Astaxanthin: A Marine Drug That Ameliorates Cerebrovascular-Damage-Associated Alzheimer’s Disease in a Zebrafish Model via the Inhibition of Matrix Metalloprotease-13
Abstract
:1. Introduction
2. Results
2.1. Effect of AST on STZ-Induced Diabetic CVD-Associated AD in Light and Dark Chamber Test Response Changes
2.2. Effect of AST on STZ-Induced Diabetic CVD-Associated AD in Color Recognition Test Response Changes
2.3. Effect of AST on STZ-Induced Diabetic CVD-Associated AD in T-Maze Test Response Changes
2.4. Effect of AST on STZ-Induced Alterations in Fasting Blood Glucose Level
2.5. Effect of AST on STZ-Induced Alterations in Evans Blue Dye (EBD) Concentration
2.6. Effect of AST on STZ-Induced Diabetic CVD-Associated AD-Mediated Tissue Marker Changes
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Drugs and Chemicals
4.3. Induction of Diabetic CVD-Associated AD
4.4. Experimental Protocol
- ➢
- Group 1: This group functioned as the normal control group and were not administered with any drugs.
- ➢
- Group 2: This group functioned as a diabetic CVD-induced AD control group. The induction of diabetic CVD-associated AD was described in the previous sections.
- ➢
- Groups 3 and 4: This group was exposed to AST doses, i.e., 10 and 20 mg/L for 21 consecutive days (from day 03) in diabetic AD-induced animals.
- ➢
- Groups 5: This group was exposed to donepezil (DP, 1 mg/L; for 21 consecutive days from day 03) in diabetic AD-induced animals.
- ➢
- Groups 6: This group was exposed to CL-82198 (10 μM for 21 consecutive days from day 03) in diabetic AD-induced animals.
4.5. Assessment of Neurobehavioural Tests
4.5.1. Assessment of Light and Dark Chamber Test
4.5.2. Assessment of Color Recognition Test
4.5.3. Assessment of T-Maze Test
4.6. Estimation of Cerebral Extravasation Using Evans Blue Dye
4.7. Estimation of Tissue Biomarkers
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ueno, M.; Wu, B.; Nishiyama, A.; Huang, C.; Hosomi, N.; Kusaka, T.; Nakagawa, T.; Onodera, M.; Kido, M.; Sakamoto, H. The expression of matrix metalloproteinase-13 is increased in vessels with blood–brain barrier impairment in a stroke-prone hypertensive model. Hypertens. Res. 2009, 32, 332–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohjoh, H.; Horikawa, I.; Nakagawa, K.; Segi-Nishida, E.; Hasegawa, H. Induced mRNA expression of matrix metalloproteinases Mmp-3, Mmp-12, and Mmp-13 in the infarct cerebral cortex of photothrombosis model mice. Neurosci. Lett. 2020, 739, 135406. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Gao, Q.; Ma, Y.; Wang, F.; Tan, X.; Song, D.; Hoo, R.L.C.; Wang, Z.; Ge, X.; Han, H. An MMP-9 exclusive neutralizing antibody attenuates blood-brain barrier breakdown in mice with stroke and reduces stroke patient-derived MMP-9 activity. Pharmacol. Res. 2023, 190, 106720. [Google Scholar] [CrossRef] [PubMed]
- Rosell, A.; Alvarez-Sabín, J.; Arenillas, J.F.; Rovira, A.; Delgado, P.; Fernández-Cadenas, I.; Penalba, A.; Molina, C.A.; Montaner, J. A matrix metalloproteinase protein array reveals a strong relation between MMP-9 and MMP-13 with diffusion-weighted image lesion increase in human stroke. Stroke 2005, 36, 1415–1420. [Google Scholar] [CrossRef]
