Microalgae from Cold Environments and Their Possible Biotechnological Applications
Abstract
:1. Introduction
2. Cold-Living Microalgae Bioactivities
Antioxidant and Anticancer Activities
3. Cold Stress Exposure Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feller, G.; Gerday, C. Psychrophilic Enzymes: Hot Topics in Cold Adaptation. Nat. Rev. Microbiol. 2003, 1, 200–208. [Google Scholar] [CrossRef]
- Eddy, B.P. The use and meaning of the term ‘psychrophilic’. J. Appl. Bacteriol. 1960, 23, 189–190. [Google Scholar] [CrossRef]
- Morita, R.Y. Psychrophilic Bacteria. Bacteriol. Rev. 1975, 39, 144–167. [Google Scholar] [CrossRef] [PubMed]
- Lauritano, C.; Rizzo, C.; Lo Giudice, A.; Saggiomo, M. Physiological and Molecular Responses to Main Environmental Stressors of Microalgae and Bacteria in Polar Marine Environments. Microorganisms 2020, 8, 1957. [Google Scholar] [CrossRef]
- Cordone, A.; D’Errico, G.; Magliulo, M.; Bolinesi, F.; Selci, M.; Basili, M.; de Marco, R.; Saggiomo, M.; Rivaro, P.; Giovannelli, D.; et al. Bacterioplankton Diversity and Distribution in Relation to Phytoplankton Community Structure in the Ross Sea Surface Waters. Front. Microbiol. 2022, 13, 722900. [Google Scholar] [CrossRef]
- Routaboul, J.-M.; Fischer, S.F.; Browse, J. Trienoic Fatty Acids Are Required to Maintain Chloroplast Function at Low Temperatures. Plant Physiol. 2000, 124, 1697–1705. [Google Scholar] [CrossRef]
- Mock, T.; Kroon, B.M.A. Photosynthetic Energy Conversion under Extreme Conditions—I: Important Role of Lipids as Structural Modulators and Energy Sink under N-Limited Growth in Antarctic Sea Ice Diatoms. Phytochemistry 2002, 61, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Los, D.A.; Murata, N. Membrane Fluidity and Its Roles in the Perception of Environmental Signals. Biochim. Biophys. Acta (BBA)-Biomembr. 2004, 1666, 142–157. [Google Scholar] [CrossRef]
- Torstensson, A.; Jiménez, C.; Nilsson, A.K.; Wulff, A. Elevated Temperature and Decreased Salinity Both Affect the Biochemical Composition of the Antarctic Sea-Ice Diatom Nitzschia Lecointei, but Not Increased PCO2. Polar Biol. 2019, 42, 2149–2164. [Google Scholar] [CrossRef]
- Kuczynska, P.; Jemiola-Rzeminska, M.; Strzalka, K. Photosynthetic Pigments in Diatoms. Mar. Drugs 2015, 13, 5847–5881. [Google Scholar] [CrossRef]
- Kudoh, S.; Robineau, B.; Suzuki, Y.; Fujiyoshi, Y.; Takahashi, M. Photosynthetic Acclimation and the Estimation of Temperate Ice Algal Primary Production in Saroma-Ko Lagoon, Japan. J. Mar. Syst. 1997, 11, 93–109. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Adams, W.W. Antioxidants in Photosynthesis and Human Nutrition. Science 2002, 298, 2149–2153. [Google Scholar] [CrossRef] [PubMed]
- Arrigo, K.R. Sea Ice Ecosystems. Ann. Rev. Mar. Sci. 2014, 6, 439–467. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwe, M.A.; Tedesco, L.; Arrigo, K.R.; Assmy, P.; Campbell, K.; Meiners, K.M.; Rintala, J.-M.; Selz, V.; Thomas, D.N.; Stefels, J. Microalgal Community Structure and Primary Production in Arctic and Antarctic Sea Ice: A Synthesis. Elem. Sci. Anthr. 2018, 6, 4. [Google Scholar] [CrossRef]
- Lizotte, M.P. The Microbiology of Sea Ice. In Sea Ice; Thomas, D.N., Dieckmann, G.S., Eds.; Blackwell Science Ltd.: Oxford, UK, 2003; pp. 184–210. ISBN 978-0-470-75716-1. [Google Scholar]
