Therapeutic and Nutraceutical Potential of Sargassum Species: A Narrative Review
Abstract
1. Introduction
2. Algae
3. Sargassum
Species | Model | Diet | Period | Results | Reference(s) |
---|---|---|---|---|---|
S. fusiforme | Alzheimer rat model APPswePS1ΔE 9 | Supplemented 50% (w/w) | 10 weeks | Reduced cholesterol precursors levels, cholesterol metabolites in serum and cerebellum Increased cognitive function Reduced Aβ, Aβ40 plaques and amyloid precursor protein mRNA | [65] |
S. fusiforme | Male C57BL/6 mice | 5000 mg/kg | 2 weeks | No toxicity observed in acute toxicity test | [68] |
S. fusiforme | Male C57BL/6 mice | 200 mg/kg and 400 mg/kg | 10 weeks | No toxicity observed in long-term study | [68] |
S. fusiforme | Male C57BL/6 mice | High-fat diet supplemented with 200 mg/kg and 400 mg/kg | 10 weeks | Reduced weight gain Reduced hepatic steatosis Reduced adipocyte size More high-density lipids Normalizes LPS, TNF- α and IL6 | [68] |
S. horneri | Male C57BL/6 mice | High-fat diet supplemented with 2% w/w and 6% w/w | 13 weeks | Reduced weight gain Reduced adipocyte size Lower adipose tissue weight Increased glycemic response Increased adiponectin Reduced TNF-α Reduced glucose and serum insulin | [69] |
S. siliquosum | Male Wistar rats | High-fat diet supplemented with 5% w/w | 16 weeks | Decreased fat mass, abdominal fat and fat vacuoles in the liver | [70] |
S. liebmannii | Male C57BL/6 mice | 0.5 g/kg, 1 g/kg and 10 g/kg | 7 days | Toxicity not observed (LD50) | [47] |
S. liebmannii | Sprague Dawley rats | Normal diet supplemented with 20% w/w | 77 days | Toxicity not observed in sub-chronic toxicity test Reduced weight gain Reduced adiposity levels | [47] |
4. Therapeutic and Nutraceutical Applications
4.1. Anti-Inflammatory Activity
4.2. Antioxidant Activity
4.3. Antiviral Activity
4.4. Antibacterial Activity
4.5. Prebiotic Activity
4.6. Chronic Non-Communicable Diseases
4.7. Anticancer Activity
4.8. Neuroprotective Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VACht | Vesicular acetylcholine transport |
ChAT | Choline acetyl transferase |
BChE | Butyrylcholinesterase |
AChE | Acetylcholinesterase |
APP | Amyloid precursor protein |
DNMT3B | DNA methyltransferase 3B |
ABTS | 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (radical-scavenging assay) |
ACC | Acetyl-CoA carboxylase |
ACE | Angiotensin-I converting enzyme |
AKT | Protein kinase B (Akt) |
AMPK | AMP-activated protein kinase |
APPswePS1ΔE9 | Amyloid precursor protein Swedish mutation × Presenilin-1 ΔE9 transgenic mouse model |
Aβ | Amyloid beta peptide |
Bax | Bcl-2-associated X protein |
Bcl-2 | B-cell lymphoma 2 |
Bcl-xL | B-cell lymphoma extra-large |
CAT | Catalase |
C/EBPα | CCAAT/enhancer-binding protein alpha |
COX-2 | Cyclo-oxygenase-2 |
Cyt-c | Cytochrome c |
DHA | Docosahexaenoic acid |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl (radical-scavenging assay) |
EPA | Eicosapentaenoic acid |
ERK | Extracellular signal-regulated kinase |
FAK | Focal adhesion kinase |
FAS | Fatty acid synthase |
FRAP | Ferric-reducing antioxidant power (assay) |
GPx | Glutathione peroxidase |
HO-1 | Heme oxygenase-1 |
HSV-1 | Herpes simplex virus type 1 |
HSV-2 | Herpes simplex virus type 2 |
IC50 | Half-maximal inhibitory concentration |
IFN-γ | Interferon gamma |
IL-1β | Interleukin 1 beta |
IL-6 | Interleukin 6 |
IL-8 | Interleukin 8 |
iNOS | Inducible nitric-oxide synthase |
IRS1 | Insulin receptor substrate 1 |
JNK | c-Jun N-terminal kinase |
LDH | Lactate dehydrogenase |
LPS | Lipopolysaccharide |
LXR | Liver X receptor |
LXRα | Liver X receptor alpha |
LXRβ | Liver X receptor beta |
MAPK | Mitogen-activated protein kinase |
MDA | Malondialdehyde |
MIC | Minimum inhibitory concentration |
MMP2 | Matrix metalloproteinase-2 |
MMP9 | Matrix metalloproteinase-9 |
MRSA | Methicillin-resistant Staphylococcus aureus |
MPO | Myeloperoxidase |
NF-κB | Nuclear factor κB |
Nrf2 | Nuclear factor erythroid 2–related factor 2 |
NO | Nitric oxide |
ORAC | Oxygen radical absorbance capacity (assay) |
PARP | Poly(ADP-ribose) polymerase |
PFU | Plaque-forming unit |
PI3K | Phosphatidylinositol 3-kinase |
PGE2 | Prostaglandin E2 |
PPARγ | Peroxisome proliferator-activated receptor gamma |
ROCK | Rho-associated protein kinase |
ROS | Reactive oxygen species |
RSV | Respiratory syncytial virus |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
SCFA | Short-chain fatty acid |
SOD | Superoxide dismutase |
SREBP-1 | Sterol regulatory element-binding protein-1 |
TIMP-1 | Tissue inhibitor of metalloproteinases-1 |
TNF-α | Tumor necrosis factor alpha |
ZO-1 | Zonula occludens-1 |
References
- Peñalver, R.; Lorenzo, J.M.; Ros, G.; Amarowicz, R.; Pateiro, M.; Nieto, G. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar. Drugs 2020, 18, 301. [Google Scholar] [CrossRef]
- Liu, J.; Luthuli, S.; Wu, Q.; Wu, M.; Choi, J.I.L.; Tong, H. Pharmaceutical and Nutraceutical Potential Applications of Sargassum fulvellum. Biomed. Res. Int. 2020, 2020, 2417410. [Google Scholar] [CrossRef]
- Lozano Muñoz, I.; Díaz, N.F. Minerals in Edible Seaweed: Health Benefits and Food Safety Issues. Crit. Rev. Food Sci. Nutr. 2022, 62, 1592–1607. [Google Scholar] [CrossRef]
- Mouritsen, O.G.; Rhatigan, P.; Cornish, M.L.; Critchley, A.T.; Pérez-Lloréns, J.L. Saved by Seaweeds: Phyconomic Contributions in Times of Crises. J. Appl. Phycol. 2021, 33, 443–458. [Google Scholar] [CrossRef]
- Lopez-Santamarina, A.; Miranda, J.M.; Del, A.; Mondragon, C.; Lamas, A.; Cardelle-Cobas, A.; Franco, C.M.; Cepeda, A. Molecules Potential Use of Marine Seaweeds as Prebiotics: A Review. Molecules 2020, 25, 1004. [Google Scholar] [CrossRef] [PubMed]
- Múzquiz De La Garza, A.R.; Tapia-Salazar, M.; Maldonado-Muñiz, M.; De La Rosa-Millán, J.; Gutiérrez-Uribe, J.A.; Santos-Zea, L.; Barba-Dávila, B.A.; Ricque-Marie, D.; Cruz-Suárez, L.E. Nutraceutical Potential of Five Mexican Brown Seaweeds. Biomed. Res. Int. 2019, 2019, 3795160. [Google Scholar] [CrossRef] [PubMed]