- Ganapathy, A.A.; Haripriya, V.M.; Acharya, N.; Somappa, S.B.; Kumaran, A. Ethnobotanical significance of medicinal plants: Beta-amyloid and tau aggregation inhibitors against Alzheimer’s disease. J. Biochem. Mol. Toxicol. 2023, 37, e23339. [Google Scholar] [CrossRef]
- Lee, I.S.; Choi, G.Y.; Sreelatha, I.; Yoon, J.W.; Youn, S.H.; Maeng, S.; Park, J.H. Effect of sinapic acid on scopolamine-induced learning and memory impairment in SD rats. Brain Sci. 2023, 13, 427. [Google Scholar] [CrossRef]
- Ravaria, P.; Saxena, P.; Laksmi BS, S.; Ranjan, V.; Abidi, S.W.F.; Saha, P.; Ramamoorthy, S.; Ahmad, F.; Rana, S.S. Molecular mechanisms of neuroprotective offerings by rosmarinic acid against neurodegenerative and other CNS pathologies. Phyther. Res. 2023, 37, 2119–2143. [Google Scholar] [CrossRef]
- Tekin, E.; Karakelle, N.A.; Dinçer, S. Effects of taurine on metal cations, transthyretin and LRP-1 in a rat model of Alzheimer’s disease. J. Trace Elem. Med. Biol. 2023, 79, 127219. [Google Scholar] [CrossRef]
- Jung, Y.S. Natural antioxidant in cardiovascular and cerebrovascular diseases. Antioxidants 2022, 11, 1159. [Google Scholar] [CrossRef]
- Qiao, J.; Wang, C.; Chen, Y.; Yu, S.; Liu, Y.; Yu, S.; Jiang, L.; Jin, C.; Wang, X.; Zhang, P. Herbal/natural compounds resist hallmarks of brain aging: From molecular mechanisms to therapeutic strategies. Antioxidants 2023, 12, 920. [Google Scholar] [CrossRef]
- Patil, A.D.; Kasabe, P.J.; Dandge, P.B. Pharmaceutical and nutraceutical potential of natural bioactive pigment: Astaxanthin. Nat. Prod. Bioprospect. 2022, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Basiony, M.; Ouyang, L.; Wang, D.; Yu, J.; Zhou, L.; Zhu, M.; Wang, X.; Feng, J.; Dai, J.; Shen, Y.; et al. Optimization of microbial cell factories for astaxanthin production: Biosynthesis and regulations, engineering strategies and fermentation optimization strategies. Synth. Syst. Biotechnol. 2022, 7, 689–704. [Google Scholar] [CrossRef]
- Rajasingh, H.; Våge, D.; Pavey, S.; Omholt, S. Why are salmonids pink? Can. J. Fish. Aquat. Sci. 2007, 64, 1614–1627. [Google Scholar] [CrossRef]
- Sharayei, P.; Azarpazhooh, E.; Zomorodi, S.; Einafshar, S.; Ramaswamy, H.S. Optimization of ultrasonic-assisted extraction of astaxanthin from green tiger (Penaeus semisulcatus) shrimp shell. Ultrason. Sonochem. 2021, 76, 105666. [Google Scholar] [CrossRef]
- Takaichi, S.; Matsui, K.; Nakamura, M.; Muramatsu, M.; Hanada, S. Fatty acids of astaxanthin esters in krill determined by mild mass spectrometry. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 2003, 136, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Morilla, M.J.; Ghosal, K.; Romero, E.L. More than pigments: The potential of astaxanthin and bacterioruberin-based nanomedicines. Pharmaceutics 2023, 15, 1828. [Google Scholar] [CrossRef]
