Marine Carotenoids and Cardiovascular Risk Markers
Abstract
:1. Introduction
2. Oxidative Stress and Antioxidants
3. Astaxanthin
3.1. Chemical Structure and Mechanism of Action
3.2. Astaxanthin and Cardiovascular Disease: Experimental Studies
4. Fucoxanthin
4.1. Chemical Structure and Mechanism of Action
4.2. Fucoxantin and Cardiovascular Disease: Experimental Studies (Human and Animal)
4.3. Fucoxantin and Metabolic Syndrome: Experimental Studies (Human and Animal)
5. Conclusion
References
- World Health Organization, Diet, Nutrition, and the Prevention of Chronic Disease; WHO Technical Report Series 916; WHO: Geneva, Switzerland, 2003.
- Neaton, J; Wentworth, D. Serum cholesterol, blood pressure, cigarette smoking, and death from coronary heart disease. Overall findings and difference by age for 316,099 white man. Multiple Risk Factor Intervention Trial Research Group. Arch. Intern. Med 1992, 152, 56–64. [Google Scholar] [Green Version]
- Riccioni, G. Carotenoids and cardiovascular disease. Curr. Atheroscler. Rep 2009, 11, 434–439. [Google Scholar] [Green Version]
- Riccioni, G; D’Orazio, N; Speranza, L; Di Ilio, E; Glade, M; Bucciarelli, V; Scotti, L; Martini, F; Pennelli, A; Bucciarelli, T. Carotenoids and asymptomatic carotid atherosclerosis. J. Biol. Regul. Homeost. Agents 2010, 24, 447–452. [Google Scholar] [Green Version]
- Gori, T; Nzel, TM. Oxidative stress and endothelial dysfunction: Therapeutic implications. Ann. Med 2011, 43, 259–272. [Google Scholar] [Green Version]
- Lee, S; Park, Y; Zuidema, MY; Hannink, M; Zhang, C. Effects of interventions on oxidative stress and inflammation of cardiovascular diseases. World J. Cardiol 2011, 3, 18–24. [Google Scholar] [Green Version]
- Gao, L; Mann, GE. Vascular NAD(P)H oxidase activation in diabetes: A double-edged sword in redox signalling. Cardiovasc. Res 2009, 82, 9–20. [Google Scholar] [Green Version]
- Rasmussen, HH; Hamilton, EJ; Liu, CC; Figtree, GA. Reversible oxidative modification: Implications for cardiovascular physiology and pathophysiology. Trends Cardiovasc. Med 2010, 20, 85–90. [Google Scholar] [Green Version]
- Yeh, CT; Ching, LC; Yen, GC. Inducing gene expression of cardiac antioxidant enzymes by dietary phenolic acids in rats. J. Nutr. Biochem 2009, 20, 163–171. [Google Scholar] [Green Version]
- Khansari, N; Shakiba, Y; Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov 2009, 3, 73–80. [Google Scholar] [Green Version]
- Dietary Guidelines for Americans; Home and Garden Bulletin no 232; US Department of Agriculture, US Department of Health and Human Services: Washington, DC, USA, 2000, 5th ed Available online: http://www.nal.usda.gov/fnic/dga accessed on 13 March 2011.