- Plouguerné, E.; da Gama, B.A.P.; Pereira, R.C.; Barreto-Bergter, E. Glycolipids from Seaweeds and Their Potential Biotechnological Applications. Front. Cell Infect. Microbiol. 2014, 4, 109195. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Luthuli, S.; Yang, Y.; Cheng, Y.; Zhang, Y.; Wu, M.; Choi, J.; Tong, H. Therapeutic and Nutraceutical Potentials of a Brown Seaweed Sargassum fusiforme. Food Sci. Nutr. 2020, 8, 5195–5205. [Google Scholar] [CrossRef]
- Pangestuti, R.; Kim, S.K. Neuroprotective Effects of Marine Algae. Mar. Drugs 2011, 9, 803. [Google Scholar] [CrossRef]
- Croft, M.T.; Lawrence, A.D.; Raux-Deery, E.; Warren, M.J.; Smith, A.G. Algae Acquire Vitamin B12 through a Symbiotic Relationship with Bacteria. Nature 2005, 438, 90–93. [Google Scholar] [CrossRef]
- Gotteland, M.; Riveros, K.; Gasaly, N.; Carcamo, C.; Magne, F.; Liabeuf, G.; Beattie, A.; Rosenfeld, S. The Pros and Cons of Using Algal Polysaccharides as Prebiotics. Front. Nutr. 2020, 7, 571548. [Google Scholar] [CrossRef]
- Biris-Dorhoi, E.S.; Michiu, D.; Pop, C.R.; Rotar, A.M.; Tofana, M.; Pop, O.L.; Socaci, S.A.; Farcas, A.C. Macroalgae-A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients 2020, 12, 3085. [Google Scholar] [CrossRef]
- Gomez-Zavaglia, A.; Prieto Lage, M.A.; Jimenez-Lopez, C.; Mejuto, J.C.; Simal-Gandara, J. The Potential of Seaweeds as a Source of Functional Ingredients of Prebiotic and Antioxidant Value. Antioxidants 2019, 8, 406. [Google Scholar] [CrossRef]
- Perumal, B.; Chitra, R.; Maruthupandian, A.; Viji, M. Nutritional Assessment and Bioactive Potential of Sargassum polycystum C. Agardh (Brown Seaweed). Indian J. Geo. Mar. Sci. 2019, 48, 492–498. [Google Scholar]
- Debbarma, J.; Madhusudana Rao, B.; Narasimha Murthy, L.; Mathew, S.; Venkateshwarlu, G.; Ravishankar, C.N. Nutritional Profiling of the Edible Seaweeds Gracilaria edulis, Ulva lactuca and Sargassum sp. Indian J. Fish. 2016, 63, 81–87. [Google Scholar] [CrossRef]
- Abdul Malik, S.A.; Bedoux, G.; Garcia Maldonado, J.Q.; Freile-Pelegrín, Y.; Robledo, D.; Bourgougnon, N. Defence on Surface: Macroalgae and Their Surface-Associated Microbiome. Adv. Bot. Res. 2020, 95, 327–368. [Google Scholar] [CrossRef]
- Menaa, F.; Wijesinghe, U.; Thiripuranathar, G.; Althobaiti, N.A.; Albalawi, A.E.; Khan, B.A.; Menaa, B. Marine Algae-Derived Bioactive Compounds: A New Wave of Nanodrugs? Mar. Drugs 2021, 19, 484. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Heinrich, M.; Myers, S.; Dworjanyn, S.A. Towards a Better Understanding of Medicinal Uses of the Brown Seaweed Sargassum in Traditional Chinese Medicine: A Phytochemical and Pharmacological Review. J. Ethnopharmacol. 2012, 142, 591–619. [Google Scholar] [CrossRef] [PubMed]
- Rocha, D.H.A.; Seca, A.M.L.; Pinto, D.C.G.A. Seaweed Secondary Metabolites In Vitro and In Vivo Anticancer Activity. Mar. Drugs 2018, 16, 410. [Google Scholar] [CrossRef]
- Ilyas, Z.; Ali Redha, A.; Wu, Y.S.; Ozeer, F.Z.; Aluko, R.E. Nutritional and Health Benefits of the Brown Seaweed Himanthalia elongata. Plant Foods Hum. Nutr. 2023, 78, 233–242. [Google Scholar] [CrossRef]
- Kumar, S.; Sahoo, D.; Levine, I. Assessment of Nutritional Value in a Brown Seaweed Sargassum wightii and Their Seasonal Variations. Algal Res. 2015, 9, 117–125. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Mohamed, A.A.; Mohamed, H.I.; Ramadan, K.M.A.; Barqawi, A.A.; Mansour, A.T. Phytochemical and Potential Properties of Seaweeds and Their Recent Applications: A Review. Mar. Drugs 2022, 20, 342. [Google Scholar] [CrossRef]
- Martins, A.; Alves, C.; Silva, J.; Pinteus, S.; Gaspar, H.; Pedrosa, R. Sulfated Polysaccharides from Macroalgae—A Simple Roadmap for Chemical Characterization. Polymers 2023, 15, 399. [Google Scholar] [CrossRef]
- Gowda, S.G.B.; Yifan, C.; Gowda, D.; Tsuboi, Y.; Chiba, H.; Hui, S.P. Analysis of Antioxidant Lipids in Five Species of Dietary Seaweeds by Liquid Chromatography/Mass Spectrometry. Antioxidants 2022, 11, 1538. [Google Scholar] [CrossRef]
- López González, I.E.; Lucho Constantino, C.A.; López Pérez, P.A. La Invasión de Sargazo: De Un Problema Ambiental a Un Área de Oportunidad. Tópicos Investig. Cienc. Tierra Mater. 2023, 10, 18–26. [Google Scholar] [CrossRef]
- Devault, D.A.; Modestin, E.; Cottereau, V.; Vedie, F.; Stiger-Pouvreau, V.; Pierre, R.; Coynel, A.; Dolique, F. The Silent Spring of Sargassum. Environ. Sci. Pollut. Res. 2021, 28, 15580–15583. [Google Scholar] [CrossRef]
- Mattio, L.; Payri, C.E. 190 Years of Sargassum Taxonomy, Facing the Advent of DNA Phylogenies. Bot. Rev. 2011, 77, 31–70. [Google Scholar] [CrossRef]
- Wang, M.; Hu, C. Mapping and Quantifying Sargassum Distribution and Coverage in the Central West Atlantic Using MODIS Observations. Remote Sens. Environ. 2016, 183, 350–367. [Google Scholar] [CrossRef]
- Djakouré, S.; Araujo, M.; Hounsou-Gbo, A.; Noriega, C.; Bourlès, B. On the Potential Causes of the Recent Pelagic Sargassum Blooms Events in the Tropical North Atlantic Ocean. 2017, 1–20. [Google Scholar] [CrossRef]
- Milledge, J.J.; Harvey, P.J. Golden Tides: Problem or Golden Opportunity? The Valorisation of Sargassum from Beach Inundations. J. Mar. Sci. Eng. 2016, 4, 60. [Google Scholar] [CrossRef]
- Lee, M.K.; Ryu, H.; Lee, J.Y.; Jeong, H.H.; Baek, J.; Van, J.Y.; Kim, M.J.; Jung, W.K.; Lee, B. Potential Beneficial Effects of Sargassum spp. in Skin Aging. Mar. Drugs 2022, 20, 540. [Google Scholar] [CrossRef] [PubMed]
- Rushdi, M.I.; Abdel-Rahman, I.A.M.; Saber, H.; Attia, E.Z.; Abdelraheem, W.M.; Madkour, H.A.; Hassan, H.M.; Elmaidomy, A.H.; Abdelmohsen, U.R. Pharmacological and Natural Products Diversity of the Brown Algae Genus Sargassum. RSC Adv. 2020, 10, 24951–24972. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yuan, C.; Zhang, X.; Liu, Y.; Fu, M.; Xiao, J. Interannual Variations of Sargassum Blooms in the Yellow Sea and East China Sea during 2017–2021. Harmful Algae 2023, 126, 102451. [Google Scholar] [CrossRef]
