The Cytochalasins and Polyketides from a Mangrove Endophytic Fungus Xylaria arbuscula QYF
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Identification
2.2. Antimicrobial Activity Assays
2.3. Cytotoxic Activity Assays
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Fermentation, Extraction, and Isolation
3.4. ECD and Optical Rotation Computation Methods
3.5. Antimicrobial Assays
3.6. Cytotoxic Assays
3.7. Preparation of MTPA Esters of 7 by the Modified Mosher Ester Method
3.8. X-ray Crystallographic Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.; Xiao, Q.; Xu, J.; Li, M.-Y.; Pan, J.-Y.; Yang, M.-h. Natural products from true mangrove flora: Source, chemistry and bioactivities. Nat. Prod. Rep. 2008, 25, 955–981. [Google Scholar] [CrossRef] [PubMed]
- Thatoi, H.; Behera, B.C.; Mishra, R.R.; Dutta, S.K. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: A review. Ann. Microbiol. 2013, 63, 1–19. [Google Scholar] [CrossRef]
- Chen, S.; Cai, R.; Liu, Z.; Cui, H.; She, Z. Secondary metabolites from mangrove-associated fungi: Source, chemistry and bioactivities. Nat. Prod. Rep. 2022, 39, 560–595. [Google Scholar] [CrossRef] [PubMed]
- Hai, Y.; Wei, M.-Y.; Wang, C.-Y.; Gu, Y.-C.; Shao, C.-L. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987–2020). Mar. Life Sci. Technol. 2021, 3, 488–518. [Google Scholar] [CrossRef]
- Schuppe, A.W.; Zhao, Y.; Liu, Y.; Newhouse, T.R. Total Synthesis of (+)-Granatumine A and Related Bislactone Limonoid Alkaloids via a Pyran to Pyridine Interconversion. J. Am. Chem. Soc. 2019, 141, 9191–9196. [Google Scholar] [CrossRef]
- Macías-Rubalcava, M.L.; Sánchez-Fernández, R.E. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J. Microbiol. Biotechnol. 2017, 33, 15. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S.; Guo, T.; Li, L.; Li, T.; Wang, A.; Zhang, D.; Wang, Y.; Sun, Y. Bioactive PKS–NRPS Alkaloids from the Plant-Derived Endophytic Fungus Xylaria arbuscula. Molecules 2022, 27, 136. [Google Scholar] [CrossRef]
- Zhang, S.; Gu, L.; Lin, Y.; Zeng, H.; Ding, N.; Wei, J.; Gu, X.; Liu, C.; Sun, W.; Zhou, Y.; et al. Chaetoxylariones A–G: Undescribed chromone-derived polyketides from co-culture of Chaetomium virescens and Xylaria grammica enabled via the molecular networking strategy. Bioorg. Chem. 2024, 147, 107329. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Hu, Z.-Y.; Lu, C.-H.; Shen, Y.-M. Four New Terpenoids from Xylaria sp. 101. Helv. Chim. Acta 2010, 93, 796–802. [Google Scholar] [CrossRef]
- Xu, K.; Li, R.; Zhu, R.; Li, X.; Xu, Y.; He, Q.; Xie, F.; Qiao, Y.; Luan, X.; Lou, H. Xylarins A-D, Two Pairs of Diastereoisomeric Isoindoline Alkaloids from the Endolichenic Fungus Xylaria sp. Org. Lett. 2021, 23, 7751–7754. [Google Scholar] [CrossRef]
- Gu, W.; Ding, H. Two new tetralone derivatives from the culture of Xylaria hypoxylon AT-028. Chin. Chem. Lett. 2008, 19, 1323–1326. [Google Scholar] [CrossRef]
- Sawadsitang, S.; Mongkolthanaruk, W.; Suwannasai, N.; Sodngam, S. Antimalarial and cytotoxic constituents of Xylaria cf. cubensis PK108. Nat. Prod. Res. 2015, 29, 2033–2036. [Google Scholar] [CrossRef]
- Liu, X.; Dong, M.; Chen, X.; Jiang, M.; Lv, X.; Zhou, J. Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl. Microbiol. Biotechnol. 2008, 78, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Chávez, J.; Figueroa, M.; González, M.d.C.; Glenn, A.E.; Mata, R. α-Glucosidase Inhibitors from a Xylaria feejeensis Associated with Hintonia latiflora. J. Nat. Prod. 2015, 78, 730–735. [Google Scholar] [CrossRef]