- Arrigo, K.R.; Thomas, D.N. Large Scale Importance of Sea Ice Biology in the Southern Ocean. Antart. Sci. 2004, 16, 471–486. [Google Scholar] [CrossRef]
- Lavoie, D.; Denman, K.; Michel, C. Modeling Ice Algal Growth and Decline in a Seasonally Ice-Covered Region of the Arctic (Resolute Passage, Canadian Archipelago). J. Geophys. Res. 2005, 110, C11009. [Google Scholar] [CrossRef]
- Mock, T.; Thomas, D.N. Recent Advances in Sea-Ice Microbiology. Environ. Microbiol. 2005, 7, 605–619. [Google Scholar] [CrossRef]
- Matsuoka, A.; Larouche, P.; Poulin, M.; Vincent, W.; Hattori, H. Phytoplankton Community Adaptation to Changing Light Levels in the Southern Beaufort Sea, Canadian Arctic. Estuar. Coast. Shelf Sci. 2009, 82, 537–546. [Google Scholar] [CrossRef]
- Saggiomo, M.; Poulin, M.; Mangoni, O.; Lazzara, L.; De Stefano, M.; Sarno, D.; Zingone, A. Spring-Time Dynamics of Diatom Communities in Landfast and Underlying Platelet Ice in Terra Nova Bay, Ross Sea, Antarctica. J. Mar. Syst. 2017, 166, 26–36. [Google Scholar] [CrossRef]
- Saide, A.; Martínez, K.A.; Ianora, A.; Lauritano, C. Unlocking the Health Potential of Microalgae as Sustainable Sources of Bioactive Compounds. IJMS 2021, 22, 4383. [Google Scholar] [CrossRef]
- Lyon, B.; Mock, T. Polar Microalgae: New Approaches towards Understanding Adaptations to an Extreme and Changing Environment. Biology 2014, 3, 56–80. [Google Scholar] [CrossRef] [PubMed]
- Hopes, A.; Thomas, D.N.; Mock, T. Polar Microalgae: Functional Genomics, Physiology, and the Environment. In Psychrophiles: From Biodiversity to Biotechnology; Margesin, R., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 305–344. ISBN 978-3-319-57056-3. [Google Scholar]
- Malavasi, V.; Soru, S.; Cao, G. Extremophile Microalgae: The Potential for Biotechnological Application. J. Phycol. 2020, 56, 559–573. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. 2023. Available online: https://Pubchem.Ncbi.Nlm.Nih.Gov/ (accessed on 29 March 2023).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 446284, Eicosapentaenoic Acid. 2023. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Icosapent#section=2D-Structure (accessed on 29 March 2023).
- National Center for Biotechnology Information. PubChem Compound Summary for CID445580, Docosahexaenoic Acid. 2023. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Docosahexaenoic-acid#section=2D-Structure (accessed on 29 March 2023).
- Elster, J. Ecological Classification of Terrestrial Algal Communities in Polar Environments. In Geoecology of Antarctic Ice-Free Coastal Landscapes; Beyer, L., Bölter, M., Eds.; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2002; Volume 154, pp. 303–326. ISBN 978-3-642-62674-6. [Google Scholar]
- Kvíderová, J.; Shukla, S.P.; Pushparaj, B.; Elster, J. Perspectives of Low-Temperature Biomass Production of Polar Microalgae and Biotechnology Expansion into High Latitudes. In Psychrophiles: From Biodiversity to Biotechnology; Margesin, R., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 585–600. ISBN 978-3-319-57056-3. [Google Scholar]
