; Halekoh, U.; Bügel, S.H.; Brandt, K.; Christensen, L.P.; Jorgensen, H. Rats show differences in some biomarkers of health when eating diets based on ingredients produced with three different cultivation strategies. J. Sci. Food Agr. 2008, 88, 720–732. [Google Scholar] [CrossRef]
- Baranska, A.; Skwarlo-Sonta, K.; Rembialkowska, E.; Brandt, K.; Lueck, L.; Leifert, C. The Effect of Short Term Feeding with Organic and Conventional Diets on Selected Immune Parameters in Rat. In Improving Sustainability in Organic and Low Input Food Production Systems; Niggli, A., Leifert, C., Alfoldi, C., Luck, L., Willer, H., Eds.; University of Hohenheim: Stuttgart, Germany, 2007; pp. 108–111. [Google Scholar]
- Roselli, M.; Finamore, A.; Brasili, E.; Capuani, G.; Kristensen, H.L.; Micheloni, C.; Mengheri, E. Impact of organic and conventional carrots on intestinal and peripheral immunity. J. Sci. Food Agric. 2012, 92, 2913–2922. [Google Scholar] [CrossRef]
- Chhabra, R.; Kolli, S.; Bauer, J.H. Organically grown food provides health benefits to Drosophila melanogaster. PLoS One 2013, 8. [Google Scholar] [CrossRef]
- Plochberger, K. Feeding experiments—A criterion for quality estimation of biologically and conventionally produced foods. Agr. Ecosyst. Environ. 1989, 27, 1–4. [Google Scholar] [CrossRef]
- Magkos, F.; Arvaniti, F.; Zampelas, A. Organic food: Nutritious food or food for thought? A review of the evidence. Int. J. Food Sci. Nutr. 2003, 54, 357–371. [Google Scholar] [CrossRef]
- Rembialkowska, E.; Kazimierczak, R.; Srednicka, D.; Bienko, K.; Bielska, M. Different aspects of organic and conventional food consumers’ lifestyle. New Med. 2008, 12, 16–19. [Google Scholar]
- Kesse-Guyot, E.; Péneau, S.; Méjean, C.; de Edelenyi, F.S.; Galan, P.; Hercberg, S.; Lairon, D. Profiles of organic food consumers in a large sample of French adults: Results from the nutrinet-sante cohort study. PLoS One 2013, 8. [Google Scholar] [CrossRef]
- Akcay, Y.D.; Yildirim, H.K.; Guvenac, U.; Sozmen, E.Y. The effects of consumption of organic and nonorganic red wine on low-density lipoprotein oxidation and antioxidant capacity in humans. Nutr. Res. 2004, 24, 541–554. [Google Scholar] [CrossRef]
- Briviba, K.; Stracke, B.A.; Rufer, C.E.; Watzl, B.; Weibel, F.P.; Bub, A. Effect of consumption of organically and conventionally produced apples on antioxidant activity and DNA damage in humans. J. Agr. Food Chem. 2007, 55, 7716–7721. [Google Scholar] [CrossRef]
- Stracke, B.A.; Ruefer, C.E.; Bub, A.; Briviba, K.; Seifert, S.; Kunz, C.; Watzl, B. Bioavailability and nutritional effects of carotenoids from organically and conventionally produced carrots in health men. Brit. J. Nutr. 2009, 101, 1664–1672. [Google Scholar] [CrossRef]
- Stracke, B.A.; Ruefer, C.E.; Weibel, F.P.; Bub, A.; Watzl, B. Three-year comparison of the polyphenol contents and antioxidant capacities in organically and conventionally produced apples (Malus domestica Bork. Cultivar “Golden Delicious”. J. Agr. Chem. 2009, 57, 4598–4605. [Google Scholar] [CrossRef]
- Grinder-Pedersen, L.; Rasmussen, S.E.; Bugel, S.; Jorgensen, L.V.; Dragsted, L.O.; Gundersen, V.; Sandstrom, B. Effect of diets based on foods from conventional vs. organic production on intake and excretion of flavonoids and markers of antioxidative defense in humans. J. Agr. Food Chem. 2003, 51, 5671–5676. [Google Scholar] [CrossRef]
- Kummeling, I.; Thijs, C.; Huber, M.; van de Vijver, L.P.L.; Snijders, B.E.P.; Penders, J.; Stelma, F.; van Ree, R.; van den Brandt, P.A.; Dagnelie, P.C. Consumption of organic foods and risk of atopic disease during the first 2 years of life in the Netherlands. Brit. J. Nutr. 2008, 99, 598–605. [Google Scholar]
- Alfven, T.; Braun-Fahrlander, C.; Brunekreef, B.; von Mutius, E.; Riedler, J.; Scheynius, A.; van Hage, M.; Wickman, M.; Benz, M.R.; Budde, J. Allergic diseases and atopic sensitization in children related to farming and anthroposophic lifestyle—The PARSIFAL study. Allergy 2006, 61, 414–421. [Google Scholar] [CrossRef]
- Organic, More Healthy? A Search for Biomarkers of Potential Health Effects Induced by Organic Products, Investigated in a Chicken Model, 2nd ed.; Huber, M. (Ed.) Louis Bolk Instituut: Driebergen, The Netherlands, 2007.
