Harnessing Marine Algae for Sustainable Agriculture: Natural Bioactive Compounds as Eco-Friendly Pesticidal Agents
Abstract
1. Introduction
2. Pesticidal Properties of Marine Algae
2.1. Insecticidal Activity
2.2. Fungicidal Activity
2.3. Nematicidal Activity
2.4. Herbicidal Activity
Algal Species | Target Pest | Product/Effects | Reference |
---|---|---|---|
Chlorophyta (green microalgae) | Model organisms | Fatty acids, aldehydes exert herbicidal effects | [5] |
Microalgae allelochemicals | Weeds | Allelochemical biocontrol | [65] |
Microalgae species | Weeds | Structural diversity of allelochemicals | [75] |
Ulva intestinalis (formerly Enteromorpha intestinalis) (Chlorophyta) | Weeds | Phytotoxic effects | [76] |
Mastocarpus stellatus and Porphyra dioica | white clover (Trifolium repens L.) and Italian ryegrass (Lolium multiflorum) | Pre- and post-emergence herbicidal effects | [77] |
Plocamium brasiliense (Rhodophyta) | Mimosa pudica and Senna obtusifolia | Allelopathic effects halogenated monoterpenes | [79] |
3. Mechanisms of Action of Algal-Derived Pesticides
4. Methods of Application for Crop Protection
5. Advantages of Marine Algae-Based Biopesticides
6. Conclusions
7. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IPM | integrated pest management |
MAPK | mitogen-activated protein kinase |
ROS | reactive oxygen species |
AChE | acetylcholinesterase |
References
- Nabti, E.; Jha, B.; Hartmann, A. Impact of seaweeds on agricultural crop production as biofertilizer. Int. J. Environ. Sci. Technol. 2017, 14, 1119–1134. [Google Scholar] [CrossRef]
- Singh, R.; Parihar, P.; Singh, M.; Bajguz, A.; Kumar, J.; Singh, S.; Singh, V.P.; Prasad, S.M. Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: Current status and future prospects. Front. Microbiol. 2017, 8, 515. [Google Scholar] [CrossRef]
- Asimakis, E.; Shehata, A.A.; Eisenreich, W.; Acheuk, F.; Lasram, S.; Basiouni, S.; Emekçi, M.; Ntougias, S.; Taner, G.; May-Simera, H.; et al. Algae and their metabolites as potential bio-pesticides. Microorganisms 2022, 10, 307. [Google Scholar] [CrossRef]
- Ibrahim, D.; Ghareeb, R.; Abou El Atta, D.; Azouz, H. Nematicidal properties of methanolic extracts of two marine algae against tomato root-knot nematode, Meloidogyne incognita. J. Plant Prot. Pathol. 2021, 12, 137–144. [Google Scholar] [CrossRef]
- Brito-Bello, A.A.; Lopez-Arredondo, D. Bioactive compounds with pesticide activities derived from aged cultures of green microalgae. Biology 2023, 12, 1149. [Google Scholar] [CrossRef] [PubMed]
- Chanthini, K.M.P.; Deva-Andrews, A.; Kirupaanntha-Rajan, P.; Almutairi, B.O.; Senthil-Nathan, S. Systemic defense induced by fatty acid compounds from marine macroalgae, Chaetomorpha antennina in tomato (Solanum lycopersicum) plants alters the susceptibility of the polyphagous agricultural pest, Spodoptera litura Fab. Chem. Biol. Technol. Agric. 2024, 11, 65. [Google Scholar] [CrossRef]
- Kumar, J.; Ramlal, A.; Mallick, D.; Mishra, V. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants 2021, 10, 1185. [Google Scholar] [CrossRef]
- Veluchamy, C.; Palaniswamy, R. A review on marine algae and its applications. Asian J. Pharm. Clin. Res. 2020, 13, 21–27. [Google Scholar] [CrossRef]
- Hamed, S.M.; El-Rhman, A.A.A.; Abdel-Raouf, N.; Ibraheem, I.B.M. Role of marine macroalgae in plant protection and improvement for sustainable agriculture technology. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 104–110. [Google Scholar] [CrossRef]
- Garcés-Fiallos, F.R.; de Quadros, F.M.; de Freitas, M.B. Marine resources with potential in controlling plant diseases. In Advances in the Domain of Environmental Biotechnology; Maddela, N.R., García Cruzatty, L.C., Chakraborty, S., Eds.; Environmental and Microbial Biotechnology; Springer: Singapore, 2021; pp. 1–18. [Google Scholar] [CrossRef]
- Petchidurai, G.; Sahayaraj, K.; Al-Shuraym, L.A.; Albogami, B.; Sayed, S.M. Insecticidal activity of tannins from selected brown macroalgae against the cotton leafhopper Amrasca devastans. Plants 2023, 12, 3188. [Google Scholar] [CrossRef]
- Jayaraman, J.; Norrie, J.; Punja, Z.K. Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal diseases in greenhouse cucumber. J. Appl. Phycol. 2011, 23, 353–361. [Google Scholar] [CrossRef]
- Edwin, P.; Michel, L.-M.; Walter, V.; Rita, S. Utilización de macroalgas para la inducción de mecanismos defensivos ante agentes fitopatógenos causantes de enfermedades foliares en hortalizas. Bionatura 2023, 8, 43. [Google Scholar] [CrossRef]