- Sies, H; Stahl, W. Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am. J. Clin. Nutr 1995, 62, 1315–1321. [Google Scholar] [Green Version]
- Lichtenstein, AH. Nutrient supplements and cardiovascular disease: A heartbreaking story. J. Lipid Res 2009, 50, 429–433. [Google Scholar] [Green Version]
- Gaziano, JM; Manson, JE; Branch, LG; Colditz, GA; Willett, WC; Buring, JE. A prospective study of consumption of carotenoids in fruits and vegetables and decreased cardiovascular mortality in the elderly. Ann. Epidemiol 1995, 5, 255–260. [Google Scholar] [Green Version]
- Jackson, H; Braun, CL; Ernst, H. The chemistry of novel xanthophyll carotenoids. Am. J. Cardiol 2008, 101, 50–57. [Google Scholar] [Green Version]
- Miyashita, K. Function of marine carotenoids. Forum Nutr 2009, 61, 136–146. [Google Scholar] [Green Version]
- Paterson, E; Gordon, MH; Niwat, C; George, TW; Parr, L; Waroonphan, S; Lovegrove, JA. Supplementation with fruit and vegetable soups and beverages increas plasma carotenoid concentrations but does not alter marker of oxidative stress or cardiovascular risk factors. J. Nutr 2006, 136, 2849–2855. [Google Scholar] [Green Version]
- Yuan, JP; Peng, J; Yin, K; Wang, JH. Potential health-promoting effects of astaxanthin: A high-value carotenoid mostly from microalgae. Mol. Nutr. Food Res 2011, 55, 150–165. [Google Scholar] [Green Version]
- Pashkow, FJ; Watumull, DG; Campbell, CL. Astaxanthin: A novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am. J. Cardiol 2008, 101, 58–68. [Google Scholar] [Green Version]
- Ernst, H. Recent advances in industrial carotenoid synthesis. Pure Appl. Chem 2002, 74, 2213–2226. [Google Scholar] [Green Version]
- Montanti, J; Nghiem, NP; Johnston, DB. Production of astaxanthin from cellulosic biomass sugars by mutants of the yeast Phaffia rhodozyma. Appl. Biochem. Biotechnol 2011, 164, 655–665. [Google Scholar] [Green Version]
- Lockwood, SF; Gross, GJ. Disodium disuccinate astaxanthin (Cardax): Antioxidant and antiinflammatory cardioprotection. Cardiovasc. Drug Rev 2005, 23, 199–216. [Google Scholar] [Green Version]
- Gross, GJ; Lockwood, SF. Cardioprotection and myocardial salvage by a disodium disuccinate astaxanthin derivative (Cardax). Life Sci 2004, 5, 215–224. [Google Scholar] [Green Version]
- Gross, GJ; Hazen, SL; Lockwood, SF. Seven day oral supplementation with Cardax (disodium disuccinate astaxanthin) provides significant cardioprotection and reduces oxidative stress in rats. Mol. Cell Biochem 2006, 283, 23–30. [Google Scholar] [Green Version]
- Lauver, DA; Lockwood, SF; Lucchesi, BR. Disodium disuccinate astaxanthin (Cardax) attenuates complement activation and reduces myocardial injury following ischemia/reperfusion. J. Pharmacol. Exp. Ther 2005, 314, 686–692. [Google Scholar] [Green Version]
- Iwamoto, T; Hosoda, K; Hirano, R. Inhibition of low-density lipoprotein oxidation by astaxanthin. J. Atheroscler. Thromb 2000, 7, 216–222. [Google Scholar] [Green Version]
- Rufer, CE; Moeseneder, J; Briviba, K. Bioavailability of astaxanthin stereoisomers from wild (Oncorhynchus spp.) and aquacultured (Salmo salar) salmon in healthy men: A randomised, double-blind study. Br. J. Nutr 2008, 99, 1048–1054. [Google Scholar] [Green Version]
- Coral-Hinostroza, GN; Ytrestoyl, T; Ruyter, T; Bjerkeng, B. Plasma appearance of unesterified astaxanthin geometrical E/Z and optical R/S isomers in men given single doses of a mixture of optical 3 and 3′R/S isomers of astaxanthin fatty acyl diesters. Comp. Biochem. Physiol. C Toxicol. Pharmacol 2004, 139, 99–110. [Google Scholar] [Green Version]