- Slama, I.; Abdelly, C.; Bouchereau, A.; Flowers, T.; Savouré, A. Diversity, Distribution and Roles of Osmoprotective Compounds Accumulated in Halophytes under Abiotic Stress. Ann. Bot. 2015, 115, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Li, H.; Xu, X. Alternative Cold Response Modes in Chlorella (Chlorophyta, Trebouxiophyceae) from Antarctica. Phycologia 2008, 47, 28–34. [Google Scholar] [CrossRef]
- Řezanka, T.; Nedbalová, L.; Sigler, K. Unusual Medium-Chain Polyunsaturated Fatty Acids from the Snow Alga Chloromonas Brevispina. Microbiol. Res. 2008, 163, 373–379. [Google Scholar] [CrossRef]
- Pichrtová, M.; Remias, D.; Lewis, L.A.; Holzinger, A. Changes in Phenolic Compounds and Cellular Ultrastructure of Arctic and Antarctic Strains of Zygnema (Zygnematophyceae, Streptophyta) after Exposure to Experimentally Enhanced UV to PAR Ratio. Microb. Ecol. 2013, 65, 68–83. [Google Scholar] [CrossRef]
- León-Vaz, A.; León, R.; Vigara, J.; Funk, C. Exploring Nordic Microalgae as a Potential Novel Source of Antioxidant and Bioactive Compounds. New Biotechnol. 2023, 73, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Deming, J.W.; Young, J.N. The Role of Exopolysaccharides in Microbial Adaptation to Cold Habitats. In Psychrophiles: From Biodiversity to Biotechnology; Margesin, R., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 259–284. ISBN 978-3-319-57056-3. [Google Scholar]
- Cragg, G.M.; Newman, D.J. Natural Products: A Continuing Source of Novel Drug Leads. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2013, 1830, 3670–3695. [Google Scholar] [CrossRef]
- Suh, S.-S.; Hong, J.-M.; Kim, E.J.; Jung, S.W.; Kim, S.-M.; Kim, J.E.; Kim, I.-C.; Kim, S. Anti-Inflammation and Anti-Cancer Activity of Ethanol Extract of Antarctic Freshwater Microalga, Micractinium sp. Int. J. Med. Sci. 2018, 15, 929–936. [Google Scholar] [CrossRef]
- Suh, S.-S.; Hong, J.-M.; Kim, E.J.; Jung, S.W.; Chae, H.; Kim, J.E.; Kim, J.H.; Kim, I.-C.; Kim, S. Antarctic Freshwater Microalga, Chloromonas reticulata, Suppresses Inflammation and Carcinogenesis. Int. J. Med. Sci. 2019, 16, 189–197. [Google Scholar] [CrossRef]
- Ko, S.-H.; Lim, Y.; Kim, E.J.; Ko, Y.W.; Hong, I.-S.; Kim, S.; Jung, Y. Antarctic Marine Algae Extracts as a Potential Natural Resource to Protect Epithelial Barrier Integrity. Mar. Drugs 2022, 20, 562. [Google Scholar] [CrossRef] [PubMed]
- Ingebrigtsen, R.A.; Hansen, E.; Andersen, J.H.; Eilertsen, H.C. Field Sampling Marine Plankton for Biodiscovery. Sci. Rep. 2017, 7, 15863. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas, C.A.; González-Aravena, M.; Santibañez, P.A. The Importance of Local Settings: Within-Year Variability in Seawater Temperature at South Bay, Western Antarctic Peninsula. PeerJ 2018, 6, e4289. [Google Scholar] [CrossRef] [PubMed]
- Hommersand, M.H.; Moe, R.L.; Amsler, C.D.; Fredericq, S. Notes on the Systematics and Biogeographical Relationships of Antarctic and Sub-Antarctic Rhodophyta with Descriptions of Four New Genera and Five New Species. Botm 2009, 52, 509–534. [Google Scholar] [CrossRef]
- Trematocarpus Ant-Arcticus (Hariot) S. Fredericq & R.L. Moe in M.H. Hommer-Sand, R.L. Moe, C.D. Amsler, & S. Fredericq Bot. Mar. 52: 514. 2009. Available online: https://www.marinespecies.org/aphia.php?p=taxdetails&id=548164 (accessed on 6 May 2023).