- Tan, Q.; Fan, R.-Z.; Yang, W.; Zou, G.; Chen, T.; Wu, J.; Wang, B.; Yin, S.; She, Z. (+)/(−)-Mycosphatide A, a pair of highly oxidized polyketides with lipid-lowering activity from the mangrove endophytic fungus Mycosphaerella sp. SYSU-DZG01. Chin. Chem. Lett. 2024, 35, 109390. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, W.; Zhu, G.; Wang, G.; Chen, T.; Li, H.; Yuan, J.; She, Z. Didymorenloids A and B, two polycyclic cyclopenta[b]fluorene-type alkaloids with anti-hepatoma activity from the mangrove endophytic fungus Didymella sp. CYSK-4. Org. Chem. Front. 2024, 11, 1706–1712. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, B.; Tan, Q.; Chen, Y.; Chen, T.; Zou, G.; Sun, B.; Wang, B.; Yuan, J.; She, Z. 4-Hydroxy-2-pyridone derivatives with antitumor activity produced by mangrove endophytic fungus Talaromyces sp. CY-3. Eur. J. Med. Chem. 2024, 269, 116314. [Google Scholar] [CrossRef]
- Yin, Y.; Tan, Q.; Wu, J.; Chen, T.; Yang, W.; She, Z.; Wang, B. The Polyketides with Antimicrobial Activities from a Mangrove Endophytic Fungus Trichoderma lentiforme ML-P8-2. Mar. Drugs 2023, 21, 566. [Google Scholar] [CrossRef]
- Zou, G.; Yang, W.; Chen, T.; Liu, Z.; Chen, Y.; Li, T.; Said, G.; Sun, B.; Wang, B.; She, Z. Griseofulvin enantiomers and bromine-containing griseofulvin derivatives with antifungal activity produced by the mangrove endophytic fungus Nigrospora sp. QQYB1. Mar. Life Sci. Technol. 2024, 6, 102–114. [Google Scholar] [CrossRef]
- Minato, H.; Katayama, T. Studies on the metabolites of Zygosporium masonii. Part II. Structures of zygosporins D, E, F, and G. J. Chem. Soc. C 1970, 1, 45–47. [Google Scholar] [CrossRef]
- Xu, H.; Fang, W.-S.; Chen, X.-G.; He, W.-Y.; Cheng, K.-D. Cytochalasin D from Hypocrella Bambusae. J. Asian Nat. Prod. Res. 2001, 3, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Aldridge, D.C.; Turner, W.B. Structures of cytochalasins C and D. J. Chem. Soc. C 1969, 6, 923–928. [Google Scholar] [CrossRef]
- Edwards, R.L.; Maitland, D.J.; Whalley, A.J.S. Metabolites of the higher fungi. Part 24. Cytochalasin N, O, P, Q, and R. New cytochalasins from the fungus Hypoxylon terricola Mill. J. Chem. Soc. Perkin Trans. 1 1989, 1, 57–65. [Google Scholar] [CrossRef]
- Buchanan, M.S.; Hashimoto, T.; Asakawa, Y. Cytochalasins from a Daldinia sp. of fungus. Phytochemistry 1996, 41, 821–828. [Google Scholar] [CrossRef]
- Skellam, E. The biosynthesis of cytochalasans. Nat. Prod. Rep. 2017, 34, 1252–1263. [Google Scholar] [CrossRef]
- Wang, W.-X.; Li, Z.-H.; He, J.; Feng, T.; Li, J.; Liu, J.-K. Cytotoxic cytochalasans from fungus Xylaria longipes. Fitoterapia 2019, 137, 104278. [Google Scholar] [CrossRef]
- Wang, S.J.; Pei, Y.H.; Hua, H.M. Platyphyllin A, a novel coumarone from the leaves of Betula platyphylla Suk. J. Asian Nat. Prod. Res. 2001, 3, 157–160. [Google Scholar] [CrossRef]
- Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. A new aspect of the high-field NMR application of Mosher’s method. The absolute configuration of marine triterpene sipholenol A. J. Org. Chem. 1991, 56, 1296–1298. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09; Wallingford, CT, USA, 2016. Available online: https://gaussian.com/g09citation/ (accessed on 26 June 2024).
