Microalgae as Sources of Carotenoids
Abstract
:1. Introduction
2. Cellular Location and Function
3. Practical Applications
3.1. Uses for Food and Feed Formulation
3.2. Uses for Health and Well-Being Promotion
4. Industrial Production
5. Biotechnological Processes
5.1. Lutein
5.2. Astaxanthin
5.3. β-Carotene
6. Extraction and Purification
6.1. Cell Disruption
6.2. Biomass Extraction
6.2.1. Organic Solvent-Mediated Extraction
6.2.2. Green Solvent-Mediated Extraction
6.2.3. Supercritical Fluid-Mediated Extraction
6.2.4. In Situ Extraction
7. Final Considerations
Acknowledgments
References
- Tandeau-de-Marsac, N; Houmard, J. Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microb Rev 1993, 104, 119–190. [Google Scholar]
- Pulz, O; Gross, W. Valuable products from biotechnology of microalgae. Appl Microb Biotechnol 2004, 65, 635–648. [Google Scholar]
- Richmond, A. Handbook of Microalgal Culture, Biotechnology and Applied Phycology; Blackwell Science: Oxford, UK, 2004. [Google Scholar]
- Lorenz, TR; Cysewski, GR. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 2000, 18, 160–167. [Google Scholar]
- Ip, PF; Wong, KH; Chen, F. Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Proc Biochem 2004, 39, 1761–1766. [Google Scholar]
- León, R; Martín, M; Vigara, J; Vilchez, C; Vega, J. Microalgae-mediated photoproduction of β-carotene in aqueous organic two phase systems. Biomol Eng 2003, 20, 177–182. [Google Scholar]
- Kim, MK; Park, JW; Park, CS; Kim, SJ; Jeune, KH; Chang, MU; Acreman, J. Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Biores Technol 2007, 98, 2220–2228. [Google Scholar]
- Sánchez, JF; Fernández, JM; Acién, FG; Rueda, A; Pérez-Parra, J; Molina, E. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Proc Biochem 2008, 43, 398–405. [Google Scholar]
- del Campo, AJ; García-González, M; Guerrero, MG. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microb Biotechnol 2007, 74, 1163–1174. [Google Scholar]
- Eonseon, J; Polle, JEW; Lee, HK; Hyund, SM; Chang, M. Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. Microb Biotechnol 2003, 13, 165–174. [Google Scholar]
- Grossman, AR; Bhaya, D; Apt, KE; Kehoe, DM. Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu Rev Genet 1995, 29, 231–288. [Google Scholar]
- Tardy, F; Havaux, M. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana. J Photochem Photobiol A 1996, 34, 87–94. [Google Scholar]
- Rabbani, S; Beyer, P; von Lintig, J; Hugueney, P; Kleinig, H. Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 1998, 116, 1239–1248. [Google Scholar]
- Demming-Adams, B; Adams, WW. Antioxidants in photosynthesis and human nutrition. Science 2002, 298, 2149–2153. [Google Scholar]
- Lamers, PP; Janssen, M; de Vos, RCH; Bino, RJ; Wijffels, RH. Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnol 2008, 26, 631–638. [Google Scholar]
- Fennema, OR. Food Chemistry; Marcel Dekker: New York, NY, USA, 1999; pp. 780–782. [Google Scholar]
- Halliwell, B; Gutteridge, JMC. Free Radicals in Biology and Medicine; Oxford University Press: New York, NY, USA, 2007; pp. 79–350. [Google Scholar]
- El-Baky, HHA; El-Baz, FK; El-Baroty, GS. Spirulina species as a source of carotenoids and α-tocopherol and its anticarcinoma factors. Biotechnology 2003, 2, 22–240. [Google Scholar]
- El-Baky, HHA; El-Baroty, GS. Enhancement of carotenoids in Dunaliella salina for use as dietary supplements and in the preservation of foods. Food Chem Toxicol 2011, in press.. [Google Scholar]
- Hsu, YW; Tsai, CF; Chang, WH; Ho, YC; Chen, WK; Lu, FJ. Protective effects of Dunaliella salina—a carotenoid-rich alga, against carbon tetrachloride-induced hepatoxicity in mice. Food Chem Toxicol 2008, 46, 3311–3317. [Google Scholar]
- Guerin, M; Huntley, ME; Olaizola, M. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 2003, 21, 210–215. [Google Scholar]