- Wiencke, C.; Tom Dieck, I. Temperature Require-Ments for Growth and Temper-Ature Tolerance of Macroalgae Endemic to the Antarctic Region. Mar. Ecol. Prog. Ser. 1989, 54, 189–197. [Google Scholar] [CrossRef]
- Drew, E.A.; Hastings, R.M. A Year-Round Ecophysiological Study of Himantothallus Grandifolius (Desmarestiales, Phaeophyta) at Signy Island, Antarctica. Phycologia 1992, 31, 262–277. [Google Scholar] [CrossRef]
- Shukla, S.P.; Kvíderová, J.; Tříska, J.; Elster, J. Chlorella Mirabilis as a Potential Species for Biomass Production in Low-Temperature Environment. Front. Microbiol. 2013, 4, 97. [Google Scholar] [CrossRef]
- Whelan, J.; Fritsche, K. Linoleic Acid. Adv. Nutr. 2013, 4, 311–312. [Google Scholar] [CrossRef]
- Boelen, P.; van Dijk, R.; Sinninghe Damsté, J.S.; Rijpstra, W.I.C.; Buma, A.G. On the Potential Application of Polar and Temperate Marine Microalgae for EPA and DHA Production. AMB Express 2013, 3, 26. [Google Scholar] [CrossRef]
- Uauy, R.; Mena, P.; Rojas, C. Essential Fatty Acids in Early Life: Structural and Functional Role. Proc. Nutr. Soc. 2000, 59, 3–15. [Google Scholar] [CrossRef]
- Brown, I.; Lee, J.; Sneddon, A.A.; Cascio, M.G.; Pertwee, R.G.; Wahle, K.W.J.; Rotondo, D.; Heys, S.D. Anticancer Effects of N-3 EPA and DHA and Their Endocannabinoid Derivatives on Breast Cancer Cell Growth and Invasion. Prostaglandins Leukot. Essent. Fat. Acids 2020, 156, 102024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.-T.; Xu, J.; Wang, Y.-M.; Xue, C.-H. Health Benefits of Dietary Marine DHA/EPA-Enriched Glycerophospholipids. Prog. Lipid Res. 2019, 75, 100997. [Google Scholar] [CrossRef] [PubMed]
- Le, P.; Desbois, A. Antibacterial Effect of Eicosapentaenoic Acid against Bacillus Cereus and Staphylococcus Aureus: Killing Kinetics, Selection for Resistance, and Potential Cellular Target. Mar. Drugs 2017, 15, 334. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Cartwright, C.; Chan, D.; Ding, J.; Felix, E.; Pan, Y.; Pang, J.; Rhea, P.; Block, K.; Fischer, S.M.; et al. Anticancer Activity of Fish Oils against Human Lung Cancer Is Associated with Changes in Formation of PGE2 and PGE3 and Alteration of Akt Phosphorylation: ANTICANCER ACTIVITY OF FISH OIL. Mol. Carcinog. 2014, 53, 566–577. [Google Scholar] [CrossRef]
- Ogo, A.; Miyake, S.; Kubota, H.; Higashida, M.; Matsumoto, H.; Teramoto, F.; Hirai, T. Synergistic Effect of Eicosapentaenoic Acid on Antiproliferative Action of Anticancer Drugs in a Cancer Cell Line Model. Ann. Nutr. Metab. 2017, 71, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Newell, M.; Baker, K.; Postovit, L.; Field, C. A Critical Review on the Effect of Docosahexaenoic Acid (DHA) on Cancer Cell Cycle Progression. IJMS 2017, 18, 1784. [Google Scholar] [CrossRef]
- Cheregi, O.; Ekendahl, S.; Engelbrektsson, J.; Strömberg, N.; Godhe, A.; Spetea, C. Microalgae Biotechnology in Nordic Countries—The Potential of Local Strains. Physiol. Plant. 2019, 166, 438–450. [Google Scholar] [CrossRef]
- Ingebrigtsen, R.A.; Hansen, E.; Andersen, J.H.; Eilertsen, H.C. Light and Temperature Effects on Bioactivity in Diatoms. J. Appl. Phycol. 2016, 28, 939–950. [Google Scholar] [CrossRef]
- El-Sheekh, M.; Abomohra, A.E.-F.; El-Azim, M.A.; Abou-Shanab, R. Effect of temperature on growth and fatty acids profile of the biodiesel producing microalga Scenedesmus acutus. Biotechnol. Agron. Soc. Environ. 2017, 21, 233–239. [Google Scholar] [CrossRef]