- Han, S.; Park, J.S.; Umanzor, S.; Yarish, C.; Kim, J.K. Effects of Extraction Methods for a New Source of Biostimulant from Sargassum horneri on the Growth of Economically Important Red Algae, Neopyropia Yezoensis. Sci. Rep. 2022, 12, 11878. [Google Scholar] [CrossRef]
- Abdel-Rahim, M.; Bahattab, O.; Nossir, F.; Al-Awthan, Y.; Khalil, R.H.; Mohamed, R. Dietary Supplementation of Brown Seaweed and/or Nucleotides Improved Shrimp Performance, Health Status and Cold-Tolerant Gene Expression of Juvenile Whiteleg Shrimp during the Winter Season. Mar. Drugs 2021, 19, 175. [Google Scholar] [CrossRef]
- Abu Hafsa, S.H.; Hassan, A.A. The Effect of Sargassum siliquastrum Supplementation on Growth Performance, Cecal Fermentation, Intestine Histomorphology, and Immune Response of Japanese Quails. Animals 2022, 12, 432. [Google Scholar] [CrossRef]
- Al-Khalaifah, H.S.; Al-Nasser, A.; Surrayai, T. Effects from Dietary Addition of Sargassum Sp., Spirulina Sp., or Gracilaria Sp. Powder on Immune Status in Broiler Chickens. Front. Vet. Sci. 2022, 9, 928235. [Google Scholar] [CrossRef]
- Angulo, C.; Chavez-Infante, L.; Reyes-Becerril, M.; Angulo, M.; Romero-Geraldo, R.; Llinas-Cervantes, X.; Cepeda-Palacios, R. Immunostimulatory and Antioxidant Effects of Supplemental Feeding with Macroalga Sargassum spp. on Goat Kids. Trop. Anim. Health Prod. 2020, 52, 2023–2033. [Google Scholar] [CrossRef]
- Ellamie, A.M.; Fouda, W.A.; Ibrahim, W.M.; Ramadan, G. Dietary Supplementation of Brown Seaweed (Sargassum latifolium) Alleviates the Environmental Heat Stress-Induced Toxicity in Male Barki Sheep (Ovis aries). J. Therm. Biol. 2020, 89, 102561. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.J.; Shih, B.L.; Lin, H.C.; Lee, T.T.; Lee, C.F.; Lin, Y.F. Effect of Dietary Supplementation of Sargassum Meal on Laying Performance and Egg Quality of Leghorn Layers. Anim. Biosci. 2021, 34, 449–456. [Google Scholar] [CrossRef]
- Hung, C.C.; Chen, B.J.; Liao, J.W.; Tai, Y.P.; Chen, C.Y. The Effect of Ulva lactuca and Sargassum hemiphyllum Var. Chinense on Arsenic Metabolites and Enzymes in Broilers. Food Chem. 2021, 342, 128346. [Google Scholar] [CrossRef]
- Ramadan, G.; Fouda, W.A.; Ellamie, A.M.; Ibrahim, W.M. Dietary Supplementation of Sargassum latifolium Modulates Thermo-Respiratory Response, Inflammation, and Oxidative Stress in Bacterial Endotoxin-Challenged Male Barki Sheep. Env. Environ. Sci. Pollut. Res. Int. 2020, 27, 33863–33871. [Google Scholar] [CrossRef]
- Vazirzadeh, A.; Marhamati, A.; Rabiee, R.; Faggio, C. Immunomodulation, Antioxidant Enhancement and Immune Genes up-Regulation in Rainbow Trout (Oncorhynchus mykiss) Fed on Seaweeds Included Diets. Fish. Shellfish. Immunol. 2020, 106, 852–858. [Google Scholar] [CrossRef]
- Yokoi, K.; Konomi, A. Toxicity of So-Called Edible Hijiki Seaweed (Sargassum fusiforme) Containing Inorganic Arsenic. Regul. Toxicol. Pharmacol. 2012, 63, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Flores, P.A.; Gobert, T.; Méndez-Rodríguez, L.C.; Serviere-Zaragoza, E.; Connan, S.; Robledo, D.; Freile-Pelegrín, Y.; de Anda Montañez, J.A.; Waeles, M. Inorganic Arsenic in Holopelagic sargassum spp. Stranded in the Mexican Caribbean: Seasonal Variations and Comparison with International Regulations and Guidelines. Aquat. Bot. 2023, 188, 103674. [Google Scholar] [CrossRef]
- Dujardin, B.; Ferreira de Sousa, R.; Gómez Ruiz, J.Á. Dietary Exposure to Heavy Metals and Iodine Intake via Consumption of Seaweeds and Halophytes in the European Population. EFSA J. 2023, 21, e07798. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Martinez, J.; Hernández-Cruz, K.; Franco-Colín, M.; Mateo-Cid, L.E.; Mendoza-Gonzalez, C.; Blas-Valdivia, V.; Cano-Europa, E. Safety Evaluation and Antiobesogenic Effect of Sargassum liebmannii J. Agardh (Fucales: Phaeophyceae) in Rodents. J. Appl. Phycol. 2019, 31, 2597–2607. [Google Scholar] [CrossRef]
- Cisneros-Ramos, K.I.; Gutiérrez-Castañeda, M.; Magaña-Gallegos, E.; Villegas-Pañeda, A.G.; Monroy-Velázquez, L.V.; Barba-Santos, M.G.; Gaxiola-Cortés, M.G.; van Tussenbroek, B.I. From Inundations to Golden Opportunity: Turning Holopelagic sargassum spp. into a Valuable Feed Ingredient through Arsenic Removal. Phycology 2024, 4, 384–393. [Google Scholar] [CrossRef]
- Bonilla Loaiza, A.M.; Rodríguez-Jasso, R.M.; Belmares, R.; López-Badillo, C.M.; Gomes, R.G.; Aguilar, C.N.; Chávez, M.L.; Aguilar, M.A.; Ruiz, H.A. Fungal Proteins from Sargassum spp. Using Solid-State Fermentation as a Green Bioprocess Strategy. Molecules 2022, 27, 3887. [Google Scholar] [CrossRef]
- Wang, L.; Cui, Y.R.; Oh, S.; Paik, M.J.; Je, J.G.; Heo, J.H.; Lee, T.K.; Fu, X.; Xu, J.; Gao, X.; et al. Arsenic Removal from the Popular Edible Seaweed Sargassum fusiforme by Sequential Processing Involving Hot Water, Citric Acid, and Fermentation. Chemosphere 2022, 292, 133409. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, M.; Liu, M.; Li, Z.B.; Chen, Z.; Huang, B. Continuous Sargassum monitoring across the Caribbean Sea and Central Atlantic using multi-sensor satellite observations. Remote Sens. Environ. 2024, 309, 114223. [Google Scholar] [CrossRef]
- McGillicuddy, D.J.; Morton, P.L.; Brewton, R.A.; Hu, C.; Kelly, T.B.; Solow, A.R.; Lapointe, B.E. Nutrient and arsenic biogeochemistry of Sargassum in the western Atlantic. Nat. Commun. 2023, 14, 6205. [Google Scholar] [CrossRef]
- Kim, H.; Jo, J.; Yang, J.H.; Ettahi, K.; Jeon, Y.; Yu, J.; Bhattacharya, D.; Kwak, J.H.; Yoon, H.S. Genome evolution of two intertidal Sargassum species (S. fusiforme and S. thunbergii) and their response to abiotic stressors. Genome Biol. Evol. 2025, 17, evaf084. [Google Scholar] [CrossRef]
- Tsaniya, A.R.; Dewi, E.N.; Anggo, A.D. Characteristics of liquid organic fertilizer from different composition types of seaweed between Gracilaria sp. and Sargassum sp. J. Phys. Conf. Ser. 2021, 1943, 012071. [Google Scholar] [CrossRef]