- Chanthini, K.M.P.; Rajan, P.K.; Abdel-Megeed, A.; Senthil-Nathan, S. Mechanistic perceptions of the elicitorial resources from the marine kingdom—A paradigm shift in plant defense against insect pests. Biocatal. Agric. Biotechnol. 2024, 58, 103141. [Google Scholar] [CrossRef]
- Mishra, A.; Sahni, S.; Kumar, S.; Prasad, B.D. Seaweed—An eco-friendly alternative of agrochemicals in sustainable agriculture. Curr. J. Appl. Sci. Technol. 2020, 39, 71–78. [Google Scholar] [CrossRef]
- Janapala, V.R. Vector and agricultural pest control. In Springer Handbook of Marine Biotechnology; Kim, S.K., Ed.; Springer Handbooks; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–20. [Google Scholar] [CrossRef]
- Rashed, A.A.; Heikal, Y.M.; Finn, R.D.; Bayoumy, M.H.; El-Harairy, A.; Refaay, D.A. Toxicity of macroalgae extracts to larvae of the northern house mosquito. Life 2024, 14, 1527. [Google Scholar] [CrossRef] [PubMed]
- Refaay, D.A.; El-Sheekh, M.M.; Heikal, Y.M.; Rashed, A.A. Characterization of some selected macroalgae extracts and assessment of their insecticidal and genotoxicity in Culex pipiens L. mosquito larvae. Sci. Rep. 2025, 15, 2655. [Google Scholar] [CrossRef]
- Ahmad, R.; Yu, K.X.; Wong, C.-L.; Jantan, I. Larvicidal and adulticidal activities of Malaysian seaweeds against Aedes aegypti (L.) and Aedes albopictus Skuse (Diptera: Culicidae). Southeast Asian J. Trop. Med. Public Health 2016, 47, 719–730. [Google Scholar]
- Aravinth, A.D.; Dhanasundaram, S.; Perumal, P.; Kamaraj, C.; Khan, S.U.; Ali, A.; Ragavendran, C.; Amutha, V.; Rajaram, R.; Santhanam, P.; et al. Evaluation of brown and red seaweed extracts as a novel larvicidal agent against the deadly human disease vectors, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Exp. Parasitol. 2023, 256, 108651. [Google Scholar] [CrossRef] [PubMed]
- El-Tabakh, M.A.M.; Elhawary, E.; Hwihy, H.M.; Darweesh, K.F.; Shaapan, R.M.; Ghazala, E.A.; Mokhtar, M.M.; Waheeb, H.O.; Emam, D.; Bakr, N.A.; et al. UPLC/ESI/MS profiling of red algae Galaxaura rugosa extracts and its activity against malaria mosquito vector, Anopheles pharoensis, with reference to Danio rerio and Daphnia magna as bioindicators. Malar. J. 2023, 22, 368. [Google Scholar] [CrossRef]
- Boutjagualt, I.; Hmimid, F.; Errami, A.; Bouharroud, R.; Qessaoui, R.; Etahiri, S.; Benba, J. Chemical composition and insecticidal effects of brown algae (Fucus spiralis) essential oil against Ceratitis capitata Wiedemann (Diptera: Tephritidae) pupae and adults. Biocatal. Agric. Biotechnol. 2022, 40, 102308. [Google Scholar] [CrossRef]
- Abou-Elnaga, Z.S.; Alarif, W.M.; Al-Lihaibi, S.S. New larvicidal acetogenin from the red alga Laurencia papillosa. Clean-Soil Air Water 2011, 39, 787–794. [Google Scholar] [CrossRef]
- Tufan-Cetin, O.; Cetin, H. Use of micro and macroalgae extracts for the control of vector mosquitoes. PeerJ 2023, 11, e16187. [Google Scholar] [CrossRef]
- El-Aziz, F.E.-Z.A.A.; Hifney, A.F.; Mohany, M.; Al-Rejaie, S.S.; Banach, A.; Sayed, A.M. Insecticidal activity of brown seaweed (Sargassum latifolium) extract as potential chitin synthase inhibitors: Toxicokinetic and molecular docking approaches. S. Afr. J. Bot. 2023, 160, 645–656. [Google Scholar] [CrossRef]
- Sahayaraj, K.; Kalidas, S. Evaluation of nymphicidal and ovicidal effect of a seaweed, Padina pavonica (Linn.) (Phaeophyceae) on cotton pest, Dysdercus cingulatus (Fab.). Indian J. Mar. Sci. 2011, 40, 125–129. [Google Scholar]
- Lisha, J.M.; Srinivasan, G.; Shanthi, M.; Mini, M.L.; Vellaikumar, S.; Sujatha, K. Phytochemical profiling and toxicity effect of various seaweed species against diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae). Int. J. Trop. Insect Sci. 2023, 43, 1633–1648. [Google Scholar] [CrossRef]
- Selvi, V.V.T.; Arivoli, S.; Tennyson, S. Toxicity of Sargassum wightii to the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Indian J. Entomol. 2023, 85, 868–872. [Google Scholar] [CrossRef]
- Sahayaraj, K.; Ravindran, C.; Thusnavis, M.M. Three green seaweed extracts and their fractions for ecofriendly management of pestiferous insect Spodoptera litura. Int. J. Environ. Sci. Technol. 2021, 19, 7969–7980. [Google Scholar] [CrossRef]
- Pasdaran, A.; Hamedi, A.; Mamedov, N.A. Antibacterial and Insecticidal Activity of Volatile Compounds of Three Algae Species of Oman Sea. Int. J. Second. Metab. 2016, 3, 66–73. [Google Scholar] [CrossRef]
- Priya, N.; Raguraman, S.; Bhuvaneswari, K.; Lakshmanan, A.; Kumar, K.C. Lethal Effects of Red Macroalgal Extracts against Tobacco Cutworm, Spodoptera litura Fabricius. Int. J. Plant Soil Sci. 2022, 34, 101–109. [Google Scholar] [CrossRef]
