Evaluation of Toxicity Equivalency Factors of Tetrodotoxin Analogues with a Neuro-2a Cell-Based Assay and Application to Puffer Fish from Greece
Abstract
:1. Introduction
2. Results
2.1. Cell-Based Assay (CBA) for Tetrodotoxin (TTX)
2.2. Isolation and Purification of Tetrodotoxin (TTX) Analogues
2.3. Toxicity Equivalency Factors (TEFs) of Tetrodotoxin (TTX) Analogues
2.4. Analysis of Puffer Fish Samples with Cell-Based Assay (CBA)
2.5. Analysis of Puffer Fish Samples with Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
2.6. Application of Toxicity Equivalency Factors (TEFs) and Comparison between Techniques
3. Discussion
4. Materials and Methods
4.1. Puffer Fish Samples and Tetrodotoxin (TTX) Standard
4.2. Extraction of Tetrodotoxins (TTXs) from Puffer Fish Samples
4.3. Isolation and Purification of Tetrodotoxin (TTX) Analogues
4.4. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Analysis
4.5. Cell Maintenance and Cell-Based Assay (CBA)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
TTX analogue (ng/mL and %) | ||||||||
---|---|---|---|---|---|---|---|---|
Fraction | 5,6,11-trideoxyTTX | 5,11-dideoxyTTX | 11-deoxyTTX | 11-norTTX-6(S)-ol | ||||
16 | 0.06 | 100.0% | ||||||
17 | 0.44 | 100.0% | ||||||
18 | 9.24 | 100.0% | ||||||
19 | 13.34 | 67.7% | ||||||
20 | 30.34 | 25% | ||||||
21 | 19.93 | 38.1% | ||||||
22 | 77.21 | 80.2% | ||||||
23 | 83.26 | 92.9% | ||||||
24 | 67.30 | 94.1% | ||||||
25 | 32.87 | 90.4% | 0.55 | 1.5% | ||||
26 | 16.21 | 82.4% | 1.60 | 8.1% | ||||
28 | 15.12 | 77.4% | 3.83 | 19.6% | ||||
29 | 1.33 | 41.2% | 1.79 | 55.2% | ||||
30 | 0.85 | 4.4% | 18.57 | 95.2% | ||||
31 | 0.09 | 1.5% | 5.85 | 98.2% | ||||
32 | 0.12 | 1.4% | 8.49 | 98.2% | ||||
33 | 0.03 | 0.4% | 8.35 | 99.4% | ||||
34 | 0.04 | 0.4% | 9.35 | 93.9% | ||||
35 | 0.05 | 1.8% | 1.50 | 57.0% | ||||
39 | 0.09 | 0.8% | 0.22 | 1.8% | ||||
40 | 0.09 | 0.3% | 0.41 | 1.5% | ||||
41 | 0.76 | 2.5% | 0.04 | 0.1% | ||||
42 | 2.67 | 9.4% | 0.33 | 1.2% | ||||
46 | 8.69 | 66.2% | 0.03 | 0.3% | ||||
47 | 15.98 | 77.4% | 0.10 | 0.5% | ||||
48 | 55.23 | 92.5% | 0.31 | 0.5% | ||||
49 | 69.90 | 94.0% | 0.49 | 0.7% | ||||
50 | 95.52 | 94.0% | 0.82 | 0.8% | ||||
51 | 136.13 | 94.0% | 1.72 | 1.2% | ||||
52 | 93.58 | 88.3% | 4.51 | 4.3% | ||||
53 | 24.53 | 62.6% | 5.01 | 12.8% | ||||
54 | 15.51 | 46.2% | 6.33 | 18.9% | ||||
56 | 9.61 | 8.5% | 91.46 | 80.7% | ||||
57 | 6.83 | 5.1% | 113.52 | 85.4% | ||||
58 | 4.81 | 2.8% | 151.00 | 89.5% | ||||
59 | 2.95 | 1.4% | 111.47 | 51.7% | ||||
60 | 2.12 | 3.8% | 41.05 | 72.9% |
References
- Narahashi, T. Pharmacology of tetrodotoxin. J. Toxicol. Toxin Rev. 2001, 20, 67–84. [Google Scholar] [CrossRef]
- Chau, R.; Kalaitzis, J.A.; Neilan, B.A. On the origins and biosynthesis of tetrodotoxin. Aquat. Toxicol. 2011, 104, 61–72. [Google Scholar] [CrossRef]
- Tahara, Y.; Hirata, Y. Studies on the puffer fish toxin. J. Pharm. Soc. Jpn. 1909, 29, 587–625. [Google Scholar]
- Hwang, P.A.; Tsai, Y.H.; Lin, S.J.; Hwang, D.F. The gastropods possessing TTX and/or PSP. Food Rev. Int. 2007, 23, 321–340. [Google Scholar] [CrossRef]
- Hwang, D.F.; Tsai, Y.H. Toxins in toxic Taiwanese crabs. Food Rev. Int. 1999, 15, 145–162. [Google Scholar] [CrossRef]