- Pierce, C.G.; Uppuluri, P.; Tristan, A.R.; Wormley, F.L., Jr.; Mowat, E.; Ramage, G.; Lopez-Ribot, J.L. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat. Protoc. 2008, 3, 1494–1500. [Google Scholar] [CrossRef]
- Yin, Y.; Yang, W.; Chen, T.; Tan, Q.; Zou, G.; Zang, Z.; Li, J.; Wang, B.; She, Z. Cytosporones W and X: Two Mutually Converting Epimers from a Mangrove Endophytic Fungus Diaporthe sp. ZJHJYZ-1. ACS Omega 2023, 8, 26628–26634. [Google Scholar] [CrossRef]
Position | 1 a | 2 b | ||
---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
1 | 176.7, C | 174.6, C | ||
3 | 61.8, CH | 3.36, m | 60.6, CH | 3.35, m |
4 | 50.3, CH | 2.52, br.s | 50.3, CH | 2.50, overlapped |
5 | 134.9, C | 128.9, C | ||
6 | 137.0, C | 137.6, C | ||
7 | 83.0, CH | 4.07, d (10.0) | 83.2, CH | 4.11, d (10.2) |
8 | 44.8, CH | 3.09, t (10.2) | 44.6, CH | 3.00, overlapped |
9 | 54.4, C | 53.3, C | ||
10 | 44.7, CH2 | α: 2.85, dd (13.2, 9.9) β: 3.06, dd (13.2, 5.3) | 44.4, CH2 | 2.98, overlapped |
11 | 16.7, CH3 | 1.19, s | 17.4, CH3 | 1.46, s |
12 | 58.7, CH2 | α: 4.04, d (11.5) β: 4.22, d (11.5) | 14.2, CH3 | 1.75, s |
13 | 131.0, CH | 5.69, dd (15.5, 10.0) | 132.3, CH | 6.01, dd (15.7, 10.4) |
14 | 134.1, CH | 5.34, ddd (15.4, 10.7, 5.0) | 131.3, CH | 5.95, overlapped |
15 | 39.6, CH2 | α: 2.04, m β: 2.40, m | 38.3, CH2 | α: 2.02, m β: 2.52, overlapped |
16 | 43.4, CH | 2.85, m | 42.3, CH | 2.72, m |
17 | 211.6, C | 210.2, C | ||
18 | 79.4, C | 77.8, C | ||
19 | 129.4, CH | 5.29, dd (15.4, 2.0) | 127.9, CH | 5.16, dd (15.7, 2.4) |
20 | 133.0, CH | 5.96, overlapped | 131.9, CH | 5.34, m |
21 | 76.5, CH | 5.91, overlapped | 75.2, CH | 5.94, overlapped |
22 | 19.8, CH3 | 1.15, d (6.8) | 19.5, CH3 | 1.21, d (6.8) |
23 | 24.6, CH3 | 1.50, s | 24.4, CH3 | 1.52, s |
24 | 172.1, C | 170.2, C | ||
25 | 20.7, CH3 | 2.33, s | 21.1, CH3 | 2.32, s |
1′ | 138.9, C | 137.6, C | ||
2′/6′ | 129.8, CH | 7.32, d (7.0) | 129.0, CH | 7.32, d (7.7) |
3′/5′ | 130.7, CH | 7.25, m | 129.2, CH | 7.19, m |
4′ | 128.0, CH | 7.26, m | 127.2, CH | 7.25, m |
Position | 3 a | 4 b | ||
---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
1 | 175.1, C | 177.1, C | ||
3 | 61.2, CH | 3.49, m | 62.1, CH | 3.29, m |
4 | 50.7, CH | 2.91, m | 50.2, CH | 2.45, m |