- Sedayu, B.B.; Erawan, M.S.; Assadad, L. Liquid Fertilizer from Eucheuma cottonii, Sargassum sp. and Gracilaria sp. using Composting Process. JPB Perikan. 2014, 9, 61–68. [Google Scholar]
- Bhernama, B.G.; Kurniawan, H.; Bellia, S.; Abad, F.; Asmara, A.P. Study of physical parameters on Sargassum liquid fertilizer production and its nutrient contents. IOP Conf. Ser. Earth Environ. Sci. 2024, 1356, 012024. [Google Scholar]
- Levarity, T.B.; Gustave, W. The use of seaweed Sargassum sp. extract as a bio-fertilizer. Int. J. Bahamian Stud. 2024, 30, 33–42. [Google Scholar]
- Ouala, O.; Essadki, Y.; Redouane, E.M.; Cherifi, O.; El Khalloufi, F.; Oudra, B. Application of Sargassum muticum as a nature-based fertilizer to enhance the growth of Capsicum annuum L. plants. J. Taibah Univ. Sci. 2025, 19, 2484925. [Google Scholar] [CrossRef]
- Adderley, A.; Wallace, S.; Stubbs, D.; Bowen-O’Connor, C.; Ferguson, J.; Watson, C.; Gustave, W. Sargassum sp. as a biofertilizer: Is it really a key towards sustainable agriculture for The Bahamas? Bull. Natl. Res. Cent. 2023, 47, 112. [Google Scholar] [CrossRef]
- Mazariegos-Villarreal, A.; Serviere-Zaragoza, E.; López-Vivas, J.M.; Freile-Pelegrín, Y.; Reyes-Bonilla, H.; León-Cisneros, K.; Wurl, J.; Méndez-Rodríguez, L.C. Relationship between arsenic content and macroelements, microelements, and polysaccharides in Sargassum horridum (Ochrophyta, Phaeophyceae) in the Gulf of California, Mexico. Aquat. Bot. 2024, 191, 103730. [Google Scholar] [CrossRef]
- Ordóñez, J.I.; Cortés, S.; Maluenda, P.; Soto, I. Biosorption of Heavy Metals with Algae: Critical Review of Its Application in Real Effluents. Sustainability 2023, 15, 5521. [Google Scholar] [CrossRef]
- Saldarriaga-Hernandez, S.; Hernandez-Vargas, G.; Iqbal, H.M.N.; Barceló, D.; Parra-Saldívar, R. Bioremediation Potential of Sargassum Sp. Biomass to Tackle Pollution in Coastal Ecosystems: Circular Economy Approach. Sci. Total Environ. 2020, 715, 136978. [Google Scholar] [CrossRef]
- Huang, Z.; Bi, R.; Musil, S.; Pétursdóttir, Á.H.; Luo, B.; Zhao, P.; Tan, X.; Jia, Y. Arsenic Species and Their Health Risks in Edible Seaweeds Collected along the Chinese Coastline. Sci. Total Environ. 2022, 847, 157429. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, R.E.; Roy, P.D.; Torrescano-Valle, N.; Cabanillas-Terán, N.; Carrillo-Domínguez, S.; Collado-Vides, L.; García-Sánchez, M.; van Tussenbroek, B.I. Element Concentrations in Pelagic Sargassum along the Mexican Caribbean Coast in 2018–2019. PeerJ 2020, 2020, e8667. [Google Scholar] [CrossRef] [PubMed]
- Bogie, J.; Hoeks, C.; Schepers, M.; Tiane, A.; Cuypers, A.; Leijten, F.; Chintapakorn, Y.; Suttiyut, T.; Pornpakakul, S.; Struik, D.; et al. Dietary Sargassum fusiforme improves memory and reduces amyloid plaque load in an Alzheimer’s disease mouse model. Sci. Rep. 2019, 9, 4908. [Google Scholar] [CrossRef]
- Olguin-Maciel, E.; Leal-Bautista, R.M.; Alzate-Gaviria, L.; Domínguez-Maldonado, J.; Tapia-Tussell, R. Environmental impact of Sargassum spp. landings: An evaluation of leachate released from natural decomposition at Mexican Caribbean coast. Environ. Sci. Pollut. Res. Int. 2022, 29, 91071–91080. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.L.; Jiang, Y.F.; Lee, H.G.; Jeon, Y.J.; Kang, M.C. Characterization and screening of anti-tumor activity of fucoidan from acid-processed hijiki (Hizikia fusiforme). Int. J. Biol. Macromol. 2019, 139, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Fu, Y.; Chen, K.; Sun, Y.; Zhou, C.; Han, J.; Yan, X. The dietary supplementation of Sargassum fusiforme can effectively alleviate high-fat diet induced metabolic abnormalities. Algal Res. 2024, 83, 103722. [Google Scholar] [CrossRef]
- Murakami, S.; Hirazawa, C.; Ohya, T.; Yoshikawa, R.; Mizutani, T.; Ma, N.; Moriyama, M.; Ito, T.; Matsuzaki, C. The Edible Brown Seaweed Sargassum horneri (Turner) C. Agardh Ameliorates High-Fat Diet-Induced Obesity, Diabetes, and Hepatic Steatosis in Mice. Nutrients 2021, 13, 551. [Google Scholar] [CrossRef]
- Du Preez, R.; Magnusson, M.; Majzoub, M.E.; Thomas, T.; Praeger, C.; Glasson, C.R.K.; Panchal, S.K.; Brown, L. Brown Seaweed Sargassum siliquosum as an Intervention for Diet-Induced Obesity in Male Wistar Rats. Nutrients 2021, 13, 1754. [Google Scholar] [CrossRef]
- Manggau, M.; Kasim, S.; Fitri, N.; Aulia, N.S.; Agustiani, A.N.; Raihan, M.; Nurdin, W.B. Antioxidant, Anti-Inflammatory and Anticoagulant Activities of Sulfate Polysaccharide Isolate from Brown Alga Sargassum policystum. IOP Conf. Ser. Earth Environ. Sci. 2022, 967, 012029. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.W.; Ahn, G.; Fu, X.; Xu, J.; Gao, X.; Jeon, Y.J. In Vitro and In Vivo Anti-Inflammatory Effects of Sulfated Polysaccharides Isolated from the Edible Brown Seaweed, Sargassum fulvellum. Mar. Drugs 2021, 19, 277. [Google Scholar] [CrossRef] [PubMed]
- Saraswati; Giriwono, P.E.; Iskandriati, D.; Andarwulan, N. Screening of In-Vitro Anti-Inflammatory and Antioxidant Activity of Sargassum ilicifolium Crude Lipid Extracts from Different Coastal Areas in Indonesia. Mar. Drugs 2021, 19, 252. [Google Scholar] [CrossRef]
- Sanjeewa, K.K.A.; Fernando, I.P.S.; Kim, S.Y.; Kim, H.S.; Ahn, G.; Jee, Y.; Jeon, Y.J. In Vitro and in Vivo Anti-Inflammatory Activities of High Molecular Weight Sulfated Polysaccharide; Containing Fucose Separated from Sargassum horneri: Short Communication. Int. J. Biol. Macromol. 2018, 107, 803–807. [Google Scholar] [CrossRef]
- Luo, D.; Wang, Z.; Nie, K. Structural Characterization of a Novel Polysaccharide from Sargassum Thunbergii and Its Antioxidant and Anti-Inflammation Effects. PLoS ONE 2019, 14, e0223198. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Fernando, I.P.S.; Lee, S.H.; Ko, S.C.; Kang, M.C.; Ahn, G.; Je, J.G.; Sanjeewa, K.K.A.; Rho, J.R.; Shin, H.J.; et al. Isolation and Characterization of Anti-Inflammatory Compounds from Sargassum horneri via High-Performance Centrifugal Partition Chromatography and High-Performance Liquid Chromatography. Algal Res. 2021, 54, 102209. [Google Scholar] [CrossRef]