- Thuesen, E.V.; Kogure, K.; Hashimoto, K.; Nemoto, T. Poison arrowworms: A tetrodotoxin venom in the marine phylum Chaetognatha. J. Exp. Mar. Biol. Ecol. 1988, 116, 249–256. [Google Scholar] [CrossRef]
- Kim, Y.H.; Brown, G.B.; Mosher, H.S.; Fuhrman, F.A. Tetrodotoxin: Occurrence in Atelopid frogs of Costa Rica. Science 1975, 189, 151–152. [Google Scholar] [CrossRef]
- Turner, A.D.; Fenwick, D.; Powell, A.; Dhanji-Rapkova, M.; Ford, C.; Hatfield, R.G.; Santos, A.; Martinez-Urtaza, J.; Bean, T.P.; Baker-Austin, C.; et al. New invasive nemertean species (Cephalothrix Simula) in England with high levels of tetrodotoxin and a microbiome linked to toxin metabolism. Mar. Drugs 2018, 16, 452. [Google Scholar] [CrossRef] [Green Version]
- Magarlamov, T.Y.; Melnikova, D.I.; Chernyshev, A.V. Tetrodotoxin-producing bacteria: Detection, distribution and migration of the toxin in aquatic systems. Toxins 2017, 9, 166. [Google Scholar] [CrossRef] [Green Version]
- Reverté, J.; Alkassar, M.; Diogène, J.; Campàs, M. Detection of ciguatoxins and tetrodotoxins in seafood with biosensors and other smart bioanalytical systems. Foods 2023, 12, 2043. [Google Scholar] [CrossRef]
- Kao, C.Y.; Levinson, S.R. Tetrodotoxin, saxitoxin, and the molecular biology of the sodium channel. Ann. N. Y. Acad. Sci. 1986, 479, 1–14. [Google Scholar] [CrossRef]
- Bane, V.; Lehane, M.; Dikshit, M.; O’Riordan, A.; Furey, A. Tetrodotoxin: Chemistry, toxicity, source, distribution and detection. Toxins 2014, 6, 693–755. [Google Scholar] [CrossRef] [Green Version]
- Leonardo, S.; Kiparissisb, S.; Rambla-Alegre, M.; Almarza, S.; Roque, A.; Andree, K.B.; Christidis, A.; Floresc, C.; Caixach, J.; Campbell, K.; et al. Detection of tetrodotoxins in juvenile pufferfish Lagocephalus sceleratus (Gmelin, 1789) from the North Aegean Sea (Greece) by an electrochemical magnetic bead-based immunosensing tool. Food Chem. 2019, 290, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Akbora, H.D.; Kunter, I.; Erçetïn, T.; Elagöz, A.M.; Çïçek, B.A. Determination of tetrodotoxin (TTX) levels in various tissues of the silver cheeked puffer fish (Lagocephalus sceleratus (Gmelin, 1789)) in Northern Cyprus Sea (Eastern Mediterranean). Toxicon 2020, 175, 1–6. [Google Scholar] [CrossRef]
- Rodríguez, P.; Alfonso, A.; Otero, P.; Katikou, P.; Georgantelis, D.; Botana, L.M. Liquid chromatography-mass spectrometry method to detect tetrodotoxin and its analogues in the puffer fish Lagocephalus sceleratus (Gmelin, 1789) from European waters. Food Chem. 2012, 132, 1103–1111. [Google Scholar] [CrossRef]
- Kosker, A.R.; Özogul, F.; Durmus, M.; Ucar, Y.; Ayas, D.; Regenstein, J.M.; Özogul, Y. Tetrodotoxin levels in pufferfish (Lagocephalus sceleratus) caught in the Northeastern Mediterranean Sea. Food Chem. 2016, 210, 332–337. [Google Scholar] [CrossRef]
- Kosker, A.R.; Özogul, F.; Ayas, D.; Durmus, M.; Ucar, Y.; Regenstein, J.M.; Özogul, Y. Tetrodotoxin levels of three pufferfish species (Lagocephalus sp.) caught in the North-Eastern Mediterranean Sea. Chemosphere 2019, 219, 95–99. [Google Scholar] [CrossRef]
- Katikou, P.; Georgantelis, D.; Sinouris, N.; Petsi, A.; Fotaras, T. First report on toxicity assessment of the Lessepsian migrant pufferfish Lagocephalus sceleratus (Gmelin, 1789) from European waters (Aegean Sea, Greece). Toxicon 2009, 54, 50–55. [Google Scholar] [CrossRef]
