Analysis of Fatty Acid Profile, α-Tocopherol, Squalene and Cholesterol Content in Edible Parts and By-Products of South Pacific Wild Fishes
Abstract
:1. Introduction
2. Results
2.1. Moisture and Lipid Content in Fish Fillets and By-Products
2.2. Fatty Acid Profiles
2.3. Nutritional Quality Indices
2.4. α-Tocopherol, Squalene and Cholesterol Content
3. Discussion
3.1. Moisture and Lipid Content in Fish Fillets and By-Products
3.2. Fatty Acid Profile and Lipid Quality Indices
3.3. α-Tocopherol, Squalene and Cholesterol Content
4. Materials and Methods
4.1. Reagents and Samples
4.2. Lipid Extraction
4.3. Fatty Acid Analysis
4.4. Lipid Nutritional Quality Indices
4.5. Analysis of α-Tocopherol
4.6. Analysis of Squalene and Cholesterol
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gil, A.; Gil, F. Fish, a Mediterranean source of n-3 PUFA: Benefits do not justify limiting consumption. Br. J. Nutr. 2015, 113, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, B.P.; Mahanty, A.; Ganguly, S.; Mitra, T.; Karunakaran, D.; Anandan, R. Nutritional composition of food fishes and their importance in providing food and nutritional security. Food Chem. 2019, 293, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Am. Soc. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Mello, A.H.; Fornari Uberti, M.; Farias, B.X.; Ribas de Souza, N.A.; Rezin, G.T. N-3 PUFA and obesity: From peripheral tissues to the central nervous system. Br. J. Nutr. 2018, 119, 1312–1323. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ren, X.; Fan, C.; Wu, W.; Zhang, W.; Wang, Y. Health benefits, food applications, and sustainability of microalgae-derived n-3 PUFA. Foods 2022, 11, 1883. [Google Scholar] [CrossRef]
- Elgar, K. EPA/DHA: A review of clinical use and efficacy. Nutr. Med. J. 2022, 2, 95–130. [Google Scholar]
- Rincón-Cervera, M.A.; González, V.; Valenzuela, R.; López, S.; Romero, J.; Valenzuela, A. Profile and distribution of fatty acids in edible parts of commonly consumed marine fishes in Chile. Food Chem. 2019, 274, 123–129. [Google Scholar] [CrossRef]
- Rincón-Cervera, M.A.; González, V.; Romero, J.; Rojas, R.; López, S. Quantification and distribution of omega-3 fatty acids in South Pacific fish and shellfish species. Foods 2020, 9, 233. [Google Scholar] [CrossRef]
- Banegas-Vizuete, G.; Cortés-Pizarro, E.; Fosado-Téllez, O. Fish residue management plan for the Craft Fishing Port of Coquimbo. Rev. Agrociencias 2018, 19, 91–114. [Google Scholar]
- Ahmmed, M.K.; Ahmmed, F.; Stewart, I.; Carne, A.; Tian, H.S.; Ahmed-Bekhit, A.D. Omega-3 phospholipids in Pacific blue mackerel (Scomber australasicus) processing by products. Food Chem. 2021, 353, 129451. [Google Scholar] [CrossRef]
- Abiona, O.O.; Awojide, S.H.; Anifowose, A.J.; Adegunwa, A.O.; Agbaje, W.B.; Tayo, A.S. Quality characteristics of extracted oil from the head and gills of Catfish and Titus fish. Bull. Natl. Res. Centre 2021, 45, 101. [Google Scholar] [CrossRef]
- Fiori, L.; Solana, M.; Tosi, P.; Manfrini, M.; Strim, C.; Guella, G. Lipid profiles of oil from trout (Oncorhynchus mykiss) heads, spines and viscera: Trout by-products as a possible source of omega-3 lipids? Food Chem. 2012, 134, 1088–1095. [Google Scholar] [CrossRef]
- Shahidi, F.; Pinaffi-Langley, A.C.C.; Fuentes, J.; Speisky, H.; Costa de Camargo, A. Vitamin E as an essential micronutrient for human health: Common, novel, and unexplored dietary sources. Free Rad. Biol. Med. 2021, 176, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Ji, T.; Zhang, M.; Fang, B. Recent advances in squalene: Biological activities, sources, extraction, and delivery systems. Trends Food Sci. Technol. 2024, 146, 104392. [Google Scholar] [CrossRef]