- Cysewski, GR; Lorenz, RT. Industrial production of microalgal cell-mass and secondary products—species of high potential: Haematococcus. In Handbook of Microalgal Culture, Biotechnology and Applied Phycology; Richmond, A, Ed.; Blackwell Science: Oxford, UK, 2004; pp. 281–288. [Google Scholar]
- Plaza, M; Herrero, M; Cifuentes, A; Ibáñez, E. Innovative natural functional ingredients from microalgae. J Agric Food Chem 2009, 57, 7159–7170. [Google Scholar]
- Krinsky, NI; Johnson, EJ. Carotenoid actions and their relation to health and disease. Mol Aspects Med 2005, 26, 459–516. [Google Scholar]
- Murthy, KNC; Vanitha, A; Rajesha, J; Swamy, MM; Sowmya, PR; Ravishanka, GA. In vivo antioxidant activity of carotenoids from Dunaliella salina—a green microalga. Life Sci 2005, 76, 1381–1390. [Google Scholar]
- Spolaore, P; Joannis-Cassan, C; Duran, E; Isambert, A. Commercial applications of microalgae. J Biosci Bioeng 2006, 101, 87–96. [Google Scholar] [Green Version]
- Kohen, R; Nyska, A. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 2002, 30, 620–650. [Google Scholar]
- Mattson, MP. Pathways towards and away from Alzheimer’s disease. Nature 2004, 430, 631–639. [Google Scholar]
- Nakashima, Y; Ohsawa, I; Konishi, F; Hasegawa, T; Kumamoto, S; Suzuki, Y; Ohta, S. Preventive effects of Chlorella on cognitive decline in age-dependent dementia model mice. Neur Lett 2009, 464, 193–198. [Google Scholar]
- Wu, Z; Wu, S; Shi, X. Supercritical fluid extraction and determination of lutein in heterotrophically cultivated Chlorella pyrenoidosa. J Food Proc Eng 2007, 30, 174–185. [Google Scholar]
- Zhao, L; Sweet, BV. Lutein and zeaxanthin for macular degeneration. Am J Health-Syst Pharm 2008, 65, 1232–1238. [Google Scholar]
- Palozza, P; Torelli, C; Boninsegna, A; Simone, R; Catalano, A; Mele, MC; Picci, N. Growth-inhibitory effects of the astaxanthin-rich alga Haematococcus pluvialis in human colon cancer cells. Cancer Lett 2009, 283, 108–117. [Google Scholar]
- Mojaat, M; Pruvost, J; Foucault, A; Legrand, J. Effect of organic carbon sources and Fe2+ ions on growth and β-carotene accumulation by Dunaliella salina. Biochem Eng J 2008, 39, 177–184. [Google Scholar]
- Ben-Amotz, A. Dunaliella β-carotene: From science to commerce. In Enigmatic Microorganisms and Life in Extreme Environments; Seckbach, J, Ed.; Kluwer: Deventer, The Netherlands, 1999; pp. 401–410. [Google Scholar]
- Ye, Z-W; Jiang, J-G; Wu, G-H. Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotechnol Adv 2008, 26, 352–360. [Google Scholar]
- Bhosale, P; Bernstein, PS. Microbial xanthophylls. Appl Microbiol Biotechnol 2005, 68, 445–455. [Google Scholar]
- Coesel, SN; Baumgartner, AC; Teles, LM; Ramos, AA; Henriques, NM; Cancela, L; Varela, JCS. Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Mar Biotechnol 2008, 10, 602–611. [Google Scholar]
- Mogedas, B; Casal, C; Forján, E; Vílchez, C. β-Carotene production enhancement by UV-A radiation in Dunaliella bardawil cultivated in laboratory reactors. J Biosci Bioeng 2009, 108, 47–51. [Google Scholar]
- Olaizola, M. Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photo-bioreactors. J Appl Phycol 2000, 12, 499–506. [Google Scholar]
- Abe, K; Hattor, H; Hiran, M. Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chem 2005, 100, 656–661. [Google Scholar]
- Macías-Sánchez, MD; Fernandez-Sevilla, M; Acién-Fernández, FG; Cerón-Garcia, MC; Molina-Grima, E. Supercritical fluid extraction of carotenoids from Scenedesmus almeriensis. Food Chem 2010, 123, 928–935. [Google Scholar]
- García-González, M; Moreno, J; Manzano, JC; Florêncio, FJ; Guerrero, MG. Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. J Biotechnol 2005, 115, 81–90. [Google Scholar]