- Acar, C.; Ishizaki, S.; Nagashima, Y. Toxicity of the Lessepsian pufferfish Lagocephalus sceleratus from Eastern Mediterranean coasts of Turkey and species identification by rapid PCR amplification. Eur. Food Res. Technol. 2017, 243, 49–57. [Google Scholar] [CrossRef]
- Rambla-Alegre, M.; Reverté, L.; del Río, V.; de la Iglesia, P.; Palacios, O.; Flores, C.; Caixach, J.; Campbell, K.; Elliott, C.T.; Izquierdo-Muñoz, A.; et al. Evaluation of tetrodotoxins in puffer fish caught along the Mediterranean coast of Spain. Toxin profile of Lagocephalus sceleratus. Environ. Res. 2017, 158, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Christidis, G.; Mandalakis, M.; Anastasiou, T.I.; Tserpes, G.; Peristeraki, P.; Somarakis, S. Keeping Lagocephalus sceleratus off the table: Sources of variation in the quantity of TTX, TTX analogues, and risk of tetrodotoxication. Toxins 2021, 13, 896. [Google Scholar] [CrossRef]
- Noguchi, T.; Ebesu, J.S.M. Puffer poisoning: Epidemiology and treatment. J. Toxicol. Toxin Rev. 2001, 20, 1–10. [Google Scholar] [CrossRef]
- Regulation (EC) No 854/2004 of the European Parliament and of the Council of 29 April 2004. Laying down Specific Rules for the Organisation of Official Controls on Products of Animal Origin Intended for Human Consumption. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32004R0854. (accessed on 1 July 2023).
- Rodríguez, P.; Alfonso, A.; Vale, C.; Alfonso, C.; Vale, P.; Tellez, A.; Botana, L.M. First toxicity report of tetrodotoxin and 5,6,11-trideoxyTTX in the trumpet shell Charonia lampas lampas in Europe. Anal. Chem. 2008, 80, 5622–5629. [Google Scholar] [CrossRef]
- Vlamis, A.; Katikou, P.; Rodriguez, I.; Rey, V.; Alfonso, A.; Papazachariou, A.; Zacharaki, T.; Botana, A.M.; Botana, L.M. First detection of tetrodotoxin in Greek shellfish by UPLC-MS/MS potentially linked to the presence of the dinoflagellate Prorocentrum minimum. Toxins 2015, 7, 1779–1807. [Google Scholar] [CrossRef] [Green Version]
- Dell’Aversano, C.; Tartaglione, L.; Polito, G.; Dean, K.; Giacobbe, M.; Casabianca, S.; Capellacci, S.; Penna, A.; Turner, A.D. First detection of tetrodotoxin and high levels of paralytic shellfish poisoning toxins in shellfish from Sicily (Italy) by three different analytical methods. Chemosphere 2019, 215, 881–892. [Google Scholar] [CrossRef]
- Gerssen, A.; Bovee, T.H.; Klijnstra, M.D.; Poelman, M.; Portier, L.; Hoogenboom, R.L. First report on the occurrence of tetrodotoxins in bivalve mollusks in the Netherlands. Toxins 2018, 10, 450. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; et al. Risks for public health related to the presence of tetrodotoxin (TTX) and TTX analogues in marine bivalves and gastropods. EFSA J. 2017, 15, e04752. [Google Scholar] [CrossRef] [Green Version]
- Finch, S.C.; Boundy, M.J.; Harwood, D.T. The acute toxicity of tetrodotoxin and tetrodotoxin–saxitoxin mixtures to mice by various routes of administration. Toxins 2018, 10, 423. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, T.; Mahmud, Y. Current methodologies for detection of tetrodotoxin. J. Toxicol. Toxin Rev. 2001, 20, 35–50. [Google Scholar] [CrossRef]