- Paynter, N.P.; Everett, B.M.; Cook, N.R. Cardiovascular disease risk prediction in women: Is there a role for novel biomarkers? Clin. Chem. 2014, 60, 88–97. [Google Scholar] [CrossRef]
- Weigelt, B.; Bissell, M.J. The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. Adv. Drug Delivery Rev. 2014. [Google Scholar] [CrossRef]
- Olsson, M.E.; Gustavsson, K.E.; Andersson, S.; Nilsson, A.; Duan, R.D. Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J. Agr. Food Chem. 2004, 52, 7264–7271. [Google Scholar] [CrossRef]
- Stoner, G.D.; Wang, L.S.; Casto, B.C. Laboratory and clinical studies on cancer chemoention by antioxidants in berries. Carcinogenesis 2008, 29, 1655–1674. [Google Scholar] [CrossRef]
- Olsson, M.E.; Andersson, C.S.; Oredsson, S.; Berglund, R.H.; Gustavsson, K.E. Antioxidant levels and inhibition of cancer cell prolifieration in vitro by extracts from organically and conventionally cultivated strawberries. J. Agr. Food Chem. 2006, 54, 1248–1255. [Google Scholar] [CrossRef]
- Wang, S.A.; Meckling, K.A.; Marcone, M.F.; Kakuda, Y.; Tsao, R. Can phytochemical antioxidant rich foods act as anti-cancer agents? Food Res. Int. 2011, 44, 2545–2554. [Google Scholar] [CrossRef]
- Brown, E.M.; Gill, C.I.R.; McDougall, G.J.; Stewart, D. Mechanisms underlying the anti-proliferative effects of berry components in in vitro models of colon cancer. Curr. Pharm. Biotechnol. 2012, 13, 200–209. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Johansson, E.; Hussain, A.; Kuktaite, R.; Andersson, S.C.; Olsson, M.E. Contribution of Organically Grown Crops to Human Health. Int. J. Environ. Res. Public Health 2014, 11, 3870-3893. https://doi.org/10.3390/ijerph110403870
Johansson E, Hussain A, Kuktaite R, Andersson SC, Olsson ME. Contribution of Organically Grown Crops to Human Health. International Journal of Environmental Research and Public Health. 2014; 11(4):3870-3893. https://doi.org/10.3390/ijerph110403870
Chicago/Turabian StyleJohansson, Eva, Abrar Hussain, Ramune Kuktaite, Staffan C. Andersson, and Marie E. Olsson. 2014. "Contribution of Organically Grown Crops to Human Health" International Journal of Environmental Research and Public Health 11, no. 4: 3870-3893. https://doi.org/10.3390/ijerph110403870
APA StyleJohansson, E., Hussain, A., Kuktaite, R., Andersson, S. C., & Olsson, M. E. (2014). Contribution of Organically Grown Crops to Human Health. International Journal of Environmental Research and Public Health, 11(4), 3870-3893. https://doi.org/10.3390/ijerph110403870