- Demirel, Z.; Yilmaz, F.F.; Ozdemir, G.; Conk Dalay, M. Influence of Media and Temperature on the Growht and the Biological Activities of Desmodesmus Protuberans (F.E. Fritsch & M.F. Rich) E. Hegewald. Turk. J. Fish. Aquat. Sci. 2018, 18, 1195–1203. [Google Scholar] [CrossRef]
- Menegol, T.; Diprat, A.B.; Rodrigues, E.; Rech, R. Effect of Temperature and Nitrogen Concentration on Biomass Composition of Heterochlorella Luteoviridis. Food Sci. Technol. 2017, 37, 28–37. [Google Scholar] [CrossRef]
- Stirk, W.A.; Bálint, P.; Tarkowská, D.; Strnad, M.; van Staden, J.; Ördög, V. Endogenous Brassinosteroids in Microalgae Exposed to Salt and Low Temperature Stress. Eur. J. Phycol. 2018, 53, 273–279. [Google Scholar] [CrossRef]
- Stirk, W.A.; Bálint, P.; Tarkowská, D.; Novák, O.; Strnad, M.; Ördög, V.; van Staden, J. Hormone Profiles in Microalgae: Gibberellins and Brassinosteroids. Plant Physiol. Biochem. 2013, 70, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Stirk, W.A.; Ördög, V.; Novák, O.; Rolčík, J.; Strnad, M.; Bálint, P.; van Staden, J. Auxin and Cytokinin Relationships in 24 Microalgal Strains 1. J. Phycol. 2013, 49, 459–467. [Google Scholar] [CrossRef]
- Zhao, T.; Han, X.; Cao, H. Effect of Temperature on Biological Macromolecules of Three Microalgae and Application of FT-IR for Evaluating Microalgal Lipid Characterization. ACS Omega 2020, 5, 33262–33268. [Google Scholar] [CrossRef]
- Jiang, H.; Gao, K. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (bacillariophyceae)1: pufas in Phaeodactylum tricornutum. J. Phycol. 2004, 40, 651–654. [Google Scholar] [CrossRef]
- Fierli, D.; Barone, M.E.; Graceffa, V.; Touzet, N. Cold Stress Combined with Salt or Abscisic Acid Supplementation Enhances Lipogenesis and Carotenogenesis in Phaeodactylum tricornutum (Bacillariophyceae). Bioprocess Biosyst. Eng. 2022, 45, 1967–1977. [Google Scholar] [CrossRef] [PubMed]
- Kotake-Nara, E.; Miyashita, K.; Nagao, A.; Kushiro, M.; Zhang, H.; Sugawara, T. Carotenoids Affect Proliferation of Human Prostate Cancer Cells. J. Nutr. 2001, 131, 3303–3306. [Google Scholar] [CrossRef]
- D’Orazio, N.; Gemello, E.; Gammone, M.; de Girolamo, M.; Ficoneri, C.; Riccioni, G. Fucoxantin: A Treasure from the Sea. Mar. Drugs 2012, 10, 604–616. [Google Scholar] [CrossRef]
- McMinn, A.; Martin, A.; Ryan, K. Phytoplankton and Sea Ice Algal Biomass and Physiology during the Transition between Winter and Spring (McMurdo Sound, Antarctica). Polar Biol. 2010, 33, 1547–1556. [Google Scholar] [CrossRef]
- Lauritano, C.; Montuori, E.; De Falco, G.; Carrella, S. In Silico Methodologies to Improve Antioxidants’ Characterization from Marine Organisms. Antioxidants 2023, 12, 710. [Google Scholar] [CrossRef] [PubMed]
- Martínez Andrade, K.; Lauritano, C.; Romano, G.; Ianora, A. Marine Microalgae with Anti-Cancer Properties. Mar. Drugs 2018, 16, 165. [Google Scholar] [CrossRef] [PubMed]
- Menaa, F.; Wijesinghe, U.; Thiripuranathar, G.; Althobaiti, N.A.; Albalawi, A.E.; Khan, B.A.; Menaa, B. Marine Algae-Derived Bioactive Compounds: A New Wave of Nanodrugs? Mar. Drugs 2021, 19, 484. [Google Scholar] [CrossRef] [PubMed]
- Nishida, I.; Murata, N. Chilling Sensitivity in Plants and Cyanobacteria: The Crucial Contribution of Membrane Lipids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 541–568. [Google Scholar] [CrossRef]
- Salazar, J.; Valev, D.; Näkkilä, J.; Tyystjärvi, E.; Sirin, S.; Allahverdiyeva, Y. Nutrient Removal from Hydroponic Effluent by Nordic Microalgae: From Screening to a Greenhouse Photobioreactor Operation. Algal Res. 2021, 55, 102247. [Google Scholar] [CrossRef]