- Hasan, N.R.H.; Yogarajalakshmi, P.; Vasantha-Srinivasan, P.; Shehata, W.F.; Radhakrishnan, N.; Jayakodi, S.; Karthi, S.; Senthil-Nathan, S.; Mansour, H.E.H.; Ghazzawy, H.S.; et al. From the Sea to Mosquito Control: The Potential of Halymenia dilatata Marine Alga as an Eco-Friendly Mosquitocidal Agent. Sustainability 2023, 15, 11900. [Google Scholar] [CrossRef]
- Sahayaraj, K.; Jeeva, Y.M. Nymphicidal and Ovipositional Efficacy of Seaweed Sargassum tenerrimum (J. Agardh) against Dysdercus cingulatus (Fab.) (Pyrrhocoridae). Chil. J. Agric. Res. 2012, 72, 152–156. [Google Scholar] [CrossRef]
- Sahayaraj, K.; Asharaja, A.; Ponsankar, A.; Rathi, J.M.; Senthil-Nathan, S. Behavioral Response and Relative Toxicity for the Active Compounds of Caulerpa veravalensis (Thivy and Chauhan) against Nymph of Dysdercus cingulatus (Fab.) (Hemiptera: Pyrrhocoridae). J. Asia Pac. Entomol. 2019, 22, 417–426. [Google Scholar] [CrossRef]
- Rima, M.; Chbani, A.; Roques, C.; Garah, F.E. Comparative Study of the Insecticidal Activity of a High Green Plant (Spinacia oleracea) and a Chlorophytae Algae (Ulva lactuca) Extracts against Drosophila melanogaster Fruit Fly. Ann. Pharm. Fr. 2021, 79, 36–43. [Google Scholar] [CrossRef]
- Ishii, T.; Nagamine, T.; Nguyen, B.C.Q.; Tawata, S. Insecticidal and repellent activities of laurinterol from the Okinawan red alga Laurencia nidifica. Rec. Nat. Prod. 2017, 11, 63–68. [Google Scholar]
- Balamurugan, S.; Kannan, R. Bioefficacy Studies on Insecticidal Activities of Sargassum wightii with Neem Oil against Rice Leaf Folder, Cnaphalocrocis medinalis. Uttar Pradesh J. Zool. 2023, 44, 8–13. [Google Scholar] [CrossRef]
- Dharani, P.N.; Raguraman, S.; Bhuvaneswari, K.; Lakshmanan, A.; Chandra, K.K. Comparative Toxicity of Aqueous and Methanolic Extracts of Brown Macroalgae against Tobacco Cutworm, Spodoptera litura Fabricius. J. Curr. Crop Sci. Technol. 2022, 109, 82–87. [Google Scholar] [CrossRef]
- González-Castro, A.L.; Muñoz-Ochoa, M.; Hernández-Carmona, G.; López-Vivas, J.M. Evaluation of seaweed extracts for the control of the Asian citrus psyllid Diaphorina citri. J. Appl. Phycol. 2019, 31, 3815–3821. [Google Scholar] [CrossRef]
- Argandoña, V.H.; Pozo, T.D.; San-Martín, A.; Rovirosa, J. Insecticidal activity of Plocamium cartilagineum monoterpenes. Bol. Soc. Chil. Quím. 2000, 45, 371–376. [Google Scholar] [CrossRef]
- González-Castro, A.L.; Rojas Contreras, M.; Romero Bastidas, M.; Águila Ramírez, R.N.; Rangel Dávalos, C.; Arce Amezquita, P.M. Evaluation of some seaweed extracts from Baja Peninsula, Mexico, against plant pathogens. Hidrobiológica 2025, 35, 41–48. [Google Scholar] [CrossRef]
- Perumal, P.; Dhanasundaram, S.; Aravinth, A.D.; Amutha, V.; Santhanam, P. Larvicidal property of the extracts of the seaweeds Sargassum wightii, S. ilicifolium and Gelidiella acerosa against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Biocatal. Agric. Biotechnol. 2022, 43, 102436. [Google Scholar] [CrossRef]
- Prisa, D.; Fresco, R.; Jamal, A.; Saeed, M.F.; Spagnuolo, D. Exploring the potential of macroalgae for sustainable crop production in agriculture. Life 2024, 14, 1263. [Google Scholar] [CrossRef]
- González-Castro, A.L.; Torres-Estrada, J.L.; Muñoz-Ochoa, M. Larvicidal and oviposition deterrent activity of sesquiterpenes from the red seaweed Laurencia johnstonii against Aedes aegypti. J. Appl. Phycol. 2024, 36, 1555–1560. [Google Scholar] [CrossRef]
- Tyśkiewicz, K.; Rüttler, F.; Tyśkiewicz, R.; Nowak, A.; Gruba, M.; Wziątek, A.; Dębczak, A.; Sandomierski, M.; Vetter, W. Antifungal properties of bioactive compounds isolated from Fucus vesiculosus supercritical carbon dioxide extract. Molecules 2024, 29, 5957. [Google Scholar] [CrossRef]
- Farghl, A.A.M.; El-Sheekh, M.M.; El-Shahir, A.A. Seaweed extracts as biological control of aflatoxins produced by Aspergillus parasiticus and Aspergillus flavus. Egypt. J. Biol. Pest Control 2023, 33, 50. [Google Scholar] [CrossRef]
- El Modafar, C.; Elgadda, M.; El Boutachfaiti, R.; Abouraicha, E.; Zehhar, N.; Petit, E.; Courtois, B.; Courtois, J. Induction of natural defense accompanied by salicylic acid-dependent systemic acquired resistance in tomato seedlings in response to bio-elicitors isolated from green algae. Sci. Hortic. 2012, 138, 55–63. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Ahmed, A.Y.; Soliman, S.A.; Abdel-Ghafour, S.E.; Sobhy, H.M. Biological control of soil-borne cucumber diseases using green marine macroalgae. Egypt. J. Biol. Pest Control 2021, 31, 72. [Google Scholar] [CrossRef]
- Sultana, V.; Baloch, G.N.; Ara, J.; Ehteshamul-Haque, S.; Tariq, R.M.; Athar, M. Seaweeds as an alternative to chemical pesticides for the management of root diseases of sunflower and tomato. J. Appl. Bot. Food Qual. 2011, 84, 162–168. [Google Scholar] [CrossRef]