- Zhao, B.; Gan, L.; Graubard, B.I.; Männistö, S.; Albanes, D.; Huang, J. Associations of dietary cholesterol, serum cholesterol, and egg consumption with overall and cause-specific mortality: Systematic review and updated meta-analysis. Circulation 2022, 145, 1506–1520. [Google Scholar] [CrossRef]
- Bandarra, N.M.; Batista, I.; Nunes, M.L.; Empis, J.M. Seasonal variation in the chemical composition of horse-mackerel (Trachurus trachurus). Eur. Food Res. Technol. 2001, 212, 535–539. [Google Scholar] [CrossRef]
- Aranda, M.; Mendoza, N.; Villegas, R. Lipid damage during frozen storage of whole jack mackerel (Trachurus symmetricus murphyi). J. Food Lipids 2006, 13, 155–166. [Google Scholar] [CrossRef]
- Bastías, J.M.; Balladares, P.; Acuña, S.; Quevedo, R.; Muñoz, O. Determining the effect of different cooking methods on the nutritional composition of salmon (Salmo salar) and chilean jack mackerel (Trachurus murphyi) fillets. PLoS ONE 2017, 12, e0180993. [Google Scholar] [CrossRef] [PubMed]
- Nazeer, R.A.; Kumar, N.S.S. Fatty acid composition of horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber). Asian Pac. J. Trop. Dis. 2012, 2, S933–S936. [Google Scholar] [CrossRef]
- Gencbay, G.; Turhan, S. Proximate composition and nutritional profile of the Black Sea anchovy (Engraulis encrasicholus) whole fish, fillets, and by-products. J. Aquat. Food Prod. Technol. 2016, 25, 864–874. [Google Scholar] [CrossRef]
- Kutlu, S.; Balçik-Misir, G.; Erteken, A. Fatty acid composition and cholesterol content of some economic marine fish in Turkish waters. Aquat. Food Stud. 2021, 1, AFS25. [Google Scholar] [CrossRef]
- Ögretmen, O.Y. The effect of migration on fatty acid, amino acid, and proximate compositions of the Black Sea anchovy (Engraulis encrasicolus, Linne 1758) from Turkey, Georgia, and Abkhazia. J. Food Comp. Anal. 2022, 105, 104197. [Google Scholar] [CrossRef]
- Celik, M. Seasonal changes in the proximate chemical compositions and fatty acids of chub mackerel (Scomber japonicus) and horse mackerel (Trachurus trachurus) from the north eastern Mediterranean Sea. Int. J. Food Sci. Technol. 2008, 43, 933–938. [Google Scholar] [CrossRef]
- Guizani, S.E.O.; Moujahed, N. Seasonal variation of chemical and fatty acids composition in Atlantic mackerel from the Tunisian northern-east coast. J. Food Process Technol. 2015, 6, 9. [Google Scholar]
- Ferreira, I.; Gomes-Bispo, A.; Lourenço, H.; Matos, J.; Afonso, C.; Cardoso, C.; Castanheira, I.; Motta, C.; Prates, J.A.M.; Bandarra, N.M. The chemical composition and lipid profile of the chub mackerel (Scomber colias) show a strong seasonal dependence: Contribution to a nutritional evaluation. Biochimie 2020, 178, 181–189. [Google Scholar] [CrossRef]
- Yilmaz, H.A. Proximate composition, fatty acid and amino acid profiles of narrow-barred Spanish mackerel (Scomberomorus commerson) fillets from Iskenderun Bay in the north-eastern Mediterranean Sea. J. Agr. Sci. 2021, 27, 441–448. [Google Scholar]
- Saini, R.K.; Prasad, P.; Shang, X.; Keum, Y.S. Advances in lipid extraction methods—A review. Int. J. Mol. Sci. 2021, 22, 13643. [Google Scholar] [CrossRef]
- Hara, A.; Radin, N.S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Rincón-Cervera, M.A.; Villarreal-Rubio, M.B.; Valenzuela, R.; Valenzuela, A. Comparison of fatty acid profiles of dried and raw by-products from cultured and wild fishes. Eur. J. Lipid Sci. Technol. 2017, 119, 1600516. [Google Scholar] [CrossRef]