- Gojkovic, Z.; Lindberg, R.H.; Tysklind, M.; Funk, C. Northern Green Algae Have the Capacity to Remove Active Pharmaceutical Ingredients. Ecotoxicol. Environ. Saf. 2019, 170, 644–656. [Google Scholar] [CrossRef]
- Petrou, K.; Kranz, S.A.; Trimborn, S.; Hassler, C.S.; Ameijeiras, S.B.; Sackett, O.; Ralph, P.J.; Davidson, A.T. Southern Ocean Phytoplankton Physiology in a Changing Climate. J. Plant Physiol. 2016, 203, 135–150. [Google Scholar] [CrossRef]
Microalga | Identified Compounds | Activity | Assay, Cell Line, Concentration | Sampling Location | Reference |
---|---|---|---|---|---|
Chloromonas reticulata | - | Anti-inflammation, anti-carcinogenesis | MTS assay was performed to determine the cytotoxic effect of ETCH ELISA was performed to determine the amounts of cytokines in the cell culture after 18 h of treatment with different concentrations of ETCH (5, 10, 20, 40 µg/mL); Cell lines: RAW 264.7, HCT116 | King Sejong Station (Average temperature −1.8 °C, according to https://www.kopri.re.kr/eng/html/infra/03010101.html; accessed on 21 April 2023) | [38] |
Desmodesmus opoliensis SQ-2 | Neoxanthin, violaxanthin, antheraxanthin, lutein, c-lutein, astaxanthin, chlorophyll b, chlorophyll a,β,ε-carotene and ββ-carotene | Antioxidant assay | DPPH radical scavenging assay was performed to test the antioxidant activity. Extracts were tested at different concentrations: 1, 0.8, 0.6, 0.4 and 0.2 mg mL−1; IC50 of 0.58 mg mL−1 | Nordic microalgae (Summer 15 °C, Winter −4 °C) | [34] |
Himantothallus grandifolius | 9-Octadecenoic acid, octadecanoic acid, 9,12-octadecadienoic acid, essential fat-soluble vitamin E | Increased cell viability, intracellular ROS scavenging, anti-inflammatory activity | To determine the cytotoxicity, Caco-2 cells and HaCaT cells were incubated for 18 h with 1 µg/mL of extract; Intracellular ROS Scavenging | Antarctic region (Winter −1.7 °C, Summer 3.0 °C) [41] | [39] |
Trematocarpus antarticus (former Kallymenia antarctica) [42,43] | 9-Octadecenoic acid, cholesterol, heptadecane | Increased cell viability, intracellular ROS scavenging, anti-inflammatory activity | To determine the cytotoxicity, Caco-2 cells and HaCaT cells were incubated for 18 h with 1 µg/mL of extract | Antarctic region (Winter −1.7 °C, Summer 3.0 °C) | [39] |
Micractinium sp. | - | Anti-inflammatory, anticancer | MTT assay and Cell cycle assay after 24 h of treatment with ETMI at different concentrations (25, 50, and 100 μg/mL); To evaluate the effect of ETMI on proinflammatory cytokine expression, RAW 264.7 macrophages were treated with different concentrations of ETMI (5, 10, 20, 40 μg/mL) for 1 h and then stimulated with 1 mg mL−1 LPS for 24 h; Cell lines: RAW 264.7, HCT116; | King Sejong Station (Average temperature −1.8 °C) | [37] |
Micractinium sp. (P9-1) | Neoxanthin, violaxanthin, antheraxanthin, lutein, c-lutein, astaxanthin, chlorophyll b, chlorophyll a,β,ε-carotene and ββ-carotene | Antioxidant assay | DPPH radical scavenging assay was performed to test the antioxidant activity; Extracts were tested at different concentrations: 1, 0.8, 0.6, 0.4 and 0.2 mg mL−1; IC50 of 0.51 mg mL−1 | Nordic microalgae (Summer 15 °C, Winter −4 °C) | [34] |
Phaeurus antarcticus | octadecanoic acid, 9,12-octadecadienoic acid, essential fat-soluble vitamin E | Increased cell viability, intracellular ROS scavenging, anti-inflammatory activity | To determine the cytotoxicity, Caco-2 and HaCaT cells were incubated for 18 h with 1 µg/mL of extract | Antarctic region (Winter −1.7 °C, Summer 3.0 °C) [44] | [39] |