- Kogure, K.; Tampline, M.; Simidu, U.; Colwell, R.R. A tissue culture assay for tetrodotoxin, saxitoxin and related toxins. Toxicon 1988, 26, 191–197. [Google Scholar] [CrossRef]
- Reverté, L.; De La Iglesia, P.; Del Río, V.; Campbell, K.; Elliott, C.T.; Kawatsu, K.; Katikou, P.; Diogène, J.; Campàs, M. Detection of tetrodotoxins in puffer fish by a self-assembled monolayer-based immunoassay and comparison with surface plasmon resonance, LC-MS/MS, and mouse bioassay. Anal. Chem. 2015, 87, 10839–10847. [Google Scholar] [CrossRef]
- Reverté, L.; Campbell, K.; Rambla-Alegre, M.; Elliott, C.T.; Diogène, J.; Campàs, M. Immunosensor array platforms based on self-assembled dithiols for the electrochemical detection of tetrodotoxins in puffer fish. Anal. Chim. Acta 2017, 989, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Reverté, L.; Campàs, M.; Yakes, B.J.; Deeds, J.R.; Katikou, P.; Kawatsu, K.; Lochhead, M.; Elliott, C.T.; Campbell, K. Tetrodotoxin detection in puffer fish by a sensitive planar waveguide immunosensor. Sens. Actuators B Chem. 2017, 253, 967–976. [Google Scholar] [CrossRef] [Green Version]
- Reverté, L.; Rambla-Alegre, M.; Leonardo, S.; Bellés, C.; Campbell, K.; Elliott, C.T.; Gerssen, A.; Klijnstra, M.D.; Diogène, J.; Campàs, M. Development and validation of a maleimide-based enzyme-linked immunosorbent assay for the detection of tetrodotoxin in oysters and mussels. Talanta 2018, 176, 659–666. [Google Scholar] [CrossRef] [Green Version]
- Campàs, M.; Reverté, J.; Rambla-Alegre, M.; Campbell, K.; Gerssen, A.; Diogène, J. A fast magnetic bead-based colorimetric immunoassay for the detection of tetrodotoxins in shellfish. Food Chem. Toxicol. 2020, 140, 111315. [Google Scholar] [CrossRef]
- Alkassar, M.; Leonardo, S.; Diogène, J.; Campàs, M. Immobilisation of Neuro-2a cells on electrodes and electrochemical detection of MTT formazan crystals to assess their viability. Bioelectrochemistry 2022, 148, 108274. [Google Scholar] [CrossRef]
- Campàs, M.; Alkassar, M.; Gaiani, G.; Leonardo, S.; Rambla-Alegre, M.; Diogène, J. The wide spectrum of methods available to study marine neurotoxins. In Advances in Neurotoxicology; Academic Press: Cambridge, MA, USA, 2021; Volume 6, pp. 275–315. [Google Scholar] [CrossRef]
- Yotsu-Yamashita, M.; Jang, J.H.; Cho, Y.; Konoki, K. Optimization of simultaneous analysis of tetrodotoxin, 4-epitetrodotoxin, 4,9-anhydrotetrodotoxin, and 5,6,11-trideoxytetrodotoxin by hydrophilic interaction liquid chromatography-tandem mass spectrometry. Forensic Toxicol. 2011, 29, 61–64. [Google Scholar] [CrossRef]
- Leão, J.M.; Lozano-Leon, A.; Giráldez, J.; Vilariño, Ó.; Gago-Martínez, A. Preliminary results on the evaluation of the occurrence of tetrodotoxin associated to marine Vibrio spp. in bivalves from the Galician Rias (Northwest of Spain). Mar. Drugs 2018, 16, 81. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. FAO/WHO TECHNICAL PAPER on Toxicity Equivalence Factors for Marine Biotoxins Associated with Bivalve Molluscs; World Health Organization: Rome, Italy, 2016; Volume 108, Available online: https://www.fao.org/3/i5970e/i5970e.pdf (accessed on 26 July 2023).