- Osako, K.; Saito, H.; Hossain, M.A.; Kuwahara, K.; Okamoto, A. Docosahexaenoic acid levels in the lipids of spotted mackerel Scomber australasicus. Lipids 2006, 41, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Ho, Q.T.; Dahl, L.; Nedreaas, K.; Azad, A.M.; Bank, M.S.; Berg, F.; Wiech, M.; Frantzen, S.; Sanden, M.; Wehde, H.; et al. Modelling seasonal and geographical n-3 polyunsaturated fatty acid contents in marine fish from the Northeast Atlantic Ocean. Enrivon. Res. 2024, 252, 119021. [Google Scholar] [CrossRef]
- Bruno, S.F.; Ekorong, F.J.A.A.; Karkal, S.S.; Cathrine, M.S.B.; Kudre, T.G. Green and innovative techniques for recovery of valuable compounds from seafood by-products and discards: A review. Trends Food Sci. Technol. 2019, 85, 10–22. [Google Scholar] [CrossRef]
- Ideia, P.; Pinto, J.; Ferreira, R.; Figueiredo, L.; Spínola, V.; Castilho, P.C. Fish processing industry residues: A review of valuable products extraction and characterization methods. Waste Biomass Valori 2020, 11, 3223–3246. [Google Scholar] [CrossRef]
- Bayrakli, B. A study on fatty acid composition and quality indicators of anchovy (Engraulis encrasicolus) oils from different factories. Mar. Sci. Tech. Bull. 2023, 12, 522–529. [Google Scholar] [CrossRef]
- Di Bella, G.; Litrenta, F.; Pino, S.; Tropea, A.; Potorti, A.G.; Nava, V.; Lo Turco, V. Variations in fatty acid composition of Mediterranean anchovies (Engraulis encrasicolus) after different cooking methods. Eur. Food Res. Technol. 2022, 248, 2285–2290. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, S.Y.; Lee, S.C.; Jeong, Y.R.; Roy, V.C.; Rizkyana, A.D.; Chun, B.S. Edible oil extracted from anchovies using supercritical CO2: Availability of fat-soluble vitamins and comparison with commercial oils. J. Food Process Preserv. 2021, 45, e15441. [Google Scholar] [CrossRef]
- Merdzhanova, A.; Stancheva, M.; Dobreva, D.A.; Makedonski, L. Fatty acid and fat soluble vitamins composition of raw and cooked Black Sea horse mackerel. Ovidius Univ. Ann. Che 2013, 24, 27–34. [Google Scholar] [CrossRef]
- Orban, E.; Di Lena, G.; Nevigato, T.; Masci, M.; Casini, I.; Caproni, R. Proximate, unsaponifiable lipid and fatty acid composition of bogue (Boops boops) and horse mackerel (Trachurus trachurus) from the Italian trawl fishery. J. Food Comp. Anal. 2011, 24, 1110–1116. [Google Scholar] [CrossRef]
- Hernández-Martínez, M.; Gallardo-Velázquez, T.; Osorio-Revilla, G.; Castañeda-Pérez, E.; Uribe-Hernández, K. Characterization of Mexican fishes according to fatty acid profile and fat nutritional indices. Int. J. Food Prop. 2016, 19, 1401–1412. [Google Scholar] [CrossRef]
- Morales-Medina, R.; De León, G.; Munio, M.; Guadix, A.; Guadix, E. Mass transfer modelling of sardine oil polyunsaturated fatty acids (PUFA) concentration by low temperature crystallization. J. Food Eng. 2016, 183, 16–23. [Google Scholar] [CrossRef]
- Cho, S.; Kim, S.Y.; Yoon, M.; Kim, S.B. Physicochemical profiles of chub mackerel Scomber japonicus bones as a food resource. Fish. Aquat. Sci. 2014, 17, 175–180. [Google Scholar] [CrossRef]
- Pastor, R.; Bouzas, C.; Tur, J.A. Beneficial effects of dietary supplementation with olive oil, oleic acid, or hydroxytyrosol in metabolic syndrome: Systematic review and me-ta-analysis. Free Rad. Biol. Med. 2021, 172, 372–385. [Google Scholar] [CrossRef]
- Tutunchi, H.; Ostadrahimi, A.; Saghafi-Asl, M. The effects of diets enriched in mono-unsaturated oleic acid on the management and prevention of obesity: A systematic review of human intervention studies. Adv. Nutr. 2020, 11, 864–877. [Google Scholar] [CrossRef]
- Rincón-Cervera, M.A.; Bravo-Sagua, R.; Soares-Freitas, R.A.M.; López-Arana, S.; Costa de Camargo, A. Monounsaturated and polyunsaturated fatty acids: Structure, food sources, biological functions, and their preventive role against noncommunicable diseases. In Bioactive Food Components Activity in Mechanistic Approach; Cazarin, C.B.B., Pastore, G.M., Bicas, J.L., Marostica Junior, M.R., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2022; pp. 185–210. [Google Scholar]