- Vicente, T.F.L.; Lemos, M.F.L.; Félix, R.; Valentão, P.; Félix, C. Marine macroalgae, a source of natural inhibitors of fungal phytopathogens. J. Fungi 2021, 7, 1006. [Google Scholar] [CrossRef]
- Esserti, S.; Smaili, A.; Rifai, L.A.; Koussa, T.; Makroum, K.; Belfaiza, M.; Kabil, E.M.; Faize, L.; Burgos, L.; Alburquerque, N.; et al. Protective effect of three brown seaweed extracts against fungal and bacterial diseases of tomato. J. Appl. Phycol. 2017, 29, 1081–1093. [Google Scholar] [CrossRef]
- Flora, G.; Rani, S.M.V. An approach towards control of blast by foliar application of seaweed concentrate. Sci. Res. Rep. 2012, 2, 213–217. [Google Scholar]
- Alorfi, H.S. Antifungal–antiproliferative norcycloartane-type triterpenes from the Red Sea green alga Tydemania expeditionis. Open Chem. 2022, 20, 912–919. [Google Scholar] [CrossRef]
- Lemesheva, V.; Islamova, R.; Stepchenkova, E.; Shenfeld, A.; Birkemeyer, C.; Tarakhovskaya, E. Antibacterial, Antifungal and Algicidal Activity of Phlorotannins, as Principal Biologically Active Components of Ten Species of Brown Algae. Plants 2023, 12, 821. [Google Scholar] [CrossRef]
- Pourakbar, L.; Moghaddam, S.S.; Enshasy, H.A.E.; Sayyed, R.Z. Antifungal Activity of the Extract of a Macroalgae, Gracilariopsis persica, against Four Plant Pathogenic Fungi. Plants 2021, 10, 1781. [Google Scholar] [CrossRef]
- Ameer Junaithal Begum, M.; Selvaraju, P.; Vijayakumar, A. Evaluation of antifungal activity of seaweed extract (Turbinaria conoides) against Fusarium oxysporum. J. Appl. Nat. Sci. 2016, 8, 60–62. [Google Scholar] [CrossRef]
- Vehapi, M.; Koçer, A.T.; Yılmaz, A.; Özçimen, D. Investigation of the antifungal effects of algal extracts on apple-infecting fungi. Arch. Microbiol. 2020, 202, 455–471. [Google Scholar] [CrossRef] [PubMed]
- Vera, J.; Castro, J.; Gonzalez, A.; Moenne, A. Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants. Mar. Drugs 2011, 9, 2514–2525. [Google Scholar] [CrossRef] [PubMed]
- Praveen, A.; Kannan, C. Studies on anti-fungal activity of different macro algal extracts against soil borne pathogen Sclerotium rolfsii Sacc. Int. J. Plant Soil Sci. 2023, 35, 1083–1090. [Google Scholar] [CrossRef]
- Silva, P.J.; Fernandes, C.; Barros, L.; Ferreira, I.C.F.R.; Pereira, L.; Gonçalves, T. The antifungal activity of extracts of Osmundea pinnatifida, an edible seaweed, indicates its usage as a safe environmental fungicide or as a food additive preventing post-harvest fungal food contamination. Food Funct. 2018, 9, 6187–6195. [Google Scholar] [CrossRef]
- Ambika, S.; Sujatha, K. Antifungal Activity of Brown, Red and Green Alga Seaweed Extracts against Macrophomina phaseolina (Tassi) Goid., in Pigeonpea var. CO (Rg) 7. Int. J. Agric. Sci. 2015, 11, 210–216. [Google Scholar] [CrossRef]
- Chanthini, K.M.-P.; Senthil-Nathan, S. Marine weeds against fungal phytopathogens—Current agronomical implications and intriguing perspectives for a sustainable future. Physiol. Mol. Plant Pathol. 2024, 130, 102240. [Google Scholar] [CrossRef]
- Soares, F.; Fernandes, C.; Silva, P.J.; Pereira, L.; Gonçalves, T. Antifungal activity of carrageenan extracts from the red alga Chondracanthus teedei var. lusitanicus. J. Appl. Phycol. 2016, 28, 2991–2998. [Google Scholar] [CrossRef]
- Mohy El-Din, S.M.; Mohyeldin, M.M. Component analysis and antifungal activity of the compounds extracted from four brown seaweeds with different solvents at different seasons. J. Ocean Univ. China 2018, 17, 1178–1188. [Google Scholar] [CrossRef]
- Casanova, L.M.; Macrae, A.; de Souza, J.E.; Neves Junior, A.; Vermelho, A.B. The potential of allelochemicals from microalgae for biopesticides. Plants 2023, 12, 1896. [Google Scholar] [CrossRef]
- Sithole, N.T.; Gupta, S.; Dube, Z.; Ogbe, A.A.; Van Staden, J. Algae and cyanobacteria-based biostimulants in controlling plant-parasitic nematodes: A sustainable approach for crop protection. Phytoparasitica 2023, 51, 803–813. [Google Scholar] [CrossRef]
- Ghareeb, R.Y.; Shams El-Din, N.G.E.; Maghraby, D.M.E.; Ibrahim, D.S.; Abdel-Megeed, A.; Abdelsalam, N.R. Nematicidal activity of seaweed-synthesized silver nanoparticles and extracts against Meloidogyne incognita on tomato plants. Sci. Rep. 2022, 12, 2472. [Google Scholar] [CrossRef] [PubMed]
- El-Ansary, M.S.M.; Hamouda, R.A. Biocontrol of root-knot nematode infected banana plants by some marine algae. Russ. J. Mar. Biol. 2014, 40, 140–146. [Google Scholar] [CrossRef]
- Sultana, V.; Ehteshamul-Haque, S.; Ara, J.; Athar, M. Effect of brown seaweeds and pesticides on root rotting fungi and root-knot nematode infecting tomato roots. J. Appl. Bot. Food Qual. 2009, 83, 50–53. [Google Scholar] [CrossRef]