- del Campo, JA; Moreno, J; Rodriguez, H; Vargas, MA; Rivas, J; Guerrero, MG. Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 2001, 85, 289–295. [Google Scholar]
- Kleinegris, DMM; Janssen, M; Brandenburg, WA; Wijffels, RH. Continuous production of carotenoids from Dunaliella salina. Enzyme Microb Technol 2011, 48, 253–259. [Google Scholar]
- Fernández-Sevilla, JM; Acién-Fernández, FG; Molina-Grima, E. Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 2010, 86, 27–40. [Google Scholar]
- Wei, D; Chen, F; Chen, G; Zhang, XW; Liu, LJ; Zhang, H. Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Sci China Ser C Life Sci 2008, 51, 1088–1093. [Google Scholar]
- Ip, P-F; Chen, F. Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem 2005, 40, 733–738. [Google Scholar]
- García-Malea, MC; Acién, FG; del Río, E; Fernández, JM; Cerón, MC; Guerrero, MG; Molina-Grima, E. Production of astaxanthin by Haematococcus pluvialis: taking the one-step system outdoors. Biotechnol Bioeng 2009, 102, 651–657. [Google Scholar]
- Domínguez-Bocanegra, AR; Guerrero, LI; Jerónimo, FM; Campocosio, AT. Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Biores Technol 2004, 92, 209–214. [Google Scholar]
- Guerin, M; Huntley, ME; Olaizola, M. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 2003, 21, 210–216. [Google Scholar]
- Aflalo, C; Meshulam, Y; Zarka, A; Boussiba, S. On the relative efficiency of two vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol Bioeng 2007, 98, 300–305. [Google Scholar]
- del Rio, E; Acién, FG; García-Malea, MC; Rivas, J; Molina-Grima, E; Guerrero, MG. Efficient one-step production of astaxanthin by the microalgae Haematococcus pluvialis in continuous culture. Biotechnol Bioeng 2005, 91, 808–815. [Google Scholar]
- del Rio, E; Acién, FG; Rivas, J; Molina-Grima, E; Guerrero, MG. Efficiency assessment of the one-step production of astaxanthin by the microalga Haematococcus pluvialis. Biotechnol Bioeng 2008, 100, 397–402. [Google Scholar]
- Imamoglu, E; Dalay, MC; Sukan, FV. Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis. New Biotechnol 2009, 26, 199–204. [Google Scholar]
- del Campo, JA; Rodriguez, H; Moreno, J; Vargas, MA; Rivas, J; Guerrero, MG. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 2004, 64, 848–854. [Google Scholar]
- Salguero, A; de la Morena, B; Vigara, J; Veja, JM; Vilchez, C; Leon, R. Carotenoids as protective response against oxidative damage in Dunaliella bardawil. Biomol Eng 2003, 20, 249–253. [Google Scholar]
- Fábregas, J; Otero, A; Maseda, A; Dominguez, A. Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J Biotechnol 2001, 89, 65–71. [Google Scholar]
- Kim, Z-H; Kim, S-H; Lee, H-S; Lee, C-G. Enhanced production of astaxanthin by flashing light using Haematococcus pluvialis. Enzyme MicrobTechnol 2006, 39, 414–419. [Google Scholar]
- Wang, B; Zarka, A; Trebest, A; Boussiba, S. Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J Phycol 2003, 39, 1116–1124. [Google Scholar]
- Droop, MR. Conditions governing haematochrome formation and loss in the algae Haematococcus pluvialis. Arch Microbiol 1954, 20, 391–397. [Google Scholar]
- Boussiba, S. Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response. Physiol Plant 2000, 108, 111–117. [Google Scholar]
- Zhu, MY; Mu, XY; Li, RX; Lü, RH. The effects of iron on the growth, the photosynthesis, and the biochemical composition of Phaeodactylum triconutum. Acta Oceanol Sinica 2000, 22, 110–116. [Google Scholar]
- Liu, CY; Zhang, ZB; Chen, XR. Mutual effects of nitric oxide and iron on the growth of marine algae. Acta Oceanol Sinica 2005, 24, 100–109. [Google Scholar]
- Naito, K; Matsui, M; Imai, I. Ability of marine eukaryotic red tide microalgae to utilize insoluble iron. Harmful Algae 2005, 4, 1021–1032. [Google Scholar]