- Abdol Wahab, N.R.; Meor Mohd Affandi, M.M.R.; Fakurazi, S.; Alias, E.; Hassan, H. Nanocarrier system: State-of-the-art in oral delivery of astaxanthin. Antioxidants 2022, 11, 1676. [Google Scholar] [CrossRef]
- Katsumata, T.; Ishibashi, T.; Kyle, D. A sub-chronic toxicity evaluation of a natural astaxanthin-rich carotenoid extract of Paracoccus carotinifaciens in rats. Toxicol. Rep. 2014, 1, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Anguchamy, V.; Arumugam, M. Enhancing the neuroprotective effect of squid outer skin astaxanthin against rotenone-induced neurotoxicity in in-vitro model for Parkinson’s disease. Food Chem. Toxicol. 2023, 178, 113846. [Google Scholar] [CrossRef]
- Grimmig, B.; Daly, L.; Hudson, C.; Nash, K.R.; Bickford, P.C. Astaxanthin attenuates neurotoxicity in a mouse model of Parkinson’s disease. Funct. Foods Health Dis. 2017, 7, 562–576. [Google Scholar] [CrossRef]
- Zhu, N.; Liang, X.; Zhang, M.; Yin, X.; Yang, H.; Zhi, Y.; Ying, G.; Zou, J.; Chen, L.; Yao, X.; et al. Astaxanthin protects cognitive function of vascular dementia. Behav. Brain Funct. 2020, 16, 10. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Zhu, X.L.; Sun, M.H.; Dang, Y.K. Effects of astaxanthin onaxonal regeneration via cAMP/PKA signaling pathway in mice with focal cerebral infarction. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 135–143. [Google Scholar] [PubMed]
- Wang, S.; Qi, X. The putative role of astaxanthin in neuroinflammation modulation: Mechanisms and therapeutic potential. Front. Pharmacol. 2022, 13, 916653. [Google Scholar] [CrossRef] [PubMed]
- Bikádi, Z.; Hazai, E.; Zsila, F.; Lockwood, S.F. Molecular modeling of non-covalent binding of homochiral (3S,3′S)-astaxanthin to matrix metalloproteinase-13 (MMP-13). Bioorg. Med. Chem. 2006, 14, 5451–5458. [Google Scholar] [CrossRef]
- Chen, W.-P.; Xiong, Y.; Shi, Y.-X.; Hu, P.-F.; Bao, J.-P.; Wu, L.-D. Astaxanthin reduces matrix metalloproteinase expression in human chondrocytes. Int. Immunopharmacol. 2014, 19, 174–177. [Google Scholar] [CrossRef]
- Janani, R.; Anitha, R.E.; Divya, P.; Chonche, M.; Baskaran, V. Astaxanthin ameliorates hyperglycemia induced inflammation via PI3K/Akt–NF–κB signaling in ARPE-19 cells and diabetic rat retina. Eur. J. Pharmacol. 2022, 926, 174979. [Google Scholar] [CrossRef]
- Landon, R.; Gueguen, V.; Petite, H.; Letourneur, D.; Pavon-Djavid, G.; Anagnostou, F. Impact of astaxanthin on diabetes pathogenesis and chronic complications. Mar. Drugs 2020, 18, 357. [Google Scholar] [CrossRef]
- Zhu, B.L.; Long, Y.; Luo, W.; Yan, Z.; Lai, Y.J.; Zhao, L.G.; Zhou, W.H.; Wang, Y.J.; Shen, L.L.; Liu, L.; et al. MMP13 inhibition rescues cognitive decline in Alzheimer transgenic mice via BACE1 regulation. Brain 2019, 142, 176–192. [Google Scholar] [CrossRef]
- Shen, Z.; Li, Z.Y.; Yu, M.T.; Tan, K.L.; Chen, S. Metabolic perspective of astrocyte dysfunction in Alzheimer’s disease and type 2 diabetes brains. Biomed. Pharmacother. 2023, 158, 114206. [Google Scholar] [CrossRef]