- Spiller, GA; Dewell, A. Safety of an astaxanthin-rich Haematococcus pluvialis algal extract: A randomized clinical trial. J. Med. Food 2003, 6, 51–56. [Google Scholar] [Green Version]
- Karppi, J; Rissanen, TH; Nyyssonen, K. Effects of astaxanthin supplementation on lipid peroxidation. Int. J. Vitam. Nutr. Res 2007, 77, 3–11. [Google Scholar] [Green Version]
- Cicero, AF; Rovati, LC; Setnikar, I. Eulipidemic effects of berberine administered alone or in combination with other natural cholesterol-lowering agents. A single-blind clinical investigation. Arzneimittel-Forschung 2007, 57, 26–30. [Google Scholar] [Green Version]
- Yoshida, H; Yanai, H; Ito, K; Tomono, Y; Koikeda, T; Tsukahara, H; Tada, N. Administration of natural astaxanthin increases serum HDL-cholesterol and adiponectin in subjects with mild hyperlipidemia. Atherosclerosis 2010, 209, 520–523. [Google Scholar] [Green Version]
- Mercadante, AZ; Egeland, ES. Carotenoids with a C40 skeleton. In Carotenoids—Handbook; Britton, G, Liaaen-Jensen, S, Pfander, H, Eds.; Birkhauser: Basel, Switzerland, 2004; p. 563. [Google Scholar]
- Hu, T; Liu, D; Chen, Y; Wu, J; Wang, S. Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro. Int. J. Biol. Macromol 2010, 46, 193–198. [Google Scholar] [Green Version]
- Nomura, T; Kikuchi, M; Kubodera, A; Kawakami, Y. Proton-donative antioxidant activity of fucoxanthin with 1,1-diphenyl-2-picrylhydrazyl (DPPH). Biochem. Mol. Biol. Int 1997, 42, 361–370. [Google Scholar] [Green Version]
- Yan, X; Chuda, Y; Suzuki, M; Nagata, T. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci. Biotechnol. Biochem 1999, 63, 605–607. [Google Scholar] [Green Version]
- Woo, MN; Jeon, SM; Shin, YC; Lee, MK; Kang, MA; Choi, MS. Anti-obese property of fucoxanthin is partly mediated by altering lipid-regulating enzymes and uncoupling proteins of visceral adipose tissue in mice. Mol. Nutr. Food Res 2009, 53, 1603–1611. [Google Scholar] [Green Version]
- Ikeda, K; Kitamura, A; Machida, H; Watanabe, M; Negishi, H; Hiraoka, J; Nakano, T. Effect of Undaria pinnatifida (Wakame) on the development of cerebrovascular diseases in stroke-prone spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol 2003, 30, 44–48. [Google Scholar] [Green Version]
- Connor, WE. Importance of n-3 fatty acids in health and disease. Am. J. Clin. Nutr 2000, 71, 171–175. [Google Scholar] [Green Version]
- Adan, Y; Shibata, K; Sato, M; Ikeda, I; Imaizumi, K. Effects of docosahexaenoic and eicosapentaenoic acid on lipid metabolism, eicosanoid production, platelet aggregation and atherosclerosis in hypercholesterolemic rats. Biosci. Biotechnol. Biochem 1999, 63, 111–119. [Google Scholar] [Green Version]
- Wang, S; Wu, D; Matthan, NR; Lamon-Fava, S; Lecker, JL; Lichtenstein, AH. Reduction in dietary omega-6 polyunsaturated fatty acids: Eicosapentaenoic acid plus docosahexaenoic acid ratio minimizes atherosclerotic lesion formation and inflammatory response in the LDL receptor null mouse. Atherosclerosis 2009, 204, 147–155. [Google Scholar] [Green Version]
- Egert, S; Kannenberg, F; Somoza, V; Erbersdobler, HF; Wahrburg, U. Dietary alpha-linolenic acid, EPA and DHA have differential effects on LDL fatty acid composition but similar effects on serum lipid profiles in normolipidemic humans. J Nutr 2009, 139(8), 61–868. [Google Scholar] [Green Version]