- Ngala, B.M.; Valdes, Y.; dos Santos, G.; Perry, R.N.; Wesemael, W.M.L. Seaweed-based products from Ecklonia maxima and Ascophyllum nodosum as control agents for the root-knot nematodes Meloidogyne chitwoodi and Meloidogyne hapla on tomato plants. J. Appl. Phycol. 2016, 28, 2073–2082. [Google Scholar] [CrossRef]
- Abdel Rasoul, M.A. Biopotentials of Marine Algae Extracts against Root-Knot Nematode, Meloidogyne incognita. J. Plant Prot. Pathol. 2017, 8, 165–171. [Google Scholar] [CrossRef]
- Khan, S.A.; Abid, M.; Hussain, F. Nematicidal Activity of Seaweeds against Meloidogyne javanica. Pak. J. Nematol. 2015, 33, 195–203. [Google Scholar]
- Chukwuma, O.C.; Tan, S.P.; Hughes, H.; McLoughlin, P.; O’Toole, N.; McCarthy, N. The potential of seaweeds as a rich natural source for novel bioherbicide formulation/development. Weed Sci. 2024, 72, 216–224. [Google Scholar] [CrossRef]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef]
- Chaïb, S.; Pistevos, J.C.A.; Bertrand, C.; Bonnard, I. Allelopathy and allelochemicals from microalgae: An innovative source for bio-herbicidal compounds and biocontrol research. Algal Res. 2021, 54, 102213. [Google Scholar] [CrossRef]
- Rizvi, M.A.; Shameel, M. Studies on the bioactivity and elementology of marine algae from the coast of Karachi, Pakistan. Phytother. Res. 2004, 18, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Chukwuma, O.C.; Tan, S.P.; Hughes, H.; McLoughlin, P.; O’Toole, N.; McCarthy, N. Evaluating the phytotoxicities of two Irish red seaweeds against common weed species. J. Appl. Phycol. 2023, 36, 727–743. [Google Scholar] [CrossRef]
- Haniffa, H.M.; Ranjith, H.; Dharmaratne, W.; Mohammad, M.Y.; Choudhary, M.I. Allelopathic activity of some Sri Lankan seaweed extracts and the isolation of a new brominated nonaromatic isolaurene-type sesquiterpene from red alga Laurencia heteroclada Harvey. Nat. Prod. Res. 2021, 35, 2020–2027. [Google Scholar] [CrossRef]
- Fonseca, R.R.D.; Ortiz-Ramírez, F.A.; Cavalcanti, D.N.; Ramos, C.J.B.; Teixeira, V.L.; Sousa Filho, A.P.D.S. Allelopathic potential of extracts from the marine macroalga Plocamium brasiliense and their effects on pasture weed. Rev. Bras. Farmacogn. 2012, 22, 850–853. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Seca, A.M.L.; Pinto, D.C.G.A.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current trends on seaweeds: Looking at chemical composition, phytopharmacology, and cosmetic applications. Molecules 2019, 24, 4182. [Google Scholar] [CrossRef] [PubMed]
- Argandoña, V.H.; Rovirosa, J.; San-Martín, A.; Riquelme, A.; Díaz-Marrero, A.R.; Cueto, M.; Darias, J.; Santana, O.; Guadaño, A.; González-Coloma, A. Antifeedant effects of marine halogenated monoterpenes. J. Agric. Food Chem. 2002, 50, 7029–7033. [Google Scholar] [CrossRef]
- Kjelleberg, S.; Steinberg, P.; Givskov, M.; Gram, L.; Manefield, M.; de Nys, R. Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat. Microb. Ecol. 1997, 13, 85–93. [Google Scholar] [CrossRef]
- Kannan, R.R.R.; Aderogba, M.A.; Ndhlala, A.R.; Stirk, W.A.; Van Staden, J. Acetylcholinesterase Inhibitory Activity of Phlorotannins Isolated from the Brown Alga, Ecklonia maxima (Osbeck) Papenfuss. Food Res. Int. 2013, 54, 1250–1254. [Google Scholar] [CrossRef]
- Palaniveloo, K.; Ong, K.H.; Satriawan, H.; Abdul Razak, S.; Suciati, S.; Hung, H.-Y.; Hirayama, S.; Rizman-Idid, M.; Tan, J.K.; Yong, Y.S.; et al. In Vitro and In Silico Cholinesterase Inhibitory Potential of Metabolites from Laurencia snackeyi (Weber-van Bosse) M. Masuda. 3 Biotech 2023, 13, 337. [Google Scholar] [CrossRef]
- Mahmood, N.A.; Carmichael, W.W. Anatoxin-a(S), an Anticholinesterase from the Cyanobacterium Anabaena flos-aquae NRC-525-17. Toxicon 1987, 25, 1221–1227. [Google Scholar] [CrossRef]
- Sharanappa, C.H.; Bheemanna, M.; Prabhuraj, A.; Harischandra, N.R.; Nagaraj, M.N.; Saroja, N.R.; Kariyanna, B. Toxicity and Enzymatic Inhibitory Action of Spirulina sp. and Nostoc muscorum Extracts on Detoxifying Enzymes in Spodoptera frugiperda (J.E. Smith) (Noctuidae: Lepidoptera). Acta Sci. Biol. Sci. 2024, 46, e68619. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Mousa, A.S.H.; Farghl, A.A.M. Biological control of Fusarium wilt disease of tomato plants using seaweed extracts. Arab. J. Sci. Eng. 2020, 45, 4557–4570. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Agarwal, P.K.; Dangariya, M.; Agarwal, P. Seaweed extracts: Potential biodegradable, environmentally friendly resources for regulating plant defence. Algal Res. 2021, 58, 102363. [Google Scholar] [CrossRef]