- Jayawardena, T.U.; Asanka Sanjeewa, K.K.; Nagahawatta, D.P.; Lee, H.G.; Lu, Y.A.; Vaas, A.P.J.P.; Abeytunga, D.T.U.; Nanayakkara, C.M.; Lee, D.S.; Jeon, Y.J. Anti-Inflammatory Effects of Sulfated Polysaccharide from Sargassum swartzii in Macrophages via Blocking TLR/NF-Κb Signal Transduction. Mar. Drugs 2020, 18, 601. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Wang, S.H.; Huang, C.Y.; Dong, C.D.i.; Huang, C.Y.; Chang, C.C.; Chang, J.S. Effect of Molecular Mass and Sulfate Content of Fucoidan from Sargassum siliquosum on Antioxidant, Anti-Lipogenesis, and Anti-Inflammatory Activity. J. Biosci. Bioeng. 2021, 132, 359–364. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Jayawardena, T.U.; Sanjeewa, K.K.A.; Wang, L.; Jeon, Y.J.; Lee, W.W. Anti-Inflammatory Potential of Alginic Acid from Sargassum horneri against Urban Aerosol-Induced Inflammatory Responses in Keratinocytes and Macrophages. Ecotoxicol. Environ. Saf. 2018, 160, 24–31. [Google Scholar] [CrossRef]
- Jeon, H.; Yoon, W.J.; Ham, Y.M.; Yoon, S.A.; Kang, S.C. Anti-Arthritis Effect through the Anti-Inflammatory Effect of Sargassum muticum Extract in Collagen-Induced Arthritic (CIA) Mice. Molecules 2019, 24, 276. [Google Scholar] [CrossRef]
- Zhang, S.; Cao, Y.; Wang, Z.; Liu, H.; Teng, Y.; Li, G.; Liu, J.; Xia, X. Fermented Sargassum fusiforme Mitigates Ulcerative Colitis in Mice by Regulating the Intestinal Barrier, Oxidative Stress, and the NF-ΚB Pathway. Foods 2023, 12, 1928. [Google Scholar] [CrossRef]
- Wu, T.; Liu, Y.; Ai, X.; Wang, S.; Hou, A.; Zheng, F.; Yue, H.; Dai, Y. Fucoidan JHCF4s from Hizikia fusiformis against ethanol-induced damage in vitro and in vivo. Food Sci. Biotechnol. 2025, 34, 2295–2306. [Google Scholar] [CrossRef]
- Zhuang, S.J.; Xu, H.K.; Hu, X.; Wu, T.C.; Li, J.N.; Lee, H.G.; Yu, P.; Dai, Y.L.; Jeon, Y.J. In vitro and in vivo anti-inflammatory properties of an active fucoidan fraction from Sargassum fusiforme and a fraction-based hydrogel. Int. J. Biol. Macromol. 2024, 265 Pt 1, 130866. [Google Scholar] [CrossRef]
- Husni, A.; Izmi, N.; Ayunani, F.Z.; Kartini, A.; Husnayain, N.; Isnansetyo, A. Characteristics and Antioxidant Activity of Fucoidan from Sargassum hystrix: Effect of Extraction Method. Int. J. Food Sci. 2022, 2022, 3689724. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; Hu, C.; Liu, A.; Chen, J.; Gu, C.; Zhang, X.; You, C.; Tong, H.; Wu, M.; et al. Sargassum fusiforme Fucoidan SP2 Extends the Lifespan of Drosophila Melanogaster by Upregulating the Nrf2-Mediated Antioxidant Signaling Pathway. Oxidative Med. Cell. Longev. 2019, 2019, 8918914. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Jeong, J.W.; Lee, D.S.; Yim, M.J.; Lee, J.M.; Han, M.H.; Kim, S.; Kim, H.S.; Kim, G.Y.; Park, E.K.; et al. Sargassum serratifolium Extract Attenuates Interleukin-1β-Induced Oxidative Stress and Inflammatory Response in Chondrocytes by Suppressing the Activation of NF-ΚB, P38 MAPK, and PI3K/Akt. Int. J. Mol. Sci. 2018, 19, 2308. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, H.; Wang, Y.; Peng, Z.; Guo, Z.; Ma, Y.; Zhang, R.; Zhang, M.; Wu, Q.; Xiao, J.; et al. Effects of Different Extraction Methods on Contents, Profiles, and Antioxidant Abilities of Free and Bound Phenolics of Sargassum Polycystum from the South China Sea. J. Food Sci. 2022, 87, 968–981. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhang, Y.; Yuan, Y.; Farooq, M.A.; Fayyaz, M.S.; Su, D.; Zeng, Q.; Rahaman, A. Process Optimization and Antioxidative Activity of Polyphenols Derived from Different Seaweed Species Sargassum miyabei, Undaria pinnatifida Suringar, and Sargassum thunbergii. Food Sci. Nutr. 2022, 10, 2021–2028. [Google Scholar] [CrossRef] [PubMed]
- Shobharani, P.; Nanishankar, V.H.; Halami, P.M.; Sachindra, N.M. Antioxidant and Anticoagulant Activity of Polyphenol and Polysaccharides from Fermented Sargassum sp. Int. J. Biol. Macromol. 2014, 65, 542–548. [Google Scholar] [CrossRef]
- Gheda, S.; Hamouda, R.A.; Naby, M.A.; Mohamed, T.M.; Al-Shaikh, T.M.; Khamis, A. Potent Effect of Phlorotannins Derived from Sargassum linifolium as Antioxidant and Antidiabetic in a Streptozotocin-Induced Diabetic Rats Model. Appl. Sci. 2023, 13, 4711. [Google Scholar] [CrossRef]
- Yim, M.J.; Lee, J.M.; Kim, H.S.; Choi, G.; Kim, Y.M.; Lee, D.S.; Choi, I.W. Inhibitory Effects of a Sargassum miyabei Yendo on Cutibacterium Acnes- Induced Skin Inflammation. Nutrients 2020, 12, 2620. [Google Scholar] [CrossRef]
- Sohail, N.; Farhat, H.; Qureshi, S.A.; Ullah, I.; Ali, M.S. The brown algae: Sargassum binderi sonder shows a potential nephroprotective activity in in-vivo experimental model. Ann. Pharm. Françaises 2024, 82, 1046–1061. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Shi, Q.; Wen, Z.; Wang, J.; Qin, C. Potential effects of Sargassum kjellmanianum as a dietary supplement on the growth performance, immunity response, antioxidant status, and ammonia resistance of yellow catfish (Pelteobagrus fulvidraco). Aquac. Rep. 2024, 36, 102181. [Google Scholar] [CrossRef]
- Wang, L.; Cui, Y.R.; Lee, H.G.; Fu, X.; Wang, K.; Xu, J.; Gao, X.; Jeon, Y.J. Fucoidan Isolated from Fermented Sargassum fusiforme Suppresses Oxidative Stress through Stimulating the Expression of Superoxidase Dismutase and Catalase by Regulating Nrf2 Signaling Pathway. Int. J. Biol. Macromol. 2022, 209, 935–941. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jang, S.; Song, H.J.; Lee, S.; Cheon, S.; Seo, E.J.; Choi, Y.H.; Kim, S.H. Sargassum horneri extract fermented by Lactiplantibacillus pentosus SH803 mediates adipocyte metabolism in 3T3-L1 preadipocytes by regulating oxidative damage and inflammation. Sci. Rep. 2024, 14, 15064. [Google Scholar] [CrossRef]