- Harker, M; Tsavalos, AJ; Young, AJ. Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 30 liter air-lift photobioreactor. J Ferm Bioeng 1996, 82, 113–118. [Google Scholar]
- Choi, YE; Yun, YS; Park, JM. Evaluation of factors promoting astaxanthin production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial design. Biotechnol Prog 2002, 18, 1170–1175. [Google Scholar]
- Cai, M; Li, Z; Qi, A. Effects of iron electrovalence and species on growth and astaxanthin production of Haematococcus pluvialis. Chin J Oceanol Limnol 2009, 27, 370–375. [Google Scholar]
- Fábregas, J; Dominguez, A; Maseda, A; Otero, A. Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis. Appl Microbiol Biotechnol 2003, 10, 253–261. [Google Scholar]
- Kang, CD; An, JY; Park, TH; Sim, SJ. Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater. Biochem Eng J 2006, 31, 234–238. [Google Scholar]
- Chen, W; Zhang, C; Song, L; Sommerfeld, M; Hu, Q. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Meth 2009, 77, 41–47. [Google Scholar]
- Pruvost, J; Cornet, JF; Legrand, J. Hydrodynamics influence on light conversion in photobioreactors: an energetically consistent analysis. Chem Eng Sci 2008, 3, 679–694. [Google Scholar]
- Hejazi, MA; Holwerda, E; Wijffels, RH. Milking microalga Dunaliella salina for β-carotene production in two-phase bioreactors. Biotechnol Bioeng 2004, 85, 475–481. [Google Scholar]
- Mínguez-Mosquera, I; Gandul-Rojas, M; Lourdes, B; Gallardo-Guerrero, M. Rapid method of quantification of chlorophylls and carotenoids in virgin olive oil by high-performance liquid chromatography. J Agric Food Chem 1992, 40, 60–63. [Google Scholar]
- Ceron, MC; Campos, I; Sánchez, JF; Acien, FG; Molina, E; Fernandez-Sevilla, JM. Recovery of lutein from microalgae biomass: development of a process for Scenedesmus almeriensis. J Agric Food Chem 2008, 56, 11761–11766. [Google Scholar]
- Kang, CD; Sim, SJ. Selective extraction of free astaxanthin from Haematococcus culture using a tandem organic solvent system. Biotechnol Prog 2007, 23, 866–871. [Google Scholar]
- Farrow, WM; Tabenkin, K. Process for the preparation of lutein. US Patent 3,280,502 1966. [Google Scholar]
- Ishida, BK; Chapman, MH. Carotenoid extraction from plants using a novel, environmentally friendly solvent. J Agric Food Chem 2009, 57, 1051–1059. [Google Scholar]
- Fernández-Sevilla, JM; Acién-Fernández, FG; Pérez-Parra, J; Magán-Cañadas, JJ; Granado-Lorencio, F; Olmedilla, B. Large-scale production of high-content lutein extracts from S almeriensis. Proceedings of 11th International Conference on Applied Phycology, Galway, Ireland, 21–26 June 2008.
- Kang, CD; Sim, SJ. Direct extraction of astaxanthin from Haematococcus culture using vegetable oils. Biotechnol Lett 2008, 30, 441–444. [Google Scholar]
- Nonomura, AM. Process for producing a naturally-derived carotene/oil composition by direct extraction from algae. US Patent 4,680,314 1987. [Google Scholar]
- Zougagh, M; Valcarcel, M; Ríos, A. Supercritical fluid extraction: a critical review of its analytical usefulness. Trends Anal Chem 2004, 23, 399–405. [Google Scholar]
- Bravi, E; Perretti, G; Motanari, L; Favati, F; Fantozzi, P. Supercritical fluid extraction for quality control in beer industry. J Supercrit Fluids 2007, 42, 342–346. [Google Scholar]
- Bath, MM; Zhou, C; Kute, KM; Rosenthal, GA. Determination of optimum conditions for supercritical fluid extraction of carotenoids from carrot (Daucus carota L.) tissue. J Agric Food Chem 1995, 43, 2876–2878. [Google Scholar]
- Albino, AMS; Penteado, MDVC; Lanças, FM; Vilegas, JHY. Carotenoids extraction using CO2 in supercritical state, from kale (Brassica oleracea, Lin. var. acephala). Proceedings of International Congress on Pigments in Food Technology, Sevilla, Spain, 24–26 March 1999; pp. 65–69.