- Sariñana-Aldaco, O.; Benavides-Mendoza, A.; Robledo-Olivo, A.; González-Morales, S. The biostimulant effect of hydroalcoholic extracts of Sargassum spp. in tomato seedlings under salt stress. Plants 2022, 11, 3180. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Gonçalves, A.L. The use of microalgae and cyanobacteria in the improvement of agricultural practices: A review on their biofertilising, biostimulating and biopesticide roles. Appl. Sci. 2021, 11, 871. [Google Scholar] [CrossRef]
- Arioli, T.; Mattner, S.W.; Winberg, P.C. Applications of seaweed extracts in Australian agriculture: Past, present and future. J. Appl. Phycol. 2015, 27, 2007–2015. [Google Scholar] [CrossRef] [PubMed]
- Stirk, W.A.; Tarkowská, D.; Turečová, V.; Strnad, M.; Van Staden, J. Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. J. Appl. Phycol. 2014, 26, 561–567. [Google Scholar] [CrossRef]
- Bhattacharjee, M.B. Biopesticides from algae and their potential for sustainable agriculture and environmental protection. Open Access Res. J. Biol. Pharm. 2022, 6, 29–34. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Phytoelicitor activity of Sargassum vulgare and Acanthophora spicifera extracts and their prospects for use in vegetable crops for sustainable crop production. J. Appl. Phycol. 2021, 33, 639–651. [Google Scholar] [CrossRef]
- Dehghan, A.A.; Ghaderi, R. Application of seaweeds in plant disease management. Plant Pathol. Sci. 2020, 9, 101–107. [Google Scholar] [CrossRef]
- Čmiková, N.; Paulen, O.; Mankovecký, J.; Kačániová, M. Potential use of algae and seaweed extracts as protection against peach leaf curl. Acta Hortic. Regiotecturae 2024, 27, 124–130. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, K.; Chahal, H.S.; Kaur, H.; Hasanain, M. Seaweed-derived plant boosters: Revolutionizing sustainable farming and soil health. Front. Soil Sci. 2025, 5, 1504045. [Google Scholar] [CrossRef]
- Roy, D. Studies on the use of locally available renewable seaweed wastes from Cox’s Bazar and Saint Martin as compost organic fertilizer resources. J. Earth Environ. Sci. Res. 2024, 6, 2–12. [Google Scholar] [CrossRef]
- Elanselvi, A.; Mahalakshmi, P.; Thamizh Iniyan, A.; Harish, S.; Kavitha, M.; Santhana Krishnan, V.P.; Muthukumar, G. Antifungal efficacy of Kappaphycus alvarezii and other macro-algae against Alternaria solani-induced early blight in tomato (Solanum lycopersicum L.). J. Sci. Res. Rep. 2024, 30, 411–421. [Google Scholar] [CrossRef]
- Sahana, B.N.; Prasannakumar, M.K.; Mahesh, H.B.; Parivallal, P.B.; Puneeth, M.E.; Gautam, C.; Girish, T.R.; Nori, S.; Suryanarayan, S. Biostimulants derived from red seaweed stimulate the plant defence mechanism in rice against Magnaporthe oryzae. J. Appl. Phycol. 2021, 34, 659–665. [Google Scholar] [CrossRef]
- van der Weide, R.Y.; Elissen, H.J.H.; Hol, S.J.E.; Evenhuis, A.; de Vos, R.C.H.; van der Meer, I.M.; van Geel, W.C.A. Agricultural Applications of Seaweed Extracts: Seaweeds for Plant Care—Review and Experiments in the Netherlands; WPR-OT-940; Wageningen Plant Research: Wageningen, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Siedenburg, J.R.; Attard, E.; Mamo, J.A.; Verschoor, A. Microalgae-based crop support technologies show multifaceted promise well-suited to looming threats. Environments 2024, 11, 220. [Google Scholar] [CrossRef]
- Costa, J.A.V.; Freitas, B.C.B.; Cruz, C.G.; Silveira, J.; Morais, M.G. Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. J. Environ. Sci. Health B 2019, 54, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Sehrawat, A.R.; Pandey, D.; Pandey, B.K. Seaweed: A novel organic biomaterial. Curr. J. Appl. Sci. Technol. 2020, 39, 1–8. [Google Scholar] [CrossRef]
- Verma, M.L.; Kumar, A.; Chintagunta, A.D.; Samudrala, P.J.K.; Bardin, M.; Lichtfouse, E. Microbial production of biopesticides for sustainable agriculture. Sustainability 2024, 16, 7496. [Google Scholar] [CrossRef]
- Omokaro, G.O.; Osarhiemen, I.O.; Idama, V.; Airueghian, E.O.; West, S.; Igbigbi, F.E.; Nnake, D.C.; Obolokor, E.; Ahmed, A.; Omoshie, V.O. The Role of Organic Amendments and Their Impact on Soil Restoration: A Review. Asian J. Environ. Ecol. 2024, 23, 41–52. [Google Scholar] [CrossRef]
- Bennett, J.P.; Robinson, L.F.; Gomez, L.D. Valorisation Strategies for Brown Seaweed Biomass Production in a European Context. Algal Res. 2023, 75, 103248. [Google Scholar] [CrossRef]
- Renganathan, P.; Gaysina, L.A.; Holguín-Peña, R.J.; Sainz-Hernández, J.C.; Ortega-García, J.; Rueda-Puente, E.O. Phycoremediated Microalgae and Cyanobacteria Biomass as Biofertilizer for Sustainable Agriculture: A Holistic Biorefinery Approach to Promote Circular Bioeconomy. Biomass 2024, 4, 1047–1077. [Google Scholar] [CrossRef]