- Jesús, S.S.; Ferreira, G.F.; Moreira, L.S.; Maciel, M.R.W.; Filho, R.M. Comparison of several methods for effective lipid extraction from wet microalgae using green solvents. Renew. Energy 2019, 143, 130–141. [Google Scholar] [CrossRef]
- Liput, K.P.; Lepczynski, A.; Ogluzska, M.; Nawrocka, A.; Polawska, E.; Grzesiak, A.; Slaska, B.; Pareek, C.S.; Czarnik, U.; Pierzchala, M. Effects of dietary n-3 and n-6 polyunsaturated fatty acids in inflammation and cancerogenesis. Int. J. Mol. Sci. 2021, 22, 6965. [Google Scholar] [CrossRef]
- Wei, Y.; Meng, Y.; Li, N.; Wang, Q.; Chen, L. The effects of low-ratio n-6/n-3 PUFA on biomarkers of inflammation: A systematic review and meta-analysis. Food Funct. 2021, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- Roy, V.C.; Park, J.S.; Ho, T.C.; Chun, B.S. Lipid indices and quality evaluation of omega-3 rich oil from the waste of Japanese Spanish mackerel extracted by supercritical CO2. Mar. Drugs 2022, 20, 70. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes, C.; Rincón, M.A. Analysis of fatty acid content and estimation of nutritional quality indices in canned tuna. Rev. Chil. Nutr. 2022, 49, 588–597. [Google Scholar] [CrossRef]
- Rigueto, C.V.T.; Oliveira, R.; Gomes, K.S.; Alessandretti, I.; Nazari, M.T.; Rosseto, M.; Krein, D.D.C.; Loss, R.A.; Dettmer, A. From waste to value-added products: A review of opportunities for fish waste valorization. Environ. Qual. Manag. 2023, 33, 203–221. [Google Scholar] [CrossRef]
- Arai, H.; Kono, N. α-Tocopherol transfer protein (α-TTP). Free Rad. Biol. Med. 2021, 176, 162–175. [Google Scholar] [CrossRef]
- Szewczyk, K.; Górnicka, M. Dietary vitamin E isoforms intake: Development of a new tool to assess tocopherols and tocotrienols intake in adults. Nutrients 2023, 15, 3759. [Google Scholar] [CrossRef] [PubMed]
- Salma, E.O.; Nizar, M. Fat-soluble vitamins contents in Atlantic Mackerel from the North East of Tunisia. Int. J. Agric. Innov. Res. 2014, 3, 702–706. [Google Scholar]
- Devadason, C.; Jayasinghe, C.V.L.; Sivaganehsan, R.; Gotoh, N. Fatty acid composition and tocopherol content of processed marine fish and contribution of omega-3 fatty acids. Indian J. Fish. 2019, 66, 118–124. [Google Scholar] [CrossRef]
- Aminullah-Bhuiyan, A.K.M.; Ratnayake, W.M.N.; Ackman, R.G. Nutritional composition of raw and smoked Atlantic mackerel (Scomber scombrus): Oil- and water-soluble vitamins. J. Food Comp. Anal. 1993, 6, 172–184. [Google Scholar] [CrossRef]
- Yerlikaya, P.; Alp, A.C.; Tokay, F.G.; Aygun, T.; Kaya, A.; Topuz, O.K.; Yatmaz, H.A. Determination of fatty acids and vitamins A, D and E intake through fish consumption. Int. J. Food Sci. Technol. 2022, 57, 653–661. [Google Scholar] [CrossRef]
- Polat, A.; Özogul, Y.; Kuley, E.; Özogul, F.; Özyurt, G.; Simsek, A. Tocopherol content of commercial fish species as affected by microwave cooking. J. Food Biochem. 2013, 37, 381–387. [Google Scholar] [CrossRef]
- Lyashenko, S.; Chileh-Chelh, T.; Rincón-Cervera, M.A.; Lyashenko, S.P.; Ishenko, Z.; Denisenko, O.; Karpenko, V.; Torres-García, I.; Guil-Guerrero, J.L. Screening of lesser-known salted-dried fish species for fatty acids, tocols, and squalene. Foods 2023, 12, 1083. [Google Scholar] [CrossRef] [PubMed]
- Ozogul, F.; Kuley, E.; Ozogul, Y. Sterol content of fish, crustacean and mollusc: Effects of cooking methods. Int. J. Food Prop. 2015, 18, 2026–2041. [Google Scholar] [CrossRef]