- Botana, L.M.; Hess, P.; Munday, R.; Nathalie, A.; DeGrasse, S.L.; Feeley, M.; Suzuki, T.; Van den Berg, M.; Fattori, V.; Gamarro, E.G.; et al. Derivation of toxicity equivalency factors for marine biotoxins associated with bivalve molluscs. Trends. Food Sci. Technol. 2017, 59, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.D.; Boundy, M.J.; Dhanji Rapkova, M. Development and single-laboratory validation of a liquid chromatography tandem mass spectrometry method for quantitation of tetrodotoxin in mussels and oysters. J. AOAC Int. 2017, 100, 1469–1482. [Google Scholar] [CrossRef]
- Manger, R.L.; Leja, L.S.; Lee, S.Y.; Hungerford, J.M.; Wekell, M.M. Tetrazolium-based cell bioassay for neurotoxins active on voltage-sensitive sodium channels: Semiautomated assay for saxitoxins, brevetoxins, and ciguatoxins. Anal. Biochem. 1993, 214, 190–194. [Google Scholar] [CrossRef]
- Hamasaki, K.; Kogure, K.; Ohwada, K. A biological method for the quantitative measurement of tetrodotoxin (TTX): Tissue culture bioassay in combination with a water-soluble tetrazolium salt. Toxicon 1996, 34, 490–495. [Google Scholar] [CrossRef]
- Hamasaki, K.; Kogure, K.; Ohwada, K. An improved method of tissue culture bioassay for tetrodotoxin. Fish. Sci. 1996, 62, 825–829. [Google Scholar] [CrossRef] [Green Version]
- Kudo, Y.; Finn, J.; Fukushima, K.; Sakugawa, S.; Cho, Y.; Konoki, K.; Yotsu-Yamashita, M. Isolation of 6-deoxytetrodotoxin from the pufferfish, Takifugu pardalis, and a comparison of the effects of the C-6 and C-11 hydroxy groups of tetrodotoxin on its activity. J. Nat. Prod. 2014, 77, 1000–1004. [Google Scholar] [CrossRef]
- Yotsu-Yamashita, M.; Urabe, D.; Asai, M.; Nishikawa, T.; Isobe, M. Biological activity of 8,11-dideoxytetrodotoxin: Lethality to mice and the inhibitory activity to cytotoxicity of ouabain and veratridine in mouse neuroblastoma cells, Neuro-2a. Toxicon 2003, 42, 557–560. [Google Scholar] [CrossRef]
- Saruhashi, S.; Konoki, K.; Yotsu-Yamashita, M. The voltage-gated sodium ion channel inhibitory activities of a new tetrodotoxin analogue, 4,4a-anhydrotetrodotoxin, and three other analogues evaluated by colorimetric cell-based assay. Toxicon 2016, 119, 72–76. [Google Scholar] [CrossRef]
- Caillaud, A.; Eixarch, H.; De la Iglesia, P.; Rodriguez, M.; Dominguez, L.; Andree, K.B.; Diogène, J. Towards the standardisation of the neuroblastoma (Neuro-2a) cell-based assay for ciguatoxin-like toxicity detection in fish: Application to fish caught in the Canary Islands. Food Addit. Contam. Part A 2012, 29, 1000–1010. [Google Scholar] [CrossRef]
- Cañete, E.; Diogène, J. Comparative study of the use of neuroblastoma cells (Neuro-2a) and neuroblastoma x glioma hybrid cells (NG108-15) for the toxic effect quantification of marine toxins. Toxicon 2008, 52, 541–550. [Google Scholar] [CrossRef]
- Gallacher, S.; Birkbeck, T.H. A tissue culture assay for direct detection of sodium channel blocking toxins in bacterial culture supernates. FEMS Microbiol. Lett. 1992, 92, 101–108. [Google Scholar] [CrossRef]
- Nakamura, M.; Yasumoto, T. Tetrodotoxin derivatives in puffer fish. Toxicon 1985, 23, 271–276. [Google Scholar] [CrossRef]