- Ray, B.; Ali, I.; Jana, S.; Mukherjee, S.; Pal, S.; Ray, S.; Schütz, M.; Marschall, M. Antiviral Strategies Using Natural Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 Pandemic and Major Human Pathogenic Viruses. Viruses 2021, 14, 35. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, X.; Zhang, L.; Liu, H.; Liu, S.; Yu, H.; Wang, X.; Qin, Y.; Li, P. The Antiviral Property of Sargassum fusiforme Polysaccharide for Avian Leukosis Virus Subgroup J in Vitro and in Vivo. Int. J. Biol. Macromol. 2019, 138, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.L.; Li, Y.; Ni, L.Q.; Li, Y.X.; Cui, Y.S.; Jiang, S.L.; Xie, E.Y.; Du, J.; Deng, F.; Dong, C.X. Structural Characterization and Antiviral Activity of Two Fucoidans from the Brown Algae Sargassum henslowianum. Carbohydr. Polym. 2020, 229, 115487. [Google Scholar] [CrossRef]
- Jyotsna; Vijayakumar, P.; Dhas, T.S.; Mani, R.; Raguraman, V. Antiviral Activity of Sulfated Polysaccharides from Sargassum ilicifolium against Fish Betanodavirus Infection. Aquac. Int. 2021, 29, 1049–1067. [Google Scholar] [CrossRef]
- de Regla Ponce Rey, L.; Gloria del Carmen del Barrio Alonso, I.; Iraida Spengler Salabarría, I.; Sonia Resik Aguirre, I.; Annele Roque Quintero, I.I. Evaluación de La Actividad Antiviral Del Alga Parda Sargassum fluitans Frente a Echovirus 9. Rev. Cuba Med. Trop. 2018, 70, 1–10. [Google Scholar]
- Kang, N.; Kim, E.A.; Park, A.; Heo, S.Y.; Heo, J.H.; Heo, S.J. Antiviral potential of fucoxanthin, an edible carotenoid purified from Sargassum siliquastrum, against Zika virus. Mar. Drugs 2024, 22, 247. [Google Scholar] [CrossRef]
- Fu, X.; Huang, P.; Zhang, Y.; Li, Y.; Hu, S. Cordycepin, lactoferrin, and Sargassum fusiforme polysaccharides protect against RSV via M2-like macrophage polarization. Front. Immunol. 2025, 16, 1576069. [Google Scholar] [CrossRef]
- Gheda, S.; Karkour, A.M.; Shafay, S.E.; GabAllah, M.; Cotas, J.; Pereira, L. Polysaccharides from brown seaweeds (Padina boergesenii and Sargassum euryphyllum) as promising inhibitors of SARS-CoV-2: Characterization, mechanisms, and therapeutic potential. Macromol 2025, 5, 18. [Google Scholar] [CrossRef]
- León-Buitimea, A.; Morones-Ramírez, J.R.; Yang, J.H.; Peña-Miller, R. Editorial: Facing the Upcoming of Multidrug-Resistant and Extensively Drug-Resistant Bacteria: Novel Antimicrobial Therapies (NATs). Front. Bioeng. Biotechnol. 2021, 9, 636278. [Google Scholar] [CrossRef]
- Huang, C.Y.; Kuo, C.H.; Lee, C.H. Antibacterial and Antioxidant Capacities and Attenuation of Lipid Accumulation in 3T3-L1 Adipocytes by Low-Molecular-Weight Fucoidans Prepared from Compressional-Puffing-Pretreated Sargassum Crassifolium. Mar. Drugs 2018, 16, 24. [Google Scholar] [CrossRef]
- Ishwarya, R.; Vaseeharan, B.; Subbaiah, S.; Nazar, A.K.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Al-anbr, M.N. Sargassum wightii-Synthesized ZnO Nanoparticles—From Antibacterial and Insecticidal Activity to Immunostimulatory Effects on the Green Tiger Shrimp Penaeus Semisulcatus. J. Photochem. Photobiol. B 2018, 183, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Albratty, M.; Alhazmi, H.A.; Meraya, A.M.; Najmi, A.; Alam, M.S.; Rehman, Z.; Moni, S.S. Spectral Analysis and Antibacterial Activity of the Bioactive Principles of Sargassum tenerrimum J. Agardh Collected from the Red Sea, Jazan, Kingdom of Saudi Arabia. Braz. J. Biol. 2021, 83, e249536. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, S.; Vinosha, M.; Rajasekar, P.; Anjali, R.; Sathiyaraj, G.; Marudhupandi, T.; Selvam, S.; Prabhu, N.M.; You, S.G. Antibacterial Efficacy of a Fucoidan Fraction (Fu-F2) Extracted from Sargassum polycystum. Int. J. Biol. Macromol. 2019, 125, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Moni, S.S.; Alam, M.F.; Makeen, H.A.; Alhazmi, H.A.; Sultan, M.; Siddiqui, R.; Jabeen, A.; Sanobar, S.; Alam, M.S.; Rehman, Z.U.; et al. Solvent Extraction, Spectral Analysis and Antibacterial Activity of the Bioactive Crystals of Sargassum aquifolium (Turner) C.Agardh from Red Sea. Nat. Prod. Res. 2021, 35, 1379–1383. [Google Scholar] [CrossRef]
- Ashayerizadeh, O.; Dastar, B.; Pourashouri, P. Study of Antioxidant and Antibacterial Activities of Depolymerized Fucoidans Extracted from Sargassum tenerrimum. Int. J. Biol. Macromol. 2020, 151, 1259–1266. [Google Scholar] [CrossRef]
- Putluru, S.; Snega, R.; Geetha Sravanthy, P.; Saravanan, M. One-pot synthesis of silver/zirconium nanoparticles using Sargassum tenerrimum for the evaluation of their antibacterial and antioxidant activities. Cureus 2024, 16, e61779. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, O.M.S.; Hemmer, J.V.; Wanderlind, E.H.; Gasparetto, R.L.; de Souza, E.S.M.; Fontoura, A.; dos Santos, A.L.H.; Bella-Cruz, A.; Tamanaha, M.; Radetski, C.M.; et al. Marine algae for antimicrobial applications: Silver nanoparticles prepared with Sargassum cymosum extract. ChemistrySelect 2025, 10, e202405940. [Google Scholar] [CrossRef]
- Liu, X.; Yin, Q.; Zhu, F.; Cheng, D.; Tang, H.; Yang, N.; Liu, Y. Antimicrobial effect and mechanism of Sargassum carpophyllum extract against fish-spoilage Pseudomonas sp. CL2. Food Biosci. 2025, 71, 107041. [Google Scholar] [CrossRef]
- Sekirov, I.; Russell, S.L.; Caetano, M.; Antunes, L.; Finlay, B.B. Gut Microbiota in Health and Disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef]
- Slavin, J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients 2013, 5, 1417. [Google Scholar] [CrossRef]
- Ramnani, P.; Chitarrari, R.; Tuohy, K.; Grant, J.; Hotchkiss, S.; Philp, K.; Campbell, R.; Gill, C.; Rowland, I. In Vitro Fermentation and Prebiotic Potential of Novel Low Molecular Weight Polysaccharides Derived from Agar and Alginate Seaweeds. Anaerobe 2012, 18, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Neish, A.S. Microbes in Gastrointestinal Health and Disease. Gastroenterology 2009, 136, 65–80. [Google Scholar] [CrossRef]