- Dihn, T.T.N.; Thompson, L.D.; Galyean, M.L.; Brooks, J.C.; Patterson, K.Y.; Boylan, M.L. Cholesterol content and methods for cholesterol determination in meat and poultry. Comp. Rev. Food Sci. Food Safety 2011, 10, 269–289. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Delmonte, P.; Milani, A.; Kramer, J.K.G. Tutorial for the characterization of fatty acid methyl esters by gas chromatography with highly polar capillary columns. J. AOAC Int. 2021, 104, 288–299. [Google Scholar] [CrossRef]
- Arias-Santé, M.F.; López-Puebla, S.; Costa de Camargo, A.; Guil-Guerrero, J.L.; Rincón-Cervera, M.A. Development and validation of a simple analytical method to quantify tocopherol isoforms in food matrices by HPLC-UV-vis. Appl. Sci. 2024, 14, 8750. [Google Scholar] [CrossRef]
- Spiric, A.; Trbovic, D.; Vranic, D.; Djinovic, J.; Petronijevic, R.; Matekalo-Sverak, V. Statistical evaluation of fatty acid profile and cholesterol content in fish (common carp) lipids obtained by different sample preparation procedures. Anal. Chim. Acta 2010, 672, 66–71. [Google Scholar] [CrossRef] [PubMed]
Anchovy | Chilean Jack Mackerel | Chub Mackerel | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Viscera | Bones | Head | Fillet | Viscera | Bones | Head | Fillet | Viscera | Bones | Head | Fillet | |
Moisture (%) | 72.6 ± 0.8 D | 69.5 ± 0.6 C | 72.3 ± 0.8 D | 76.0 ± 0.8 E | 70.7 ± 1.1 CD | 64.6 ± 0.7 B | 69.8 ± 1.0 C | 72.3 ± 0.4 D | 66.1 ± 0.6 B | 65.6 ± 0.8 B | 69.7 ± 0.5 C | 62.0 ± 0.6 A |
Lipid amount (g/100 g dw) | ||||||||||||
Folch | 25.6 ± 1.5 aA | 14.5 ± 1.2 aC | 17.0 ± 0.5 aB | 9.6 ± 0.9 aD | 21.8 ± 2.0 aA | 11.8 ± 0.8 aB | 20.5 ± 0.7 aA | 10.1 ± 0.9 aC | 45.8 ± 1.5 aA | 24.4 ± 1.3 aB | 25.1 ± 0.4 aB | 26.4 ± 2.5 aB |
Hex:2-PrOH | 22.3 ± 1.9 aA | 13.9 ± 0.4 aB | 12.5 ± 1.0 bB | 5.4 ± 0.5 bC | 18.7 ± 0.8 bB | 12.6 ± 0.4 aC | 20.5 ± 1.1 aA | 10.6 ± 0.8 aD | 45.6 ± 0.9 aA | 27.0 ± 1.5 aB | 20.4 ± 1.1 bC | 29.2 ± 1.8 aB |
Fatty Acids | Fillet | Head | Bones | Viscera | ||||
---|---|---|---|---|---|---|---|---|
Folch | Hex:2-PrOH | Folch | Hex:2-PrOH | Folch | Hex:2-PrOH | Folch | Hex:2-PrOH | |
C14:0 | 6.91 ± 0.02 a | 7.50 ± 0.23 a | 10.75 ± 0.12 b | 10.61 ± 0.25 b | 10.81 ± 0.21 bc | 11.42 ± 0.42 c | 12.33 ± 0.20 d | 12.99 ± 0.19 e |
C15:0 | 0.33 ± 0.02 a | 0.39 ± 0.02 a | 0.57 ± 0.01 bc | 0.60 ± 0.05 c | 0.46 ± 0.03 ab | 0.57 ± 0.09 bc | 0.53 ± 0.05 bc | 0.62 ± 0.07 c |
C16:0 | 21.54 ± 0.21 a | 20.82 ± 0.13 a | 25.82 ± 0.47 c | 25.02 ± 0.55 c | 23.65 ± 0.18 b | 23.66 ± 0.35 b | 27.19 ± 0.49 d | 28.92 ± 0.31 e |
C17:0 | 0.39 ± 0.03 ab | 0.37 ± 0.02 a | 0.57 ± 0.04 cd | 0.54 ± 0.03 bcd | 0.44 ± 0.02 abc | 0.48 ± 0.09 abc | 0.65 ± 0.09 d | 0.68 ± 0.07 d |
C18:0 | 3.93 ± 0.02 ab | 3.51 ± 0.10 a | 5.68 ± 0.34 e | 4.86 ± 0.11 d | 4.37 ± 0.07 c | 4.30 ± 0.11 bc | 5.88 ± 0.13 ef | 6.17 ± 0.10 f |
C20:0 | 0.07 ± 0.01 a | 0.09 ± 0.00 a | 0.20 ± 0.02 c | 0.17 ± 0.01 bc | 0.15 ± 0.02 b | 0.16 ± 0.03 bc | 0.15 ± 0.01 b | 0.15 ± 0.02 b |
C24:0 | 0.06 ± 0.01 ab | 0.09 ± 0.01 bc | 0.12 ± 0.03 c | 0.08 ± 0.00 bc | 0.09 ± 0.02 bc | 0.06 ± 0.01 ab | 0.03 ± 0.01 a | 0.09 ± 0.01 bc |
Σ SFA | 33.24 ± 0.22 a | 32.77 ± 0.29 a | 43.71 ± 0.59 c | 41.87 ± 0.62 bc | 39.97 ± 0.29 b | 40.66 ± 0.57 b | 46.76 ± 0.55 d | 49.62 ± 0.39 e |
C16:1 n-7 | 7.12 ± 0.03 a | 8.79 ± 0.50 b | 11.83 ± 0.31 c | 11.74 ± 0.18 c | 12.05 ± 0.07 c | 11.82 ± 0.67 c | 11.64 ± 0.14 c | 12.42 ± 0.10 c |
C18:1 n-9 | 7.12 ± 0.02 a | 8.37 ± 0.25 b | 11.25 ± 0.06 f | 10.71 ± 0.21 de | 10.82 ± 0.16 def | 11.01 ± 0.37 ef | 9.97 ± 0.07 c | 10.30 ± 0.02 cd |
C18:1 n-7 | 3.57 ± 0.01 b | 3.24 ± 0.08 a | 4.06 ± 0.19 c | 3.69 ± 0.10 b | 3.70 ± 0.04 b | 3.67 ± 0.12 b | 4.14 ± 0.12 c | 4.24 ± 0.05 c |
C20:1 n-9 | 0.22 ± 0.01 a | 0.28 ± 0.04 ab | 0.38 ± 0.01 ab | 0.48 ± 0.23 b | 0.34 ± 0.02 ab | 0.42 ± 0.06 ab | 0.35 ± 0.02 ab | 0.39 ± 0.02 ab |