- Rashwan, R.S.; Hammad, D.M. Toxic Effect of Spirulina platensis and Sargassum vulgar as Natural Pesticides on Survival and Biological Characteristics of Cotton Leaf Worm Spodoptera littoralis. Sci. Afr. 2020, 8, e00323. [Google Scholar] [CrossRef]
- Shukla, P.S.; Borza, T.; Critchley, A.T.; Prithiviraj, B. Seaweed-Based Compounds and Products for Sustainable Protection against Plant Pathogens. Mar. Drugs 2021, 19, 59. [Google Scholar] [CrossRef] [PubMed]
- Chanthini, K.M.P.; Ramasubramanian, R.; Stanley-Raja, V.; Karthi, S.; Shyam-Sundar, N.; Senthil-Nathan, S. Evaluation of the Ecotoxicology of Seaweed-Based Biopesticide Used in Combat of the Polyphagous Pest Using Eudrilus eugeniae Kinb. In Teratogenicity Testing; Félix, L., Ed.; Methods in Molecular Biology; Humana: New York, NY, USA, 2024; Volume 2753. [Google Scholar] [CrossRef]
- Aioub, A.A.A.; Ghosh, S.; Al-Farga, A.; Khan, A.N.; Bibi, R.; Elwakeel, A.M.; Nawaz, A.; Sherif, N.T.; Elmasry, S.A.; Ammar, E. Back to the Origins: Biopesticides as Promising Alternatives to Conventional Agrochemicals. Eur. J. Plant Pathol. 2024, 169, 697–713. [Google Scholar] [CrossRef]
- Gurau, S.; Imran, M.; Ray, R.L. Algae: A Cutting-Edge Solution for Enhancing Soil Health and Accelerating Carbon Sequestration—A Review. Environ. Technol. Innov. 2025, 37, 103980. [Google Scholar] [CrossRef]
- Dmytryk, A.; Chojnacka, K. Algae as Fertilizers, Biostimulants, and Regulators of Plant Growth. In Algae Biomass: Characteristics and Applications; Chojnacka, K., Wieczorek, P., Schroeder, G., Michalak, I., Eds.; Developments in Applied Phycology; Springer: Cham, Switzerland, 2018; Volume 8. [Google Scholar] [CrossRef]
- Sariñana-Aldaco, O.; Rivera-Solís, L.L.; Benavides-Mendoza, A.; Robledo-Olivo, A.; Rodríguez-Jasso, R.M.; González-Morales, S. Using Brown Algae in the Plant–Soil System: A Sustainable Approach to Improving the Yield and Quality of Agricultural Crops. Horticulturae 2025, 11, 94. [Google Scholar] [CrossRef]
Algal Species | Target Pest | Product/Effects | Reference |
---|---|---|---|
Sargassum wightii, Turbinaria ornata (Phaeophyceae) | Cotton leafhopper, Amrasca biguttula | Tannins inhibit amylase, protease, invertase | [11] |
Actinotrichia fragilis, Liagora ceranoides (Rhodophyta), Sargassum latifolium and Colpomenia sinuosa (Phaeophyceae) | Stored-grain pests Oryzaephilus mercator Tribolium castaneum, Musca domestica | Chitin synthase inhibition Volatile oils with 39.6% 1-dodecanol insecticidal effects | [25,30] |
Chaetomorpha antennina (Chlorophyta); Acanthophora spicifera, Gracilaria corticata and Jania rubens (Rhodophyta) | Spodoptera litura | Fatty acids induce plant defenses larvicidal and insecticidal effects | [6,31] |
Ulva lactuca (Chlorophyta), Turbinaria ornata (Phaeophyceae) | Culex pipiens larvae | Phenolics, alkaloids cause DNA damage | [17] |
Halymenia dilatata (Rhodophyta) | Aedes aegypti | Midgut damage, enzyme alteration | [32] |
Padina pavonica (Phaeophyceae) | Dysdercus cingulatus | Nymphicidal and ovicidal activity | [26] |
Sargassum tenerrimum (Phaeophyceae) | Dysdercus cingulatus | Reduced protein and DNA content | [33] |
Green seaweeds Caulerpa and Ulva spp. (Chlorophyta) | Spodoptera litura Dysdercus cingulatus Drosophila melanogaster | Larval mortality and growth inhibition, Fatty acid and other metabolite | [29,34,35] |
Laurencia nidifica (Rhodophyta) | Maize weevil, termites | Halogenated sesquiterpenes inhibit acetylcholinesterase | [36] |
Sargassum wightii, (Phaeophyceae) Gracilaria edulis (Rhodophyta) | Diamondback moth Plutella xylostella; rice leaf folder, Cnaphalocrocis medinalis | Larvicidal effect contact/feeding toxicity | [27,37] |
Padina tetrastromatica, Sargassum wightii and Turbinaria conoides (Phaeophyceae) | Lepidopteran tobacco cutworm, Spodoptera litura | Larvicidal effect contact/feeding toxicity | [38] |
Chaetomorpha antennina (Chlorophyta) | Lepidopteran tobacco cutworm, Spodoptera litura | Larvicidal effect contact/feeding toxicity | [6] |
Fucus spiralis (Phaeophyceae) | Mediterranean fruit fly, Ceratitis capitata | Essential oil contact toxicity on pupae and adults | [22] |
Laurencia johnstonii (Rhodophyta) and Sargassum horridum (Phaeophyceae) | Asian citrus psyllid, Diaphorina citri | Insecticidal and repellent effect | [39] |
Palisada perforata (formerly Laurencia papillosa) (Rhodophyta) | Confused flour beetle, Tribolium confusum | Active ingredient acetogenin Larvicidal effect | [23] |
Plocamium cartilagineum (Rhodophyta) | Tomato moth, Tuta absolute and a cereal aphid, Schizaphis graminum | Halogenated monoterpenes, (mertensene and violacene) larvicidal and insecticidal effects | [40] |