- Yasumoto, T.; Yotsu, M.; Murata, M. New tetrodotoxin analogues from the newt Cynops ensicauda. J. Am. Chem. Soc. 1988, 110, 2344–2345. [Google Scholar] [CrossRef]
- Satake, Y.; Adachi, M.; Tokoro, S.; Yotsu-Yamashita, M.; Isobe, M.; Nishikawa, T. Synthesis of 5- and 8-deoxytetrodotoxin. Chem. Asian J. 2014, 9, 1922–1932. [Google Scholar] [CrossRef]
- Yotsu-Yamashita, M.; Mebs, D. Occurrence of 11-oxotetrodotoxin in the red-spotted newt, Notophthalmus viridescens, and further studies on the levels of tetrodotoxin and its analogues in the newt’s efts. Toxicon 2003, 41, 893–897. [Google Scholar] [CrossRef]
- Endoa, A.; Khora, S.S.; Murata, M.; Naoki, H.; Yasumoto, T. Isolation of 11-nortetrodotoxin-6(R)-ol and other tetrodotoxin derivatives from the puffer Fugu niphobles. Tetrahedron Lett. 1988, 29, 4127–4128. [Google Scholar] [CrossRef]
- Yotsu, M.; Hayashi, Y.; Khora, S.S.; Sato, S.; Yasumoto, T. Isolation and structural assignment of 11-nortetrodotoxin-6(S)-ol from the puffer Arothron-nigropunctatus. Biosci. Biotechnol. Biochem. 1992, 56, 370–371. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.H.; Yotsu-Yamashita, M. 6,11-dideoxytetrodotoxin from the puffer fish, Fugu pardalis. Toxicon 2007, 50, 947–951. [Google Scholar] [CrossRef]
- Yotsu-Yamashita, M.; Yamagishi, Y.; Yasumoto, T. 5,6,11-Trideoxytetrodotoxin from the puffer fish, Fugu poecilonotus. Tetrahedron Lett. 1995, 36, 9329–9332. [Google Scholar] [CrossRef]
- Botana, L.M.; Vilariño, N.; Alfonso, A.; Vale, C.; Louzao, C.; Elliott, C.T.; Campbell, K.; Botana, A.M. The problem of toxicity equivalent factors in developing alternative methods to animal bioassays for marine-toxin detection. Trends Anal. Chem. 2010, 29, 1316–1325. [Google Scholar] [CrossRef]
- Noguchi, Y.; Suzuki, T.; Matsutani, K.; Sakakibara, R.; Nakahigashi, R.; Adachi, M.; Nishikawa, T.; Abe, H. An almost nontoxic tetrodotoxin analog, 5,6,11-trideoxytetrodotoxin, as an odorant for the grass puffer. Sci. Rep. 2022, 12, 15087. [Google Scholar] [CrossRef]
- Jang, J.H.; Lee, J.S.; Yotsu-Yamashita, M. LC/MS analysis of tetrodotoxin and its deoxy analogs in the marine puffer fish Fugu niphobles from the Southern Coast of Korea, and in the Brackishwater puffer fishes Tetraodon nigroviridis and Tetraodon biocellatus from Southeast Asia. Mar. Drugs 2010, 8, 1049–1058. [Google Scholar] [CrossRef]
- Lipkind, G.M.; Fozzard, H.A. A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys. J. 1994, 66, 1–13. [Google Scholar] [CrossRef]
- Tikhonov, D.B.; Zhorov, B.S. Modeling P-loops domain of sodium channel: Homology with potassium channels and interaction with ligands. Biophys. J. 2005, 88, 184–197. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.Q.; Yang, L.; Kao, C.Y.; Levinson, S.R.; Yotsu-Yamashita, M.; Yasumoto, T. 11-Oxo-tetrodotoxin and a specifically labelled 3H-Tetrodotoxin. Toxicon 1996, 34, 407–416. [Google Scholar] [CrossRef]
- Yotsu-Yamashita, M.; Sugimoto, A.; Takai, A.; Yasumoto, T. Effects of specific modifications of several hydroxyls of tetrodotoxin on its affinity to rat brain membrane. J. Pharmacol. Exp. Ther. 1999, 289, 1688–1696. [Google Scholar]