C24:1 n-9 | 0.37 ± 0.04 a | 0.42 ± 0.07 a | 1.35 ± 0.03 e | 1.10 ± 0.15 de | 0.94 ± 0.15 cd | 0.99 ± 0.13 cd | 0.63 ± 0.06 ab | 0.75 ± 0.11 bc |
Σ MUFA | 18.39 ± 0.05 a | 21.10 ± 0.57 b | 28.86 ± 0.38 d | 27.72 ± 0.40 cd | 27.85 ± 0.23 cd | 27.91 ± 0.78 cd | 26.73 ± 0.21 c | 28.10 ± 0.16 d |
C18:2 n-6 | 2.10 ± 0.05 a | 2.17 ± 0.49 a | 4.25 ± 0.23 cd | 4.94 ± 0.09 d | 3.47 ± 0.64 bc | 2.83 ± 0.15 ab | 4.14 ± 0.48 cd | 4.27 ± 0.19 cd |
C20:2 n-6 | 0.21 ± 0.03 a | 0.25 ± 0.04 a | 0.23 ± 0.04 a | 0.21 ± 0.01 a | 0.26 ± 0.02 a | 0.25 ± 0.02 a | 0.22 ± 0.03 a | 0.22 ± 0.03 a |
C20:4 n-6 | 0.90 ± 0.08 b | 0.90 ± 0.10 b | 0.56 ± 0.11 a | 0.74 ± 0.04 ab | 0.75 ± 0.12 ab | 0.70 ± 0.09 ab | 0.52 ± 0.03 a | 0.57 ± 0.10 a |
C18:3 n-3 | 0.50 ± 0.02 a | 0.59 ± 0.01 ab | 0.64 ± 0.02 bc | 0.74 ± 0.00 c | 0.71 ± 0.04 c | 0.74 ± 0.09 c | 0.56 ± 0.05 ab | 0.63 ± 0.02 bc |
C18:4 n-3 | 1.57 ± 0.04 ab | 2.36 ± 0.16 c | 1.85 ± 0.12 b | 2.39 ± 0.11 c | 2.31 ± 0.09 c | 2.50 ± 0.15 c | 1.69 ± 0.11 ab | 1.39 ± 0.16 a |
C20:4 n-3 | 0.47 ± 0.08 abc | 0.60 ± 0.04 c | 0.45 ± 0.03 ab | 0.50 ± 0.05 abc | 0.49 ± 0.05 abc | 0.55 ± 0.05 bc | 0.55 ± 0.06 bc | 0.38 ± 0.02 a |
C20:5 n-3 (EPA) | 18.88 ± 0.13 d | 20.56 ± 0.33 e | 10.64 ± 0.54 b | 11.87 ± 0.59 b | 14.73 ± 0.38 c | 14.70 ± 0.32 c | 11.29 ± 0.77 b | 9.07 ± 0.60 a |
C22:5 n-3 | 1.70 ± 0.02 d | 1.82 ± 0.11 d | 0.95 ± 0.15 ab | 1.09 ± 0.13 bc | 1.22 ± 0.04 c | 1.33 ± 0.10 c | 1.23 ± 0.03 c | 0.82 ± 0.04 a |
C22:6 n-3 (DHA) | 22.05 ± 0.23 e | 16.87 ± 0.51 d | 7.87 ± 0.49 c | 7.90 ± 0.46 c | 8.24 ± 0.16 c | 7.82 ± 0.16 c | 6.30 ± 0.62 b | 4.92 ± 0.46 a |
Σ PUFA | 48.37 ± 0.29 d | 46.12 ± 0.81 d | 27.43 ± 0.80 b | 30.39 ± 0.77 c | 32.19 ± 0.78 c | 31.43 ± 0.44 c | 26.50 ± 1.11 b | 22.28 ± 0.80 a |
Lipid quality indices | ||||||||
n-6/n-3 PUFA | 0.07 | 0.08 | 0.23 | 0.24 | 0.16 | 0.14 | 0.23 | 0.29 |
AI | 0.74 | 0.76 | 1.22 | 1.16 | 1.11 | 1.17 | 1.44 | 1.61 |
TI | 0.20 | 0.21 | 0.48 | 0.43 | 0.37 | 0.37 | 0.53 | 0.67 |
HH | 2.08 | 2.04 | 1.17 | 1.26 | 1.35 | 1.31 | 1.03 | 0.88 |
FLQ | 40.93 | 37.43 | 18.50 | 19.77 | 22.97 | 22.53 | 17.60 | 14.00 |
Fatty Acids | Fillet | Head | Bones | Viscera | ||||
---|---|---|---|---|---|---|---|---|
Folch | Hex:2-PrOH | Folch | Hex:2-PrOH | Folch | Hex:2-PrOH | Folch | Hex:2-PrOH | |
C14:0 | 4.55 ± 0.74 ab | 4.36 ± 0.63 a | 5.87 ± 0.37 bcd | 6.32 ± 0.02 cd | 5.33 ± 0.84 abc | 5.69 ± 0.30 abcd | 6.87 ± 0.32 d | 4.77 ± 0.12 ab |
C15:0 | 0.30 ± 0.05 a | 0.39 ± 0.04 a | 0.33 ± 0.17 a | 0.40 ± 0.20 ab | 0.36 ± 0.04 a | 0.41 ± 0.07 ab | 0.67 ± 0.03 b | 0.42 ± 0.03 ab |
C16:0 | 26.16 ± 1.50 b | 24.27 ± 0.62 ab | 23.85 ± 0.93 a | 23.05 ± 0.52 a | 24.97 ± 0.14 ab | 23.86 ± 0.66 a | 35.20 ± 0.73 c | 33.60 ± 0.38 c |
C17:0 | 0.28 ± 0.02 a | 0.60 ± 0.13 ab | 0.33 ± 0.18 a | 0.45 ± 0.02 ab | 0.42 ± 0.27 ab | 0.35 ± 0.02 a | 0.70 ± 0.05 b | 0.55 ± 0.04 ab |
C18:0 | 6.39 ± 0.26 b | 5.91 ± 0.52 ab | 5.37 ± 0.10 a | 5.39 ± 0.13 a | 5.62 ± 0.13 a | 5.86 ± 0.16 ab | 7.87 ± 0.31 c | 10.12 ± 0.13 d |
C20:0 | 0.16 ± 0.01 ab | 0.16 ± 0.02 ab | 0.08 ± 0.01 a | 0.13 ± 0.05 ab | 0.13 ± 0.03 ab | 0.14 ± 0.02 ab | 0.22 ± 0.08 b | 0.12 ± 0.02 ab |
C24:0 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.10 ± 0.04 | n.d. | n.d. |
ΣSFA | 37.83 ± 1.69 a | 35.68 ± 1.03 a | 35.83 ± 1.03 a | 35.74 ± 0.58 a | 36.83 ± 0.91 a | 36.42 ± 0.75 a | 51.54 ± 0.86 b | 49.58 ± 0.42 b |
C16:1 n-7 | 3.74 ± 0.83 a | 5.15 ± 0.45 b | 6.85 ± 0.58 cde | 7.32 ± 0.41 de | 5.69 ± 0.05 bc | 6.36 ± 0.57 bcd | 7.94 ± 0.18 e | 8.02 ± 0.02 e |
C18:1 n-9 | 22.07 ± 0.80 bc | 19.00 ± 1.03 a | 20.08 ± 1.04 ab | 19.19 ± 0.51 a | 19.63 ± 0.38 a | 18.72 ± 0.80 a | 22.13 ± 0.21 c | 30.34 ± 0.56 d |
C18:1 n-7 | 3.11 ± 0.44 a | 3.29 ± 0.25 a | 3.80 ± 0.41 ab | 4.13 ± 0.15 b | 3.06 ± 0.04 a | 3.77 ± 0.26 ab | 5.22 ± 0.38 c | 5.28 ± 0.10 c |