- Charoensiddhi, S.; Abraham, R.E.; Su, P.; Zhang, W. Seaweed and Seaweed-Derived Metabolites as Prebiotics. Adv. Food Nutr. Res. 2020, 91, 97–156. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.B.; Sweeney, T.; Callan, J.J.; O’Sullivan, J.T.; O’Doherty, J.V. The Effect of Dietary Laminaria-Derived Laminarin and Fucoidan on Nutrient Digestibility, Nitrogen Utilisation, Intestinal Microflora and Volatile Fatty Acid Concentration in Pigs. J. Sci. Food Agric. 2010, 90, 430–437. [Google Scholar] [CrossRef]
- Fu, X.; Cao, C.; Ren, B.; Zhang, B.; Huang, Q.; Li, C. Structural Characterization and in Vitro Fermentation of a Novel Polysaccharide from Sargassum thunbergii and Its Impact on Gut Microbiota. Carbohydr. Polym. 2018, 183, 230–239. [Google Scholar] [CrossRef]
- Yang, C.F.; Lai, S.S.; Chen, Y.H.; Liu, D.; Liu, B.; Ai, C.; Wan, X.Z.; Gao, L.Y.; Chen, X.H.; Zhao, C. Anti-Diabetic Effect of Oligosaccharides from Seaweed Sargassum confusum via JNK-IRS1/PI3K Signalling Pathways and Regulation of Gut Microbiota. Food Chem. Toxicol. 2019, 131, 110562. [Google Scholar] [CrossRef]
- Wei, B.; Xu, Q.L.; Zhang, B.; Zhou, T.S.; Ke, S.Z.; Wang, S.J.; Wu, B.; Xu, X.W.; Wang, H. Comparative Study of Sargassum fusiforme Polysaccharides in Regulating Cecal and Fecal Microbiota of High-Fat Diet-Fed Mice. Mar. Drugs 2021, 19, 364. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, S.; Cheng, Y.; Liu, Q.; Su, L.; Yang, Y.; Zhang, X.; Wu, M.; Choi, J.-I.; Tong, H. Sargassum fusiforme Alginate Relieves Hyperglycemia and Modulates Intestinal Microbiota and Metabolites in Type 2 Diabetic Mice. Nutrients 2021, 13, 2887. [Google Scholar] [CrossRef]
- Jiang, L.; Song, C.; Ai, C.; Wen, C.; Song, S. Modulation effect of sulfated polysaccharide from Sargassum fusiforme on gut microbiota and their metabolites in vitro fermentation. Front. Nutr. 2024, 11, 1400063. [Google Scholar] [CrossRef]
- Li, F.; Tian, J.; Xu, Y.; Yi, W.; Chen, Q.; Wang, J.; Jiang, S.; Tang, Y.; Han, T. Physicochemical characteristics and therapeutic mechanisms of Sargassum horneri-derived soluble dietary fiber in cyclophosphamide-induced intestinal damage via gut microbiota and metabolic modulation. Food Biosci. 2025, 71, 106996. [Google Scholar] [CrossRef]
- Blüher, M. Obesity: Global Epidemiology and Pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Lee, H.-G.; Kim, H.-S.; Je, J.-G.; Hwang, J.; Asanka Sanjeewa, K.K.; Lee, D.-S.; Song, K.-M.; Choi, Y.-S.; Kang, M.-C.; Jeon, Y.-J.; et al. Lipid Inhibitory Effect of (−)-Loliolide Isolated from Sargassum horneri in 3T3-L1 Adipocytes: Inhibitory Mechanism of Adipose-Specific Proteins. Mar. Drugs 2021, 19, 96. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Y.; San, S. Efficacy of a Novel ACE-Inhibitory Peptide from Sargassum Maclurei in Hypertension and Reduction of Intracellular Endothelin-1. Nutrients 2020, 12, 653. [Google Scholar] [CrossRef]
- Geurts, K.A.M.; Meijer, S.; Roeters van Lennep, J.E.; Wang, X.; Özcan, B.; Voortman, G.; Liu, H.; Castro Cabezas, M.; Berk, K.A.; Mulder, M.T. The Effect of Sargassum fusiforme and Fucus vesiculosus on Continuous Glucose Levels in Overweight Patients with Type 2 Diabetes Mellitus: A Feasibility Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024, 16, 1837. [Google Scholar] [CrossRef] [PubMed]
- Priambodo, A.F.; Martati, E.; Firdaus, M. Hypoglycemic activity of brown seaweed (Sargassum plagiophyllum) kombucha bioactive compound in rat model type-2 of diabetes. BIO Web Conf. 2025, 154, 02009. [Google Scholar] [CrossRef]
- Pan, T.J.; Li, L.X.; Zhang, J.W.; Yang, Z.S.; Shi, D.M.; Yang, Y.K.; Wu, W.Z. Antimetastatic Effect of Fucoidan-Sargassum against Liver Cancer Cell Invadopodia Formation via Targeting Integrin AVβ3 and Mediating AVβ3/Src/E2F1 Signaling. J. Cancer 2019, 10, 4777. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Sanjeewa, K.K.A.; Lee, H.G.; Kim, H.S.; Prasanna Vaas, A.P.J.; de Silva, H.I.C.; Nanayakkara, C.M.; Abeytunga, D.T.U.; Lee, D.S.; Lee, J.S.; et al. Fucoidan Purified from Sargassum polycystum Induces Apoptosis through Mitochondria-Mediated Pathway in HL-60 and MCF-7 Cells. Mar. Drugs 2020, 18, 196. [Google Scholar] [CrossRef]
- Li, X.; Xin, S.; Zheng, X.; Lou, L.; Ye, S.; Li, S.; Wu, Q.; Ding, Q.; Ji, L.; Nan, C.; et al. Inhibition of the Occurrence and Development of Inflammation-Related Colorectal Cancer by Fucoidan Extracted from Sargassum fusiforme. J. Agric. Food Chem. 2022, 70, 9463–9476. [Google Scholar] [CrossRef]
- Yan, M.D.e.; Yao, C.J.; Chow, J.M.; Chang, C.L.; Hwang, P.A.; Chuang, S.E.; Whang-Peng, J.; Lai, G.M. Fucoidan Elevates MicroRNA-29b to Regulate DNMT3B-MTSS1 Axis and Inhibit EMT in Human Hepatocellular Carcinoma Cells. Mar. Drugs 2015, 13, 6099. [Google Scholar] [CrossRef] [PubMed]
- González-Garrido, J.A.; Gómez-García, J.A.; Hernández-Abreu, O.I.; Olivares-Corichi, I.M.; Pereyra-Vergara, F.; García-Sánchez, J.R. Anticancer Activity of Sargassum fluitans Extracts in Different Cancer Cells. Anticancer. Agents Med. Chem. 2024, 24, 745–754. [Google Scholar] [CrossRef]
- El Newehy, A.S.; Ghedda, S.F.; Ismail, M.M.; Aldisi, D.; Abulmeaty, M.M.; Elshobary, M.E. Gold nanoparticles enhance the antioxidant and anticancer properties of fucoidan from Turbinaria decurrens and Sargassum cinereum: In silico and in vitro insights. Preprints 2025, 2025022224. [Google Scholar] [CrossRef]
- Diego-González, L.; Álvarez-Viñas, M.; Simón-Vázquez, R.; Domínguez, H.; Torres, M.D.; Flórez-Fernández, N. Characterization of the antiproliferative activity of Sargassum muticum low- and high-molecular-weight polysaccharide fractions. Mar. Drugs 2023, 22, 16. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, P.J.A.; Khan, A.; Uddin, N.; Khaliq, S.; Rasheed, M.; Nawaz, S.; Dar, A.; Hanif, M. Sargassum swartzii Extracts Ameliorate Memory Functions by Neurochemical Modulation in a Rat Model. Food Sci. Biotechnol. 2017, 26, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.W.; Ryu, G.; Soo, H.P.; Eun, S.K.; Shin, J.; Seok, S.R.; Hyeon, C.S.; Bong, H.L. Anticholinesterase Activity of Plastoquinones from Sargassum sagamianum: Lead Compounds for Alzheimer’s Disease Therapy. Phytother. Res. 2007, 21, 423–426. [Google Scholar] [CrossRef]