Algal Species | Target Pest | Product/Effects | Reference |
---|---|---|---|
Gracilariopsis persica (Rhodophyta) | Botrytis cinerea, Aspergillus niger, Penicillium expansum, and Pyricularia oryzae | Phenolics, fatty acids inhibit growth | [55] |
Fucus vesiculosus (Phaeophyceae) | Fusarium culmorum | Fatty acids, fucosterol induced defense enzymes in plants | [45] |
Sargassum wightii | Sclerotium rolfsii | Methanol extract retention the antimicrobial activity | [59] |
Halimeda opuntia Turbunaria decurrens (Phaeophyceae) | A. parasiticus A. flavus | Growth suppression Anti-mycotoxigenic effect | [46] |
Ulva lactuca (formerly Ulva fasciata), Ulva flexuosa (formerly Enteromorpha flexuosa) | Cucumber fungal pathogens | Growth suppression | [48] |
Osmundea pinnatifida (Rhodophyta) | Alternaria infectoria and Aspergillus fumigatus | Fatty acids, n-hexane fraction growth suppression and sporulation | [60] |
Sargassum polycystum (formerly Sargassum myriocystum) (Phaeophyceae) | Macrophomina phaseolina | Antifungal effects | [61] |
Chaetomorpha antennina (Chlorophyta) | Fungal phytopathogens | Alginates, laminarins activate plant defenses | [62] |
Brown macroalgae | Various fungi | Phlorotannins disrupt fungal membranes | [50] |
Ascophyllum nodosum (Phaeophyceae) | Fusarium, Alternaria, Botrytis spp. | Induced defense enzymes in plants | [12] |
Caulerpa (Chlorophyta), Sargassum (Phaeophyceae), Gracilaria (Rhodophyta) spp. | Macrophomina phaseolina | Antifungal effect using poison food technique | [61] |
Solieria robusta (Rhodophyta) | Fusarium solani | Suppressive effect | [49] |
Chondracanthus teedei var. lusitanicus (Rhodophyta) | Aspergillus fumigatus and A. infectoria | Carrageenans growth suppression | [63] |
Colpomenia sinuosa, Padina pavonia, Gongolaria barbata (formerly Cystoseira barbata) and Sargassum vulgare (Phaeophyceae) | Aspergillus niger, A. flavus, Penicillium parasiticus and F. solani | Polar and nonpolar extracts antifungal effects | [64] |
Algal Species | Target Pest | Product/Effects | Reference |
---|---|---|---|
Multiple Baja California seaweeds | Meloidogyne incognita | Phenolics with nematicidal activity | [44] |
Phacelocarpus tristichus, Turbinaria ornata | Meloidogyne incognita | Suppressed nematodes, promoted plant growth | [4] |
Ulva lactuca (formerly Ulva fasciata), Corallina spp. (Rhodophyta), Limnospira platensis (formerly Spirulina platensis) (Cyanobacteria) | Meloidogyne incognita | Reduced egg hatching, larval survival | [71] |
Chlorophyta (green microalgae) | Model organisms | Fatty acids, alkaloids show nematicidal effects | [5] |
32 seaweed species | Meloidogyne javanica | Inhibited egg hatching, larval mortality | [72] |
Algae and cyanobacteria | Plant-parasitic nematodes | Suppression through bioactive compound release | [66] |
Ascophyllum nodosum and Ecklonia maxima (Phaeophyceae) | Meloidogyne chitwoodi and Meloidogyne hapla | Suppressed nematodes, promoted plant growth | [70] |
Solieria robusta (Rhodophyta) | Meloidogyne javanica | Reduced egg hatching and nematode viability | [49] |
Colpomenia sinuosa (Phaeophyceae) Corallina mediterranea (Rhodophyta, Corallinaceae) | Meloidogyne incognita | Nanoparticle formulations nematicidal activity | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beev, G.; Dermendzhieva, D.; Yaneva, Z.; Kalaydzhiev, G.; Naydenova, N.; Stoeva, D.; Georgieva, D.; Hristova, S.; Beeva, Z.; Petrov, N. Harnessing Marine Algae for Sustainable Agriculture: Natural Bioactive Compounds as Eco-Friendly Pesticidal Agents. Mar. Drugs 2025, 23, 346. https://doi.org/10.3390/md23090346
Beev G, Dermendzhieva D, Yaneva Z, Kalaydzhiev G, Naydenova N, Stoeva D, Georgieva D, Hristova S, Beeva Z, Petrov N. Harnessing Marine Algae for Sustainable Agriculture: Natural Bioactive Compounds as Eco-Friendly Pesticidal Agents. Marine Drugs. 2025; 23(9):346. https://doi.org/10.3390/md23090346
Chicago/Turabian StyleBeev, Georgi, Diyana Dermendzhieva, Zvezdelina Yaneva, Georgi Kalaydzhiev, Nikolina Naydenova, Daniela Stoeva, Denitsa Georgieva, Silviya Hristova, Zornitsa Beeva, and Nikolay Petrov. 2025. "Harnessing Marine Algae for Sustainable Agriculture: Natural Bioactive Compounds as Eco-Friendly Pesticidal Agents" Marine Drugs 23, no. 9: 346. https://doi.org/10.3390/md23090346
APA StyleBeev, G., Dermendzhieva, D., Yaneva, Z., Kalaydzhiev, G., Naydenova, N., Stoeva, D., Georgieva, D., Hristova, S., Beeva, Z., & Petrov, N. (2025). Harnessing Marine Algae for Sustainable Agriculture: Natural Bioactive Compounds as Eco-Friendly Pesticidal Agents. Marine Drugs, 23(9), 346. https://doi.org/10.3390/md23090346