- Mendes, RL; Fernandes, HL; Coelho, JP; Reis, EC; Cabral, JMS; Novais, JM; Palabra, AF. Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris. Food Chem 1995, 53, 99–103. [Google Scholar]
- Careri, M; Furlattini, L; Mangia, A; Musci, M; Anklam, E; Theobald, A; von Holst, C. Supercritical fluid extraction for liquid chromatographic determination of carotenoids in Spirulina pacifica algae: a chemometric approach. J Chromat A 2001, 912, 61–71. [Google Scholar]
- Macías-Sánchez, MD; Mantell, C; Rodríguez, M; Martínez de la Ossa, E; Lubián, LM; Montero, O. Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. J Food Eng 2005, 66, 245–251. [Google Scholar]
- Macías-Sánchez, MD; Mantell, C; Rodríguez, M; Martínez de la Ossa, E; Lubián, LM; Montero, O. Supercritical fluid extraction of carotenoids and chlorophyll a from Synechococcus sp. J Supercrit Fluid 2007, 39, 323–329. [Google Scholar]
- Macías-Sánchez, MD; Mantell, C; Rodríguez, M; Martínez de la Ossa, E; Lubián, LM; Montero, O. Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta 2009, 77, 948–952. [Google Scholar]
- Kitada, K; Machmudah, S; Sasaki, M; Goto, M; Nakashima, Y; Kumamoto, S; Hasegawa, T. Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. J Chem Technol Biotechnol 2009, 84, 657–661. [Google Scholar]
- Shen, Y; Hu, Y; Huang, K; Yin, S; Chen, B; Yao, S. Solid-phase extraction of carotenoids. J Chromat 2009, 1216, 5763–5768. [Google Scholar]
- Bermejo, R; Ruiz, E; Acién, FG. Recovery of B-phycoerythrin using expanded bed adsorption chromatography: Scale-up of the process. Enzyme Microb Technol 2007, 40, 927–933. [Google Scholar]
- Miguel, F; Martin, A; Mattea, F; Cocero, MJ. Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process. Chem Eng Proc 2008, 47, 1594–1602. [Google Scholar]
Microalga source | Active compound | Reference |
---|---|---|
Dunaliella salina | β-carotene | [13,14] |
Haematococcus pluvialis | Astaxanthin, cantaxanthin, lutein | [14,18] |
Chlorella vulgaris | Cantaxanthin, astaxanthin | [14,19] |
Coelastrella striolata var. multistriata | Canthaxanthin, astaxanthin, β-carotene | [40] |
Scenedesmus almeriensis | Lutein, β-carotene | [41] |
Carotenoid | Microalga source | Processing conditions | Reactor configuration | Productivity | Ref |
---|---|---|---|---|---|
β-carotene | Dunaliella salina | T: 25 °C; pH: 7.5 ± 0.5; LI: 281 ± 89 μmolphoton m–2 s–1; SR: 38 cms–1 s–1 | Semi-continuous outdoor, closed tubular (55 L) | Biomass: 2 g m–2 d–1 Total carotenoids: 102.5 ± 33.1 mg m–2 d–1 (β-carotene: 10% of biomass) | [42] |
T: 30 °C; pH: 7.5; LI: 200–1200 μmolphoton m–2 s–1; SR: 0.6 L min–1 (N2) | Continuous turbidostat, flat-panel (2.5 L) | β-Carotene: 13.5 mg L–1 d–1 (15.0 pg cell–1) | [43] | ||
T: 30 °C; pH: 7.5; LI: 200–1200 μmolphoton m–2 s–1; SR: 0.286 Lsolvent L–1 min–1 (organic solvent) | Continuous turbidostat, flat-panel (1.9 L) with in situ extraction | β-Carotene: 0.7 mg L–1 d–1 β-Carotene: 8.3 mg L–1 d–1 (8.9 pg cell–1) | |||
Lutein | Muriellopsis sp. | T: 28 °C; pH 6.5; LI: 460 μmolphoton m–2 s–1 | Batch (0.2 L, 4–7 d) | Lutein content: 5.5 mg g–1 L–1 d–1 Lutein: 0.8–1.4 mg L–1 d–1 | [44] |