- Kamal, M.A.; Qu, X.; Yu, Q.S.; Tweedie, D.; Holloway, H.W.; Li, Y.; Tan, Y.; Greig, N.H. Tetrahydrofurobenzofuran Cymserine, a Potent Butyrylcholinesterase Inhibitor and Experimental Alzheimer Drug Candidate, Enzyme Kinetic Analysis. J. Neural. Transm. 2008, 115, 889–898. [Google Scholar] [CrossRef]
- Lee, S.G.; Kang, H. Neuroprotective Effect of Sargassum thunbergii (Mertens Ex Roth) Kuntze in Activated Murine Microglial Cells. Trop. J. Pharm. Res. 2015, 14, 235–240. [Google Scholar] [CrossRef]
- Hong, D.D.; Thom, L.T.; Ha, N.C.; Thu, N.T.H.; Hien, H.T.M.; Tam, L.T.; Dat, N.M.; Duc, T.M.; Tru, N.V.a.n.; Hang, N.T.M.; et al. Isolation of Fucoxanthin from Sargassum oligocystum Montagne, 1845 Seaweed in Vietnam and Its Neuroprotective Activity. Biomedicines 2023, 11, 2310. [Google Scholar] [CrossRef] [PubMed]
- Martens, N.; Zhan, N.; Yam, S.C.; Leijten, F.P.J.; Palumbo, M.; Caspers, M.; Tiane, A.; Friedrichs, S.; Li, Y.; van Vark-van der Zee, L.; et al. Dietary supplementation with seaweed extracts reduces Alzheimer’s disease symptoms in the APPswePS1ΔE9 mouse model. Nutrients 2024, 16, 1614. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, H.; Xu, J.; Le, J.; Rong, W.; Zhu, Z.; Chen, Y.; Hu, C.; Cai, J.; Hong, Y.; et al. Long-term fucoxanthin treatment prevents cognitive impairments and neuroinflammation via the inhibition of Nogo-A in APP/PS1 transgenic mice. Food Funct. 2025, 16, 3891–3903. [Google Scholar] [CrossRef] [PubMed]
Features | Observations | Applications | Reference(s) |
---|---|---|---|
Diversity and taxonomy | A total of 615 species described based on classical morphological classification and validation with DNA markers. Four subgenera: Sargassum, Arthrophycus together with Bactrophycus, Phyllotrichia and Trevistan. | Provides a phylogenetic framework for evolutionary studies in comparative metabolomics. | [25,26,27] |
Ecological function (“Sargasso Sea”) | Captures c. 7% of carbon fixed in the ocean Critical habitat for 100 species of fish + 145 species of invertebrates. | Natural indicator of productivity and carbon sinks for climate models. | [28,29,30] |
Ethnomedical use and bioactive compounds | A total of 78 species evaluated and c. 200 metabolites isolated (e.g., polysaccharides, sulfated, polyphenols, etc.). | Basis for nutraceuticals and cosmeceuticals with antioxidants, anti-inflammatories and anti-aging activity. | [18,31,32] |
Massive blooms and pelagic distribution | Sargassum fluitans and S. natans (Caribbean, May-Sept). S. horneri (Asia, Oriental). | Impact on socioeconomics and tourism; need for satellite-based early warning systems. | [28,29,33] |
Industrial valorization | Agriculture (bio-stimulants), cosmetics, biotechnology, paper-textile, construction and pharmaceutical. | Circular economy—converting wastewater into high-value bioproducts. | [25,34] |
Animal feed | Used for fish, poultry and ruminants to increase immunity, provide antioxidants, enhance feed conversion and decrease pathogens, bacteria and mortality. | Functional substitute for growth-promoting antibiotics. | [35,36,37,38,39,40,41,42,43] |
Heavy metals (source of key risks) | Inorganic arsenic (10–100 ppm) surpasses the boundaries permitted in food forage and fertilizers in many countries. | Limited direct use; requires removal of arsenic before consumption. | [44,45,46,47] |
Mitigation technologies | Use of hot water, organic acids, fermentation and biosorption to decrease arsenic to <3 ppm; scalable processes. | Enables food security and adds value to stranded biomass. | [48,49,50] |
Satellite monitoring of blooms | Near real-time mapping: Use of MODIS, VIIRS and OLCI images that deliver biomass maps over periods of 3 days with less than 15% error. | Enables early warnings and more precise planning of landfill cleanup. | [51] |
Elemental composition and toxicity | When phosphorus is low, inorganic arsenic content doubles in Sargassum, surpassing safe levels; however, N and P are 30% higher in the Sargasso Sea. | Identifies risk sources and determines the necessary pretreatment for food or agricultural uses. | [52] |
Genomic and environmental adaptation | Specific gene duplications in Sargassum fusiforme and S. thunbergii explain their high tolerance to salinity, temperature and radiation. | Provides molecular targets for biotechnological improvement and conservation strategies. | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Narváez, A.; Olvera-Ramírez, A.M.; Castaño-Sánchez, K.; Chávez-Servín, J.L.; Reis de Souza, T.C.; McEwan, N.R.; Ferriz-Martínez, R.A. Therapeutic and Nutraceutical Potential of Sargassum Species: A Narrative Review. Mar. Drugs 2025, 23, 343. https://doi.org/10.3390/md23090343
Torres-Narváez A, Olvera-Ramírez AM, Castaño-Sánchez K, Chávez-Servín JL, Reis de Souza TC, McEwan NR, Ferriz-Martínez RA. Therapeutic and Nutraceutical Potential of Sargassum Species: A Narrative Review. Marine Drugs. 2025; 23(9):343. https://doi.org/10.3390/md23090343
Chicago/Turabian StyleTorres-Narváez, Alejandra, Andrea Margarita Olvera-Ramírez, Karen Castaño-Sánchez, Jorge Luis Chávez-Servín, Tércia Cesária Reis de Souza, Neil Ross McEwan, and Roberto Augusto Ferriz-Martínez. 2025. "Therapeutic and Nutraceutical Potential of Sargassum Species: A Narrative Review" Marine Drugs 23, no. 9: 343. https://doi.org/10.3390/md23090343
APA StyleTorres-Narváez, A., Olvera-Ramírez, A. M., Castaño-Sánchez, K., Chávez-Servín, J. L., Reis de Souza, T. C., McEwan, N. R., & Ferriz-Martínez, R. A. (2025). Therapeutic and Nutraceutical Potential of Sargassum Species: A Narrative Review. Marine Drugs, 23(9), 343. https://doi.org/10.3390/md23090343