- Maeda, H; Tsukui, T; Sashima, T; Hosokawa, M; Miyashita, K. Seaweed carotenoid, fucoxanthin, as a multi-functional nutrient. Asia Pac. J. Clin. Nutr 2008, 1, 196–199. [Google Scholar] [Green Version]
- Maeda, H; Hosokawa, M; Sashima, T; Miyashita, K. Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice. J. Agric. Food Chem 2007, 55, 7701–7706. [Google Scholar] [Green Version]
- Tsukui, T; Konno, K; Hosokawa, M; Maeda, H; Sashima, T; Miyashita, K. Fucoxanthin and fucoxanthinol enhance the amount of docosahexaenoic acid in the liver of KKAy obese/diabetic mice. J. Agric. Food Chem 2007, 55, 5025–5029. [Google Scholar] [Green Version]
- Park, HJ; Lee, MK; Park, YB; Shin, YC; Choi, MS. Beneficial effects of Undaria pinnatifida ethanol extract on diet-induced-insulin resistance in C57BL/6J mice. Food Chem. Toxicol 2010, 13, 357–363. [Google Scholar] [Green Version]
- Hosokawa, M; Miyashita, T; Nishikawa, S; Emi, S; Tsukui, T; Beppu, F; Okada, T; Miyashita, K. Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice. Arch. Biochem. Biophys 2010, 504, 17–25. [Google Scholar] [Green Version]
- Abidov, M; Ramazanov, Z; Seifulla, R; Grachev, S. The effects of Xanthigen in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes. Metab 2010, 12, 72–81. [Google Scholar] [Green Version]
- Kim, KN; Heo, SJ; Kang, SM; Ahn, G; Jeon, YJ. Fucoxanthin induces apoptosis in human leukemia HL-60 cells through a ROS-mediated Bcl-xL pathway. Toxicol. Vitro 2010, 24, 1648–1654. [Google Scholar] [Green Version]
- Jeon, SM; Kim, HJ; Woo, MN; Lee, MK; Shin, YC; Park, YB; Choi, MS. Fucoxanthin-rich seaweed extract suppresses body weight gain and improves lipid metabolism in high-fat-fed C57BL/6J mice. Biotechnol. J 2010, 5, 961–969. [Google Scholar] [Green Version]
- Shiratori, K; Okgami, K; Ilieva, I; Jin, XH; Koyama, Y; Miyashita, K; Yoshida, K; Kase, S; Ohno, S. Effects of fucoxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Exp. Eye Res 2005, 81, 422–428. [Google Scholar] [Green Version]
- Granger, DN; Rodrigues, SF; Yildirim, A; Senchenkova, EY. Microvascular responses to cardiovascular risk factors. Microcirculation 2010, 17, 192–205. [Google Scholar] [Green Version]
- Pashkow, FJ; Watumull, DG; Campbell, CL. Astaxanthin: A novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am. J. Cardiol 2008, 101, 58–68. [Google Scholar] [Green Version]
- Fassett, RG; Healy, H; Driver, R; Robertson, IK; Geraghty, DP; Sharman, JE; Coombes, JS. Astaxanthin vs. placebo on arterial stiffness, oxidative stress andinflammation in renal transplant patients (Xanthin): A randomised controlledtrial. BMC Nephrol 2008, 18, 9–17. [Google Scholar] [Green Version]
© 2011 by the authors; licensee MDPI, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Riccioni, G.; D’Orazio, N.; Franceschelli, S.; Speranza, L. Marine Carotenoids and Cardiovascular Risk Markers. Mar. Drugs 2011, 9, 1166-1175. https://doi.org/10.3390/md9071166
Riccioni G, D’Orazio N, Franceschelli S, Speranza L. Marine Carotenoids and Cardiovascular Risk Markers. Marine Drugs. 2011; 9(7):1166-1175. https://doi.org/10.3390/md9071166
Chicago/Turabian StyleRiccioni, Graziano, Nicolantonio D’Orazio, Sara Franceschelli, and Lorenza Speranza. 2011. "Marine Carotenoids and Cardiovascular Risk Markers" Marine Drugs 9, no. 7: 1166-1175. https://doi.org/10.3390/md9071166
APA StyleRiccioni, G., D’Orazio, N., Franceschelli, S., & Speranza, L. (2011). Marine Carotenoids and Cardiovascular Risk Markers. Marine Drugs, 9(7), 1166-1175. https://doi.org/10.3390/md9071166