- Yang, L.; Kao, C.Y. Actions of chiriquitoxin on frog skeletal muscle fibers and implications for the tetrodotoxin/saxitoxin receptor. J. Gen. Physiol. 1992, 100, 609–622. [Google Scholar] [CrossRef]
- Hwang, D.F.; Noguchi, T. Tetrodotoxin poisoning. Adv. Food Nutr. Res. 2007, 52, 141–236. [Google Scholar] [CrossRef]
- El-Sayed, M.; Yacout, G.A.; El-Samra, M.; Ali, A.; Kotb, S.M. Toxicity of the Red Sea pufferfish Pleuranacanthus sceleratus ‘El-Karad’. Ecotoxicol. Environ. Saf. 2003, 56, 367–372. [Google Scholar] [CrossRef]
- Itoi, S.; Yoshikawa, S.; Asahina, K.; Suzuki, M.; Ishizuka, K.; Takimoto, N.; Mitsuoka, R.; Yokoyama, N.; Detake, A.; Takayanagi, C.; et al. Larval pufferfish protected by maternal tetrodotoxin. Toxicon 2014, 78, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, K. Tetrodotoxin as a pheromone. Nature 1995, 378, 563–564. [Google Scholar] [CrossRef]
- Hassoun, A.E.R.; Ujević, I.; Jemaa, S.; Roje-Busatto, R.; Mahfouz, C.; Fakhri, M.; Nazlic, N. Concentrations of tetrodotoxin (TTX) and its analogue 4,9-anhydro TTX in different tissues of the silver-cheeked pufferfish (Lagocephalus sceleratus, Gmelin, 1789) caught in the South-Eastern Mediterranean Sea, Lebanon. Toxins 2022, 14, 123. [Google Scholar] [CrossRef]
- Bane, V.; Brosnan, B.; Barnes, P.; Lehane, M.; Furey, A. High-resolution mass spectrometry analysis of tetrodotoxin (TTX) and its analogues in puffer fish and shellfish. Food Addit. Contam. Part A 2016, 33, 1468–1489. [Google Scholar] [CrossRef]
- EULRMB. Determination of Tetrodotoxin by HILIC-MS/MS, European Reference Laboratory for Marine Biotoxins, Ed 01062107. 2017. Available online: https://www.aesan.gob.es/en/CRLMB/docs/docs/metodos_analiticos_de_desarrollo/HILIC-LCMSMS_SOP_for_TTX_in_mussels.pdf (accessed on 1 July 2023).
O/V Combinations (mM) | Cell Viability (%) | IC50 (ng/mL) | Saturation Plateau (%) |
---|---|---|---|
0.5/0.05 | 28 ± 2 | 8.65 | 57 ± 1 |
0.45/0.045 | 29 ± 2 | 3.55 | 63 ± 2 |
0.4/0.04 | 21 ± 2 | 1.07 | 78 ± 3 |
0.35/0.035 | 20 ± 2 | 1.67 | 72 ± 3 |
0.3/0.03 | 50 ± 2 | 2.69 | 68 ± 2 |
0.2/0.1 | 38 ± 1 | 2.37 | 86 ± 4 |
0.125/0.2 | 20 ± 1 | 1.65 | 102 ± 3 |
TTX or TTX Analogue | IC50 (ng/mL) | TEF |
---|---|---|
TTX | 1.65 | 1 |
5,11-dideoxyTTX | 2.20 | 0.750 |
11-norTTX-6(S)-ol | 4.08 | 0.404 |
11-deoxyTTX | 11.88 | 0.139 |
5,6,11-trideoxyTTX | 147.78 | 0.011 |
Size (cm) | Weight (g) | Sex | Fishing Date | Fishing Area | Depth (m) | |
---|---|---|---|---|---|---|
PF1 | 53.5 | 1840 | Male | 14/5/2019 | Ierapetra | 18 |
PF2 | 53.9 | 1700 | Male | 14/5/2019 | Ierapetra | 18 |
PF3 | 59.3 | 2200 | Female | 20/3/2019 | Agia Galini | 35 |
TTX Analogue | TEF | Detection Method | Reference |
---|---|---|---|
4-epiTTX | 0.16 | MBA | [53] |
6-epiTTX | 0.17 | MBA | [54] |
5-deoxyTTX | 0.01 | MBA | [55] |
6-deoxyTTX | 0.32 | CBA | [47] |
11-deoxyTTX | 0.14 | MBA | [54] |
0.016 | CBA | [47] | |
0.017 | CBA | [48] | |
0.139 | CBA | [This study] | |
11-oxoTTX | 0.75 | MBA | [56] |
1.621 | CBA | [49] | |
11-norTTX-6(R)-ol | 0.17 | MBA | [57] |
11-norTTX-6(S)-ol | 0.19 | MBA | [58] |
0.404 | CBA | [This study] | |