C20:1 n-9 | 0.63 ± 0.13 a | 0.91 ± 0.18 ab | 1.06 ± 0.29 ab | 1.20 ± 0.25 ab | 0.70 ± 0.02 ab | 0.91 ± 0.36 ab | 1.03 ± 0.19 ab | 1.29 ± 0.05 b |
C24:1 n-9 | 0.55 ± 0.12 a | 0.63 ± 0.12 a | 0.65 ± 0.10 a | 0.62 ± 0.06 a | 0.96 ± 0.05 b | 0.65 ± 0.04 a | 0.67 ± 0.07 a | 0.56 ± 0.12 a |
ΣMUFA | 30.10 ± 1.24 a | 28.98 ± 1.17 a | 32.44 ± 1.29 b | 32.47 ± 0.72 b | 30.04 ± 0.39 a | 30.42 ± 1.08 a | 36.99 ± 0.51 c | 45.50 ± 0.58 d |
C18:2 n-6 | 1.98 ± 0.29 b | 1.84 ± 0.74 b | 2.14 ± 0.17 b | 2.28 ± 0.08 b | 2.50 ± 0.29 b | 2.25 ± 0.08 b | 1.88 ± 0.25 b | 0.81 ± 0.06 a |
C20:2 n-6 | 0.20 ± 0.06 a | 0.30 ± 0.09 a | 0.20 ± 0.02 a | 0.18 ± 0.06 a | 0.19 ± 0.02 a | 0.20 ± 0.01 a | 0.14 ± 0.03 a | 0.20 ± 0.11 a |
C20:4 n-6 | 1.14 ± 0.12 cd | 1.37 ± 0.05 cd | 1.15 ± 0.25 cd | 1.02 ± 0.12 bc | 1.45 ± 0.06 d | 1.21 ± 0.08 cd | 0.68 ± 0.23 b | 0.26 ± 0.03 a |
C18:3 n-3 | 0.48 ± 0.31 a | 0.67 ± 0.38 a | 0.60 ± 0.26 a | 0.61 ± 0.24 a | 0.55 ± 0.21 a | 0.45 ± 0.17 a | 0.10 ± 0.03 a | 0.41 ± 0.22 a |
C18:4 n-3 | 0.63 ± 0.10 abc | 0.78 ± 0.07 c | 0.81 ± 0.21 c | 0.85 ± 0.26 c | 0.82 ± 0.15 c | 0.74 ± 0.08 bc | 0.36 ± 0.06 ab | 0.29 ± 0.03 a |
C20:4 n-3 | 0.48 ± 0.19 bc | 0.60 ± 0.10 c | 0.52 ± 0.09 c | 0.49 ± 0.08 bc | 0.52 ± 0.10 c | 0.48 ± 0.05 bc | 0.22 ± 0.03 ab | 0.12 ± 0.02 a |
C20:5 n-3 (EPA) | 8.73 ± 0.74 c | 10.00 ± 0.23 d | 11.31 ± 0.51 e | 11.75 ± 0.17 e | 10.75 ± 0.31 de | 11.27 ± 0.05 e | 3.43 ± 0.22 b | 1.29 ± 0.37 a |
C22:5 n-3 | 3.04 ± 0.03 c | 3.12 ± 0.41 c | 3.28 ± 0.51 c | 2.79 ± 0.22 c | 3.25 ± 0.17 c | 2.80 ± 0.08 c | 1.25 ± 0.35 b | 0.36 ± 0.11 a |
C22:6 n-3 (DHA) | 15.43 ± 0.96 cd | 16.63 ± 1.95 d | 11.73 ± 0.52 b | 11.88 ± 0.32 b | 13.10 ± 0.73 bc | 13.80 ± 0.25 bc | 3.42 ± 0.45 a | 1.18 ± 0.17 a |
ΣPUFA | 32.12 ± 1.31 cd | 35.32 ± 2.17 d | 31.74 ± 1.00 c | 31.85 ± 0.58 c | 33.13 ± 0.91 cd | 33.19 ± 0.35 cd | 11.48 ± 0.71 b | 4.92 ± 0.49 a |
Lipid quality indices | ||||||||
n-6/n-3 PUFA | 0.12 | 0.11 | 0.12 | 0.12 | 0.14 | 0.12 | 0.31 | 0.35 |
AI | 0.71 | 0.65 | 0.74 | 0.75 | 0.73 | 0.73 | 1.29 | 1.04 |
TI | 0.33 | 0.29 | 0.32 | 0.31 | 0.32 | 0.31 | 1.01 | 1.30 |
HH | 1.87 | 2.01 | 1.87 | 1.88 | 1.84 | 1.88 | 0.92 | 1.06 |
FLQ | 24.16 | 26.63 | 23.04 | 23.63 | 23.85 | 25.06 | 6.84 | 2.47 |
Fatty Acids | Fillet | Head | Bones | Viscera | ||||
---|---|---|---|---|---|---|---|---|
Folch | Hex:2-PrOH | Folch | Hex:2-PrOH | Folch | Hex:2-PrOH | Folch | Hex:2-PrOH | |
C14:0 | 4.42 ± 0.11 ab | 4.25 ± 0.24 a | 6.64 ± 0.07 e | 7.07 ± 0.07 f | 4.70 ± 0.23 bc | 4.90 ± 0.22 c | 5.58 ± 0.01 d | 5.70 ± 0.07 d |
C15:0 | 0.45 ± 0.04 a | 0.48 ± 0.03 ab | 1.05 ± 0.23 c | 1.00 ± 0.03 c | 0.65 ± 0.03 ab | 0.54 ± 0.03 ab | 0.68 ± 0.02 ab | 0.70 ± 0.02 b |
C16:0 | 24.51 ± 0.42 ab | 24.96 ± 0.29 b | 30.49 ± 0.30 c | 30.44 ± 0.18 c | 23.94 ± 0.18 a | 23.81 ± 0.31 a | 30.31 ± 0.09 c | 30.20 ± 0.31 c |
C17:0 | 0.79 ± 0.06 ab | 0.76 ± 0.06 a | 1.41 ± 0.03 d | 1.53 ± 0.04 d | 0.85 ± 0.07 ab | 0.80 ± 0.06 ab | 1.01 ± 0.08 c | 0.92 ± 0.05 bc |
C18:0 | 6.17 ± 0.09 bc | 6.46 ± 0.14 c | 7.59 ± 0.06 d | 7.39 ± 0.07 d | 5.95 ± 0.24 b | 5.53 ± 0.12 a | 7.25 ± 0.09 d | 7.27 ± 0.03 d |
C20:0 | 0.21 ± 0.01 a | 0.22 ± 0.01 a | 0.35 ± 0.03 c | 0.34 ± 0.03 c | 0.21 ± 0.01 a | 0.20 ± 0.02 a | 0.30 ± 0.02 bc | 0.25 ± 0.02 ab |
C24:0 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
ΣSFA | 36.55 ± 0.45 ab | 37.13 ± 0.41 b | 47.53 ± 0.39 d | 47.78 ± 0.21 d | 36.31 ± 0.38 ab | 35.77 ± 0.40 a | 45.14 ± 0.15 c | 45.04 ± 0.32 c |
C16:1 n-7 | 4.51 ± 0.43 ab | 4.24 ± 0.19 a | 5.69 ± 0.05 cd | 6.00 ± 0.06 d | 4.32 ± 0.17 ab | 4.79 ± 0.26 ab | 5.09 ± 0.09 bc | 5.65 ± 0.57 cd |
C18:1 n-9 | 21.52 ± 0.33 a | 21.15 ± 0.96 a | 23.11 ± 0.40 b | 23.79 ± 0.27 b | 20.56 ± 0.83 a | 21.23 ± 0.29 a | 26.42 ± 0.16 c | 26.43 ± 0.25 c |