5 | 154.5, C | 129.6, C | ||
6 | 136.3, C | 131.2, C | ||
7 | 199.7, C | 70.1, CH | 3.72, d (10.4) | |
8 | 53.2, CH | 3.58, d (9.7) | 43.3, CH | 2.84, overlapped |
9 | 54.2, C | 50.6, C | ||
10 | 44.9, CH2 | α: 2.98, dd (13.2, 9.9) β: 3.14, dd (13.2, 5.2) | 45.0, CH2 | α: 2.85, overlapped β: 3.00, dd (13.2, 5.4) |
11 | 18.0, CH3 | 1.40, s | 17.2, CH3 | 1.04, s |
12 | 56.0, CH2 | α: 4.04, d (11.5) β: 4.25, d (11.5) | 14.4, CH3 | 1.61, s |
13 | 130.4, CH | 5.35, dd (15.7, 10.4) | 132.1, CH | 5.82, overlapped |
14 | 128.2, CH | 5.86, overlapped | 134.8, CH | 5.19, m |
15 | 39.4, CH2 | α: 2.02, m β: 2.42, m | 38.7, CH2 | α: 1.97, m β: 2.32, m |
16 | 43.3, CH | 2.87, m | 47.8, CH | 2.65, m |
17 | 211.9, C | 210.4, C | ||
18 | 79.5, C | 45.9, CH2 | α: 2.88, overlapped β: 3.26, m | |
19 | 131.7, CH | 5.81, overlapped | 117.9, CH | 5.25, m |
20 | 135.1, CH | 5.21, m | 135.3, CH | 5.85, m |
21 | 75.9, CH | 5.98, t (2.4) | 76.8, CH | 5.81, overlapped |
22 | 19.6, CH3 | 1.16, d (6.8) | 18.9, CH3 | 1.08, d (6.9) |
23 | 24.6, CH3 | 1.49, s | 172.2, C | |
24 | 171.9, C | 20.7, CH3 | 2.27, s | |
25 | 20.7, CH3 | 2.36, s | ||
1′ | 138.5, C | 139.0, C | ||
2′/6′ | 130.0, CH | 7.35, d (7.5) | 129.7, CH | 7.30, d (7.6) |
3′/5′ | 130.7, CH | 7.27, m | 130.7, CH | 7.23, m |
4′ | 128.3, CH | 7.29, m | 127.9, CH | 7.22, m |
Position | 5 | 6 | ||
---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
2 | 171.4, C | 169.7, C | ||
3 | 117.3, C | 98.0, C | ||
4 | 123.6, C | 159.1, C | ||
5 | 126.4, CH | 8.58, d (8.0) | 104.0, CH | 6.41, s |
6 | 125.3, CH | 7.26, t (8.0) | 156.1, C | |
7 | 131.4, CH | 7.40, t (8.0) | 139.4, C | |
8 | 111.3, CH | 7.17, overlapped | 121.4, C | |
9 | 155.4, C | 70.8, CH | 5.12, s | |
10 | 124.4, CH | 7.47, s | 113.8, C | |
11 | 152.0, C | 43.5, CH2 | α: 2.08, dd (12.8, 9.5) β: 2.73, dd (12.8, 6.2) | |
12 | 124.1, CH | 7.17, overlapped | 76.3, CH | 4.39, m |
13 | 112.2, CH | 6.65, d (3.4) | 53.5, CH3 | 3.50, s |
14 | 162.0, C | 22.1, CH3 | 1.38, d (6.2) | |
15 | 57.8, CH2 | 4.74, s |
Position | 7 a | 8 b | ||
---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
2 | 72.0, CH | 4.31, m | 169.8, C | |
3 | 34.1, CH2 | α: 1.38, m β: 2.11, m | 117.1, CH | 5.73, s |
4 | 67.1, CH | 4.19, br.s | 157.8, C | |
5 | 113.3, C | 39.7, CH2 | 2.51, t (6.5) | |