5,11-dideoxyTTX | 0.750 | CBA | [This study] |
6,11-dideoxyTTX | 0.02 | MBA | [59] |
0.005 | CBA | [47] | |
4,9-anhydroTTX | 0.02 | MBA | [53] |
4,4a-anhydroTTX | 0.0014 | CBA | [49] |
5,6,11-trideoxyTTX | 0.01 | MBA | [60] |
0.011 | CBA | [This study] |
Region | Muscle | Skin | Liver | Intestinal tract | Gonads | Method | Reference |
---|---|---|---|---|---|---|---|
Rhodes Island, Greece | <1100–10,160 | <1100–6630 | 16120–87,530 | 6310–177,650 | 17,050–239,320 | MBA | [18] |
Rhodes Island, Greece | <320-58,440 | <320–33,340 | <320–1,380,800 | <320–478,430 | 470–8248,510 | LC-ESI-CID-MS/MS | [15] |
Northeastern Mediterranean | ND–2830 | 130–3430 | ND–46,180 | 70–7150 | 430–52,070 | LC-MS/MS | [16] |
Western Mediterranean | 1010 | 1650 | 3080 | - | 25,590 | LC-MS/MS | [20] |
980 | 2080 | 5360 | - | 25,220 | LC-HRMS | ||
2530 | 3500 | 28,300 | - | 33,550 | mELISA | ||
North Aegean Sea (Greece) | 1395–2878 | 2588–2780 | 2882 * | - | Immunosensor | [13] | |
478–2077 | 1188–1239 | 733 * | - | LC-HRMS | |||
1520–2327 | 2773–3137 | 10,834 * | - | Immunoassay | |||
Cretan and Libyan Sea | 50–41470 | 170–35,050 | 90–312,950 | - | 430–535,780 | LC-MS/MS | [21] |
Northern Cyprus Sea | 210–8320 | 160–6540 | 110–13,480 | 290–11,740 | 320–12,870 | Immunoassay | [14] |
Eastern Mediterranean | 100–3420 | 100–3300 | 120–25,400 | - | 170–80,000 | LC-MS/MS | [19] |
Libyan Sea | 5558–14,091 | 8032–16,116 | 21,453–51,350 | 19,584–113,127 | 3657–228,881 | CBA | [This study] |
7640–36,486 | 14,251–63,178 | 38,917–188,240 | 34,646–210,873 | 2129–1,324,439 | LC-MS/MS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkassar, M.; Sanchez-Henao, A.; Reverté, J.; Barreiro, L.; Rambla-Alegre, M.; Leonardo, S.; Mandalakis, M.; Peristeraki, P.; Diogène, J.; Campàs, M. Evaluation of Toxicity Equivalency Factors of Tetrodotoxin Analogues with a Neuro-2a Cell-Based Assay and Application to Puffer Fish from Greece. Mar. Drugs 2023, 21, 432. https://doi.org/10.3390/md21080432
Alkassar M, Sanchez-Henao A, Reverté J, Barreiro L, Rambla-Alegre M, Leonardo S, Mandalakis M, Peristeraki P, Diogène J, Campàs M. Evaluation of Toxicity Equivalency Factors of Tetrodotoxin Analogues with a Neuro-2a Cell-Based Assay and Application to Puffer Fish from Greece. Marine Drugs. 2023; 21(8):432. https://doi.org/10.3390/md21080432
Chicago/Turabian StyleAlkassar, Mounira, Andres Sanchez-Henao, Jaume Reverté, Lourdes Barreiro, Maria Rambla-Alegre, Sandra Leonardo, Manolis Mandalakis, Panagiota Peristeraki, Jorge Diogène, and Mònica Campàs. 2023. "Evaluation of Toxicity Equivalency Factors of Tetrodotoxin Analogues with a Neuro-2a Cell-Based Assay and Application to Puffer Fish from Greece" Marine Drugs 21, no. 8: 432. https://doi.org/10.3390/md21080432
APA StyleAlkassar, M., Sanchez-Henao, A., Reverté, J., Barreiro, L., Rambla-Alegre, M., Leonardo, S., Mandalakis, M., Peristeraki, P., Diogène, J., & Campàs, M. (2023). Evaluation of Toxicity Equivalency Factors of Tetrodotoxin Analogues with a Neuro-2a Cell-Based Assay and Application to Puffer Fish from Greece. Marine Drugs, 21(8), 432. https://doi.org/10.3390/md21080432