- Prajjwal, P.; Marsool, M.D.M.; Inban, P.; Sharma, B.; Asharaf, S.; Aleti, S.; Gadam, S.; Al Sakini, A.S.; Hadi, D.D. Vascular dementia subtypes, pathophysiology, genetics, neuroimaging, biomarkers, and treatment updates along with its association with Alzheimer’s dementia and diabetes mellitus. Dis. -A-Mon. 2023, 69, 101557. [Google Scholar] [CrossRef]
- Muthuraman, A.; Ramesh, M.; Mustaffa, F.; Nadeem, A.; Nishat, S.; Paramakrishnan, N.; Lim, K.G. In silico and in vitro methods in the characterization of beta-carotene as pharmaceutical material via acetylcholine esterase inhibitory actions. Molecules 2023, 28, 4358. [Google Scholar] [CrossRef] [PubMed]
- Giap, L.K.; Varatharajan, R.; Muthuraman, A. Therapeutic investigations of palm oil induced beta-carotene in diabetic vascular dementia in rat. Res. J. Pharm. Technol. 2023, 16, 566–572. [Google Scholar] [CrossRef]
- Rahman, S.O.; Panda, B.P.; Parvez, S.; Kaundal, M.; Hussain, S.; Akhtar, M.; Najmi, A.K. Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease. Biomed. Pharmacother. 2019, 110, 47–58. [Google Scholar] [CrossRef]
- Abdelaziz, A.I.; Gad, A.M.; Azab, S.S. Comprehensive integrated overview of the experimental and clinical neuroprotective effect of astaxanthin. Glob. Perspect. Astaxanthin 2021, 469–494. [Google Scholar] [CrossRef]
- Paramakrishnan, N.; Chavan, L.; Lim, K.G.; Paramaswaran, Y.; Muthuraman, A. Reversal of neuralgia effect of beta carotene in streptozotocin-associated diabetic neuropathic pain in female zebrafish via matrix metalloprotease-13 inhibition. Pharmaceuticals 2023, 16, 157. [Google Scholar] [CrossRef] [PubMed]
- Onursal, C.; Reel, B.; Bintepe, C.; Guzeloglu, M.; Ersoy, N.; Bagriyanik, A. Pioglitazone inhibits oxidative stress, MMP-mediated inflammation and vascular dysfunction in high glucose-induced human saphenous vein grafts. J. Diabetes Complicat. 2023, 37, 108421. [Google Scholar] [CrossRef]
- Paramaswaran, Y.; Subramanian, A.; Paramakrishnan, N.; Ramesh, M.; Muthuraman, A. Therapeutic investigation of palm oil mill effluent-derived beta-carotene in streptozotocin-induced diabetic retinopathy via the regulation of blood-retina barrier functions. Pharmaceuticals 2023, 16, 647. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, C.; Zhang, S.; Xu, Y. Neuroprotective effects of astaxanthin against oxygen and glucose deprivation damage via the PI3K/Akt/GSK3β/Nrf2 signalling pathway in vitro. J. Cell. Mol. Med. 2020, 24, 8977–8985. [Google Scholar] [CrossRef]
- Lee, J.; Lim, J.W.; Kim, H. Astaxanthin inhibits matrix metalloproteinase expression by suppressing PI3K/AKT/mTOR activation in Helicobacter pylori-infected gastric epithelial cells. Nutrients 2022, 14, 3427. [Google Scholar] [CrossRef]
- Gasche, Y.; Copin, J.C.; Sugawara, T.; Fujimura, M.; Chan, P.H. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood–brain barrier disruption after transient focal cerebral ischemia. J. Cereb. Blood Flow Metab. 2001, 21, 1393–1400. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.S.; Zhang, X.; Zhang, Q.R.; Wu, Q.; Li, W.; Jiang, T.W.; Hang, C.H. Astaxanthin reduces matrix metalloproteinase-9 expression and activity in the brain after experimental subarachnoid hemorrhage in rats. Brain Res. 2015, 1624, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.S.; Zhang, X.; Wu, Q.; Li, W.; Wang, C.X.; Xie, G.B.; Zhou, X.M.; Shi, J.X.; Zhou, M.L. Astaxanthin offers neuroprotection and reduces neuroinflammation in experimental subarachnoid hemorrhage. J. Surg. Res. 2014, 192, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Bahbah, E.I.; Ghozy, S.; Attia, M.S.; Negida, A.; Emran, T.B.; Mitra, S.; Albadrani, G.M.; Abdel-Daim, M.M.; Uddin, M.S.; Simal-Gandara, J. Molecular mechanisms of astaxanthin as a potential neurotherapeutic agent. Mar. Drugs 2021, 19, 201. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kim, H. Inhibitory Effect of Astaxanthin on Oxidative Stress-Induced Mitochondrial Dysfunction-A Mini-Review. Nutrients 2018, 10, 1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandy, S.K.; Nimonkar, M.M.; Dash, S.S.; Mehta, B.; Markandeya, Y.S. Astaxanthin protection against neuronal excitotoxicity via glutamate receptor inhibition and improvement of mitochondrial function. Mar. Drugs 2022, 20, 645. [Google Scholar] [CrossRef] [PubMed]
- Pires, M.; Rego, A.C. Apoe4 and Alzheimer’s disease pathogenesis—Mitochondrial deregulation and targeted therapeutic strategies. Int. J. Mol. Sci. 2023, 24, 778. [Google Scholar] [CrossRef]
- Wang, S.; Du, S.; Wang, W.; Zhang, F. Therapeutic investigation of quercetin nanomedicine in a zebrafish model of diabetic retinopathy. Biomed. Pharmacother. 2020, 130, 110573. [Google Scholar] [CrossRef]
- Mohammadi, H.; Manouchehri, H.; Changizi, R.; Bootorabi, F.; Khorramizadeh, M.R. Concurrent metformin and silibinin therapy in diabetes: Assessments in zebrafish (Danio rerio) animal model. J. Diabetes Metab. Disord. 2020, 19, 1233–1244. [Google Scholar] [CrossRef]
- Skaggs, K.; Goldman, D.; Parent, J.M. Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and long-distance neuronal integration. Glia 2014, 62, 2061–2079. [Google Scholar] [CrossRef] [Green Version]
- Pedroso, G.L.; Hammes, T.O.; Escobar, T.D.; Fracasso, L.B.; Forgiarini, L.F.; da Silveira, T.R. Blood collection for biochemical analysis in adult zebrafish. J. Vis. Exp. 2012, 63, e3865. [Google Scholar]
- Dubey, S.; Ganeshpurkar, A.; Bansal, D.; Dubey, N. Protective effect of rutin on impairment of cognitive functions of due to antiepileptic drugs on zebrafish model. Indian J. Pharmacol. 2015, 47, 86–89. [Google Scholar]
- Narahari, R.; Arunachalam, M. Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish. Life Sci. 2018, 199, 80–87. [Google Scholar]
- Muthuraman, A.; Thilagavathi, L.; Jabeen, S.; Ravishankar, S.B.; Ahmed, S.S.; George, T.; Rishitha, N.; Paramakrishnan, N. Curcumin prevents cigarette smoke extract induced cognitive impairment. Front. Biosci. Elit. 2019, 11, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Buccafusco, J.J. Methods of Behavior Analysis in Neuroscience, 2nd ed.; Buccafusco, J.J., Ed.; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-1-4200-5234-3. [Google Scholar]