6 | 197.9, C | 62.7, CH2 | 4.31, t (6.5) | |
7 | 46.7, CH2 | α: 2.45, dd (15.8, 9.0) β: 2.60, dd (15.8, 4.4) | 167.0, C | |
8 | 65.5, CH | 4.15, m | 41.4, CH2 | 3.38, s |
9 | 38.7, CH2 | α: 2.48, dd (17.4, 8.4) β: 2.72, dd (17.4, 5.0) | 166.5, C | |
10 | 174.0, C | 52.7, CH3 | 3.74, s | |
11 | 56.7, CH3 | 3.35, s | 19.0, CH3 | 2.20, s |
12 | 20.8, CH3 | 1.40, d (6.4) |
MIC of Compounds/μM | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 10 | 11 | 12 | Amp. 1 | Ket. 2 | |
MRSA | >100 | 25 | 50 | >100 | 50 | 50 | 0.25 | NT |
S. aureus | >100 | 12.5 | >100 | >100 | >100 | >100 | 0.25 | NT |
S. typhimurium | >100 | >100 | 25 | >100 | 25 | >100 | 0.25 | NT |
P. aeruginosa | >100 | 25 | >100 | >100 | >100 | 12.5 | 0.13 | NT |
C. albicans | 25 | 12.5 | >100 | 25 | 50 | 50 | NT | 0.13 |
Compound | MDA-MB-435 | MDA-MB-231 | HCT116 | A549 | SNB19 | PC3 |
---|---|---|---|---|---|---|
1 | >50 | >50 | >50 | >50 | 39.18 ± 0.71 | >50 |
10 | 3.61 ± 1.60 | >50 | >50 | >50 | 23.76 ± 0.54 | >50 |
11 | >50 | >50 | >50 | 20.11 ± 2.71 | >50 | 22.92 ± 0.43 |
Cisplatin 1 | 44.43 ± 3.25 | 38.16 ± 5.93 | 14.68 ± 1.34 | 26.42 ± 7.58 | 26.54 ± 1.53 | 33.00 ± 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Q.; Ye, X.; Fu, S.; Yin, Y.; Liu, Y.; Wu, J.; Cao, F.; Wang, B.; Zhu, T.; Yang, W.; et al. The Cytochalasins and Polyketides from a Mangrove Endophytic Fungus Xylaria arbuscula QYF. Mar. Drugs 2024, 22, 407. https://doi.org/10.3390/md22090407
Tan Q, Ye X, Fu S, Yin Y, Liu Y, Wu J, Cao F, Wang B, Zhu T, Yang W, et al. The Cytochalasins and Polyketides from a Mangrove Endophytic Fungus Xylaria arbuscula QYF. Marine Drugs. 2024; 22(9):407. https://doi.org/10.3390/md22090407
Chicago/Turabian StyleTan, Qi, Xinyu Ye, Siqi Fu, Yihao Yin, Yufeng Liu, Jianying Wu, Fei Cao, Bo Wang, Tingshun Zhu, Wencong Yang, and et al. 2024. "The Cytochalasins and Polyketides from a Mangrove Endophytic Fungus Xylaria arbuscula QYF" Marine Drugs 22, no. 9: 407. https://doi.org/10.3390/md22090407
APA StyleTan, Q., Ye, X., Fu, S., Yin, Y., Liu, Y., Wu, J., Cao, F., Wang, B., Zhu, T., Yang, W., & She, Z. (2024). The Cytochalasins and Polyketides from a Mangrove Endophytic Fungus Xylaria arbuscula QYF. Marine Drugs, 22(9), 407. https://doi.org/10.3390/md22090407