T: 28 °C; pH: 7; LI: continuous 200 μmolphoton m–2 s–1; AF: 50–100 L–1 h–1 (1 %, v/v CO2) | Continuous outdoor, tubular (55 L) | Biomass: 7.2 mg L–1 d–1 Lutein: 5.5 mg g–1 L–1 d–1 | [44] | ||
- | Semicontinuous outdoor, open tank (100 L) | Biomass: 100 mg m–2 d–1 Lutein: 100 mg g–1 L–1 d–1 | [42] | ||
Scenedesmus almeriensis | T: 30 °C; pH: 8.0; LImax: 1700 μE m–2 s–1; AF: 0.5 (v/v)/min–2 s–1; LDC: solar cycle | Continuous (2 L) | Lutein: 4.9 mg L–1 d–1 | [8] | |
T: 35 °C; LI: 1900 μE m–2 s–1 | Continuous outdoor, tubular | Lutein: 5.31 mg m–2 d –1 | [45] | ||
Chlorella protothecoides | T: 28 °C; pH: 6.5; LI: absence of light; MM: heterotrophic | Batch (16 L) | Lutein: 10 mg L–1 d–1 | [46] | |
Chlorella zofingiensis | T: 28 °C; pH: 7; LI: 200 μmolphoton m–2 s–1; AF: 50–100 L–1 h–1 (1%, v/v CO2) LDC: continuous light | Batch (0.2 L) | Lutein: 3.4 mg L–1 d–1 | [44] | |
Chlorococcum citriforme | Lutein: 1.05 mg L–1 h–1 | ||||
Neospongiococc us gelatinosum | Lutein: 0.70 mg L–1 h–1 | ||||
Astaxanthin | C. zofingiensis | T: 30 °C; pH: 6.5; LI: darkness; SR: 130 rpm; MM: heterothrophic | Batch (250 mL) | Astaxanthin:10.3 mg L−1 | [47] |
Haematococcu s pluvialis | LI: day light cycle | Continuous chemostat, tubular (50 L) | Biomass: 0.7 g L−1d−1 Astaxanthin: 8.0 mg L−1d−1 | [48] | |
T: 28 °C; LI: 345 μmolphoton m−2 s−1 | Batch (1 L) | Astaxanthin content: 98 mg g−1biomass | [49] | ||
T: 15–25 °C; LImax: 2000 μmolphoton m−2 s−1 | Enclosed outdoor (25,000 L) | Biomass: 90 g m−2 Astaxanthin: 13 g m−2 d−1 | [39] |
Microalga source | Operating conditions (pressure/temperature/time) | Total carotenoids (mg/g DW biomass) | Lutein (mg/g DW biomass) | Total carotenoids/Chlorophyll a ratio | Reference |
---|---|---|---|---|---|
Nannochloropsis gaditana | 200 bar/40 °C/180 min | 0.152 | - | 0.524 | [87] |
200 bar/50 °C/180 min | 0.152 | - | 0.410 | ||
200 bar/60 °C/180 min | 0.125 | - | 1.389 | ||
300 bar/40 °C/180 min | 0.208 | - | 0.258 | ||
300 bar/50 °C/180 min | 0.248 | - | 0.230 | ||
300 bar/60 °C/180 min | 0.250 | - | 0.179 | ||
Chlorella vulgaris | 200 bar/40 °C/198 min | 0.011 | - | - | [85] |
200 bar/55 °C/180 min | 0.008 | - | - | ||
350 bar/55 °C/252 min | 0.080 | - | - | ||
Synechococcus sp. | 200 bar/40 °C/180 min | 0.386 | - | 193.000 | [88] |
200 bar/50 °C/180 min | 1.225 | - | 23.113 | ||
200 bar/60 °C/180 min | 0.405 | - | 101.25 | ||
300 bar/40 °C/180 min | 0.748 | - | 32.522 | ||
300 bar/50 °C/180 min | 1.511 | - | 19.372 | ||
300 bar/60 °C/180 min | 0.808 | - | 46.316 | ||
Scenedesmus almeriensis | 200 bar/32 °C/300 min | - | 0.0013 | - | [89] |
200 bar/46 °C/300 min | - | 0.0000 | - | ||
200 bar/60 °C/300 min | - | 0.0109 | - | ||
300 bar/39 °C/300 min | - | 0.0236 | - | ||
300 bar/53 °C/300 min | - | 0.0090 | - |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Guedes, A.C.; Amaro, H.M.; Malcata, F.X. Microalgae as Sources of Carotenoids. Mar. Drugs 2011, 9, 625-644. https://doi.org/10.3390/md9040625
Guedes AC, Amaro HM, Malcata FX. Microalgae as Sources of Carotenoids. Marine Drugs. 2011; 9(4):625-644. https://doi.org/10.3390/md9040625
Chicago/Turabian StyleGuedes, Ana Catarina, Helena M. Amaro, and Francisco Xavier Malcata. 2011. "Microalgae as Sources of Carotenoids" Marine Drugs 9, no. 4: 625-644. https://doi.org/10.3390/md9040625