Plocamium cartilagineum | tetradecanoic acid, neophytadiene, heptadecane | Increased cell viability, intracellular ROS scavenging, anti-inflammatory activity | To determine the cytotoxicity, Caco-2 and HaCaT cells were incubated for 18 h with 1 µg/mL of extract | Antarctic region (Winter −1.7 °C, Summer 3.0 °C) [45] | [39] |
Scenedesmus sp. B2-2 | Neoxanthin, violaxanthin, antheraxanthin, lutein, c-lutein, astaxanthin, chlorophyll b, chlorophyll a,β,ε-carotene and ββ-carotene | Antioxidant assay | DPPH radical scavenging assay was performed to test the antioxidant activity; Extracts were tested at different concentrations: 1, 0.8, 0.6, 0.4 and 0.2 mg mL−1. IC50 of 0.59 mg mL−1 | Nordic microalgae (Summer 15 °C, Winter −4 °C) | [34] |
Microalga | Activity | Assay, Cell Line, Concentration | Cold Stress Exposure Conditions | Reference |
---|---|---|---|---|
Acutodesmus acuminatus | - | Evaluation of endogenous brassinosteroid content | Exposure at 36 g L−1 NaCl and low temperature stress from 25 °C to 15 °C | [61] |
Attheya longicornis | Anticancer, antibacterial, immunomodulatory, anti-diabetes | Cell line: A2058, THP-1; Assay: FRAP antioxidant assay, antibacterial assays, enzymatic PTP1B diabetes assay, MTS cell viability assay, ELISA immunomodulation assay | Low temperature exposure at 4.3 °C and low irradiance of 76 μmol photons m−2 s−1. High temperature exposure at 9 °C and low irradiance of 30 μmol photons m−2 s−1. High temperature exposure at 9 °C and high irradiance of 130 μmol photons m−2 s−1. | [57] |
Chaetoceros brevis | - | Variability of EPA and DHA content analyses | Cultivated at 3 °C and 7 °C with an irradiance of 10, 25, 75 and 150 μmol photons m−2 s−1 | [48] |
Chaetoceros furcellatus | Anti-diabetes, anticancer | Cell line: A2058, THP-1; Assay: FRAP antioxidant assay, antibacterial assays, enzymatic PTP1B diabetes assay, MTS cell viability assay, ELISA immunomodulation assay | Low temperature exposure at 4.3 °C and low irradiance of 30 μmol photons m−2 s−1. Low temperature exposure at 5 °C and high irradiance of 130 μmol photons m−2 s−1. High temperature exposure at 8.5 °C and low irradiance of 68 μmol photons m−2 s−1. | [57] |
Chaetoceros socialis | Antioxidant, anti-diabetes | Cell line: A2058, THP-1; Assay: FRAP antioxidant assay, antibacterial assays, enzymatic PTP1B diabetes assay, MTS cell viability assay, ELISA immunomodulation assay | Low temperature exposure at 4.3 °C and high irradiance of 130 μmol photons m−2 s−1. High temperature exposure at 6.6 °C and low irradiance of 35 μmol photons m−2 s−1. | [57] |
Chlorella mirabilis L-10 | - | Fatty acid analyses in biomass cultivation in stable (in-door) and variable (out-door) conditions | In-door cultivation performed at 15 °C with an irradiance of 75 µmol m−2 s−1. Out-door cultivation performed at the night-day temperature ranged from −6.6 to 17.5 °C and irradiance ranged from 0 to 2300 mol m−2 s−1. | [46] |
Chlorella vulgaris | - | Evaluation of endogenous brassinosteroid content | Exposure at 36 g L−1 NaCl and low temperature stress from 25 to 15 °C | [61] |
Chlorella vulgaris | - | FTIR spectroscopy | Cold temperature of 15 °C | [64] |
Chlorococcum ellipsoideum | - | Evaluation of endogenous brassinosteroid content | Exposure at 36 g L−1 NaCl and low temperature stress from 25 to 15 °C | [61] |
Desmodesmus protuberans | Antioxidant, antibacterial | DPPH Assay, Antimicrobial Activity Assay | Three different culture media: BBM, BG-11 and RD Two regimes of temperature: 22 and 28 °C Light intensity of 75 μmol m−2 s−1 | [59] |
Emiliania huxleyi | - | Variability of EPA and DHA content analyses | Cultivated at temperature of 16 °C with an irradiance of 75 μmol photons m−2 s−1 | [48] |