C18:1 n-7 | 3.87 ± 0.39 a | 3.77 ± 0.21 a | 4.40 ± 0.04 b | 4.53 ± 0.03 b | 3.77 ± 0.03 a | 3.76 ± 0.04 a | 4.52 ± 0.02 b | 4.59 ± 0.09 b |
C20:1 n-9 | 5.87 ± 0.15 c | 6.10 ± 0.27 c | 3.74 ± 0.02 a | 3.84 ± 0.04 a | 4.83 ± 0.27 b | 5.06 ± 0.04 b | 7.80 ± 0.13 d | 8.01 ± 0.03 d |
C24:1 n-9 | 0.47 ± 0.04 a | 0.57 ± 0.06 ab | 1.00 ± 0.07 c | 1.04 ± 0.04 c | 0.60 ± 0.07 ab | 0.52 ± 0.05 ab | 0.67 ± 0.04 b | 0.62 ± 0.05 ab |
ΣMUFA | 36.24 ± 0.68 bc | 35.84 ± 1.03 ab | 37.93 ± 0.41 cd | 39.21 ± 0.28 d | 34.08 ± 0.89 a | 35.37 ± 0.40 ab | 44.51 ± 0.22 e | 45.31 ± 0.63 e |
C18:2 n-6 | 1.64 ± 0.12 c | 1.66 ± 0.07 c | 1.30 ± 0.16 ab | 1.42 ± 0.04 bc | 1.64 ± 0.13 c | 1.56 ± 0.07 bc | 1.10 ± 0.05 a | 1.08 ± 0.03 a |
C20:2 n-6 | 0.22 ± 0.01 a | 0.25 ± 0.04 a | 0.19 ± 0.03 a | 0.23 ± 0.02 a | 0.21 ± 0.02 a | 0.23 ± 0.03 a | 0.21 ± 0.02 a | 0.20 ± 0.00 a |
C20:4 n-6 | 1.36 ± 0.06 c | 1.36 ± 0.11 c | 0.99 ± 0.09 b | 0.91 ± 0.06 b | 1.52 ± 0.11 c | 1.39 ± 0.16 c | 0.83 ± 0.09 ab | 0.58 ± 0.03 a |
C18:3 n-3 | 0.71 ± 0.07 ab | 0.61 ± 0.04 a | 0.85 ± 0.02 b | 0.68 ± 0.05 ab | 1.05 ± 0.13 c | 0.71 ± 0.04 ab | 0.85 ± 0.03 b | 0.65 ± 0.07 a |
C18:4 n-3 | 1.33 ± 0.03 d | 1.23 ± 0.05 d | 0.92 ± 0.01 c | 0.84 ± 0.09 bc | 1.35 ± 0.18 d | 1.32 ± 0.10 d | 0.69 ± 0.01 ab | 0.60 ± 0.01 a |
C20:4 n-3 | 0.51 ± 0.05 b | 0.57 ± 0.05 b | 0.38 ± 0.03 a | 0.33 ± 0.03 a | 0.58 ± 0.05 b | 0.57 ± 0.05 b | 0.32 ± 0.02 a | 0.31 ± 0.03 a |
C20:5 n-3 (EPA) | 9.29 ± 0.29 d | 8.32 ± 0.32 c | 4.02 ± 0.34 b | 3.51 ± 0.23 ab | 9.47 ± 0.26 de | 10.02 ± 0.19 e | 3.15 ± 0.26 a | 3.25 ± 0.04 a |
C22:5 n-3 | 2.22 ± 0.12 c | 2.19 ± 0.18 c | 1.01 ± 0.09 b | 1.23 ± 0.06 b | 1.92 ± 0.20 c | 2.17 ± 0.10 c | 0.66 ± 0.03 a | 0.64 ± 0.02 a |
C22:6 n-3 (DHA) | 9.95 ± 0.90 c | 10.84 ± 1.04 cd | 4.89 ± 0.36 b | 3.86 ± 0.34 ab | 11.88 ± 0.75 d | 10.90 ± 0.21 cd | 2.55 ± 0.11 a | 2.36 ± 0.12 a |
Σ PUFA | 27.22 ± 0.96 cd | 27.03 ± 1.12 c | 14.54 ± 0.54 b | 13.01 ± 0.44 b | 29.61 ± 0.87 d | 28.86 ± 0.36 cd | 10.35 ± 0.30 a | 9.66 ± 0.15 a |
Lipid quality indices | ||||||||
n-6/n-3 PUFA | 0.13 | 0.14 | 0.20 | 0.25 | 0.13 | 0.12 | 0.26 | 0.24 |
AI | 0.67 | 0.67 | 1.09 | 1.12 | 0.67 | 0.68 | 0.96 | 0.96 |
TI | 0.35 | 0.36 | 0.73 | 0.80 | 0.33 | 0.33 | 0.83 | 0.84 |
HH | 1.82 | 1.78 | 1.13 | 1.10 | 1.88 | 1.88 | 1.15 | 1.13 |
FLQ | 19.23 | 19.17 | 8.92 | 7.37 | 21.35 | 20.92 | 5.70 | 5.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Puebla, S.; Arias-Santé, M.F.; Romero, J.; Costa de Camargo, A.; Rincón-Cervera, M.Á. Analysis of Fatty Acid Profile, α-Tocopherol, Squalene and Cholesterol Content in Edible Parts and By-Products of South Pacific Wild Fishes. Mar. Drugs 2025, 23, 104. https://doi.org/10.3390/md23030104
López-Puebla S, Arias-Santé MF, Romero J, Costa de Camargo A, Rincón-Cervera MÁ. Analysis of Fatty Acid Profile, α-Tocopherol, Squalene and Cholesterol Content in Edible Parts and By-Products of South Pacific Wild Fishes. Marine Drugs. 2025; 23(3):104. https://doi.org/10.3390/md23030104
Chicago/Turabian StyleLópez-Puebla, Sussi, María Fernanda Arias-Santé, Jaime Romero, Adriano Costa de Camargo, and Miguel Ángel Rincón-Cervera. 2025. "Analysis of Fatty Acid Profile, α-Tocopherol, Squalene and Cholesterol Content in Edible Parts and By-Products of South Pacific Wild Fishes" Marine Drugs 23, no. 3: 104. https://doi.org/10.3390/md23030104
APA StyleLópez-Puebla, S., Arias-Santé, M. F., Romero, J., Costa de Camargo, A., & Rincón-Cervera, M. Á. (2025). Analysis of Fatty Acid Profile, α-Tocopherol, Squalene and Cholesterol Content in Edible Parts and By-Products of South Pacific Wild Fishes. Marine Drugs, 23(3), 104. https://doi.org/10.3390/md23030104