- Colwill, R.M.; Raymond, M.P.; Ferreira, L.; Escudero, H. Visual discrimination learning in zebrafish (Danio rerio). Behav. Process. 2005, 70, 19–31. [Google Scholar] [CrossRef]
- Yen, L.F.; Wei, V.C.; Kuo, E.Y.; Lai, T.W. Distinct patterns of cerebral extravasation by Evans blue and sodium fluorescein in rats. PLoS ONE 2013, 8, e68595. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Ramirez, M.A.; Calvo, C.F.; Ristori, E.; Thomas, J.L.; Nicoli, S. Isolation and culture of adult zebrafish brain-derived neurospheres. J. Vis. Exp. 2016, 108, 53617. [Google Scholar]
- Uyama, O.; Okamura, N.; Yanase, M.; Narita, M.; Kawabata, K.; Sugita, M. Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J. Cereb. Blood Flow Metab. 1988, 8, 282–284. [Google Scholar] [CrossRef] [Green Version]
Groups | Fasting Blood Glucose (mg/dL) |
---|---|
Normal | 69.2 ± 1.1 |
AD | 147.8 ± 2.4 a |
AD + AST (10 mg/L) | 84.2 ± 1.9 b |
AD + AST (20 mg/L) | 73.1 ± 1.5 b |
AD + DP (1 mg/L) | 72.8 ± 1.4 b |
AD + CL-82198 (10 μM) | 75.3 ± 1.7 b |
Groups | Nitrite (µM/mg of protein) | β-Amyloid Peptide (pg/mg of protein) | MMP-13 (ng/mg of protein) | AChE (µM/mg of protein/Min) |
---|---|---|---|---|
Normal | 58.2 ± 1.1 | 2.1 ± 1.3 | 11.4 ± 0.9 | 16.7 ± 1.6 |
AD | 137.7 ± 1.3 a | 19.3 ± 0.9 a | 48.6 ± 0.6 a | 49.1 ± 1.2 a |
AD + AST (10 mg/L) | 76.3 ± 1.2 b | 7.2 ± 0.7 b | 24.3 ± 0.3 a | 26.4 ± 1.3 b |
AD + AST (20 mg/L) | 71.1 ± 0.9 b | 6.3 ± 0.6 b | 19.1 ± 0.6 b | 22.1 ± 0.9 b |
AD + DP (1 mg/L) | 69.5 ± 1.1 b | 4.6 ± 1.1 b | 17.5 ± 0.7 b | 19.2 ± 1.2 b |
AD + CL-82198 (10 μM) | 63.4 ± 0.8 b | 3.4 ± 1.2 b | 14.4 ± 0.4 b | 17.8 ± 1.4 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paramakrishnan, N.; Lim, K.G.; Paramaswaran, Y.; Ali, N.; Waseem, M.; Shazly, G.A.; Bin Jardan, Y.A.; Muthuraman, A. Astaxanthin: A Marine Drug That Ameliorates Cerebrovascular-Damage-Associated Alzheimer’s Disease in a Zebrafish Model via the Inhibition of Matrix Metalloprotease-13. Mar. Drugs 2023, 21, 433. https://doi.org/10.3390/md21080433
Paramakrishnan N, Lim KG, Paramaswaran Y, Ali N, Waseem M, Shazly GA, Bin Jardan YA, Muthuraman A. Astaxanthin: A Marine Drug That Ameliorates Cerebrovascular-Damage-Associated Alzheimer’s Disease in a Zebrafish Model via the Inhibition of Matrix Metalloprotease-13. Marine Drugs. 2023; 21(8):433. https://doi.org/10.3390/md21080433
Chicago/Turabian StyleParamakrishnan, Nallupillai, Khian Giap Lim, Yamunna Paramaswaran, Nemat Ali, Mohammad Waseem, Gamal A. Shazly, Yousef A. Bin Jardan, and Arunachalam Muthuraman. 2023. "Astaxanthin: A Marine Drug That Ameliorates Cerebrovascular-Damage-Associated Alzheimer’s Disease in a Zebrafish Model via the Inhibition of Matrix Metalloprotease-13" Marine Drugs 21, no. 8: 433. https://doi.org/10.3390/md21080433
APA StyleParamakrishnan, N., Lim, K. G., Paramaswaran, Y., Ali, N., Waseem, M., Shazly, G. A., Bin Jardan, Y. A., & Muthuraman, A. (2023). Astaxanthin: A Marine Drug That Ameliorates Cerebrovascular-Damage-Associated Alzheimer’s Disease in a Zebrafish Model via the Inhibition of Matrix Metalloprotease-13. Marine Drugs, 21(8), 433. https://doi.org/10.3390/md21080433