Fibrocapsa japonica | - | Variability of EPA and DHA content analyses | Cultivated at temperature of 16 °C with an irradiance of 75 μmol photons m−2 s−1 | [48] |
Heterochlorella luteoviridis | - | Biomass production and composition: carbohydrates, carotenoids and lipids | Different temperatures (22, 27 or 32 °C) and sodium nitrate concentrations (12, 24, 36, 48 or 60 mg L−1 of N−NO3) | [60] |
Nannochloropsis sp. | - | FTIR spectroscopy | Cold temperature 15 °C | [64] |
Nautococcus mamillatus | - | Evaluation of endogenous brassinosteroid content | Exposure at 36 g L−1 NaCl and low temperature stress from 25 to 15 °C | [61] |
Pheodactylum tricornutum | - | Nile red fluorescence assay to evaluate lipid content; TBARS assay to evaluate lipids peroxidation; Real Time-PCR | Cold temperature shock from 20 to 10 °C NaCl salt 5 mg mL−1 Phytohormone abscisic acid (4 mg L−1) | [66] |
Pheodactylum tricornutum | - | FTIR spectroscopy | Cold temperature of 15 °C | [64] |
Porosira glacialis | Anticancer, anti-inflammatory, antioxidant, anti-diabetes | Cell line: A2058, THP-1 Assay: FRAP antioxidant assay, antibacterial assays, enzymatic PTP1B diabetes assay, MTS cell viability assay, ELISA immunomodulation assay | Low temperature exposure at 3.3 °C and high irradiance of 93 μmol photons m−2 s−1. Low temperature exposure at 4.5 °C and high irradiance of 140 μmol photons m−2 s−1. High temperature exposure at 6.5 °C and low irradiance of 80 μmol photons m−2 s−1. High temperature exposure at 7.1 °C and high irradiance of 135 μmol photons m−2 s−1. | [57] |
Protococcus viridis | - | Evaluation of endogenous brassinosteroid content | Exposure at 36 g L−1 NaCl and low temperature stress from 25 to 15 °C | [61] |
Pyramimonas sp. | - | Variability of EPA and DHA content analyses | Cultivated at temperature of 3 °C with an irradiance of 75 μmol photons m−2 s−1 | [48] |
Scenedesmus acutus | - | Lipid productivity and fatty acid profiles | Range of temperature of 15, 20, 25, 30, 35 and 40 °C | [58] |
Skeletonema marinoi | Anticancer, antioxidant | Cell line: A2058, THP-1; Assay: FRAP antioxidant assay, antibacterial assays, enzymatic PTP1B diabetes assay, MTS cell viability assay, ELISA immunomodulation assay | Low temperature exposure at 5.6 °C and high irradiance of 115 μmol photons m−2 s−1. High temperature exposure at 8.5 °C and low irradiance of 55 μmol photons m−2 s−1. High temperature exposure at 8.7 °C and high irradiance of 93 μmol photons m−2 s−1. | [57] |
Thalassiosira weissflogii | - | Variability of EPA and DHA content analyses | Cultivated at temperature of 16 °C and 20 °C with an irradiance of 10, 25, 75 and 150 μmol photons m−2 s−1 | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montuori, E.; Saggiomo, M.; Lauritano, C. Microalgae from Cold Environments and Their Possible Biotechnological Applications. Mar. Drugs 2023, 21, 292. https://doi.org/10.3390/md21050292
Montuori E, Saggiomo M, Lauritano C. Microalgae from Cold Environments and Their Possible Biotechnological Applications. Marine Drugs. 2023; 21(5):292. https://doi.org/10.3390/md21050292
Chicago/Turabian StyleMontuori, Eleonora, Maria Saggiomo, and Chiara Lauritano. 2023. "Microalgae from Cold Environments and Their Possible Biotechnological Applications" Marine Drugs 21, no. 5: 292. https://doi.org/10.3390/md21050292
APA StyleMontuori, E., Saggiomo, M., & Lauritano, C. (2023). Microalgae from Cold Environments and Their Possible Biotechnological Applications. Marine Drugs, 21(5), 292. https://doi.org/10.3390/md21050292