Antimicrobial Peptides from Photosynthetic Marine Organisms with Potential Application in Aquaculture
Abstract
:1. Introduction
2. Classification of Antimicrobial Peptides
3. Mode of Action of Antimicrobial Peptides
4. Antimicrobial Peptides from Marine versus Terrestrial Sources
5. Antimicrobial Peptides from Photosynthetic Organisms
6. The Use of Antimicrobial Peptides in Fish Aquaculture
7. Algae as a Vehicle for Treating Fish with Antimicrobial Peptides
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2022. [Google Scholar]
- Lafferty, K.D.; Harvell, C.D.; Conrad, J.M.; Friedman, C.S.; Kent, M.L.; Kuris, A.M.; Powell, E.N.; Rondeau, D.; Saksida, S.M. Infectious diseases affect marine fisheries and aquaculture economics. Ann. Rev. Mar. Sci. 2015, 7, 471–496. [Google Scholar] [CrossRef]
- Long, L.; Zhang, H.; Ni, Q.; Liu, H.; Wu, F.; Wang, X. Effects of stocking density on growth, stress, and immune responses of juvenile Chinese sturgeon (Acipenser sinensis) in a recirculating aquaculture system. Comp. Bio. Phys. Part C Toxic. Pharm. 2019, 219, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Onxayvieng, K.; Piria, M.; Fuka, M.M.; Gavrilović, A.; Liang, X.; Liu, L.; Tang, R.; Li, L.; Li, D. High stocking density alters growth performance, blood biochemical profiles, and hepatic antioxidative capacity in gibel carp (Carassius gibelio). Fish. Phys. Biochem. 2021, 47, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Sun, R.; Pan, C.; Sun, Y.; Mai, B.; Li, Q.X. Antibiotics and food safety in aquaculture. J. Agric. Food. Chem. 2020, 68, 11908–11919. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Habibullah-Al-Mamun, M.; Nagano, I.; Masunaga, S.; Kitazawa, D.; Matsuda, H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking. Env. Sci. Poll. Res. Int. 2022, 29, 11054–11075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Xu, L.; Dong, C. Antimicrobial peptides: An overview of their structure, function and mechanism of action. Prot. Pept. Lett. 2022, 29, 641–650. [Google Scholar] [CrossRef]
- Katzenback, B.A. Antimicrobial peptides as mediators of innate immunity in teleosts. Biology 2015, 4, 607–639. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Lombardi, L.; Franci, G.; Vitiello, M.; Iovene, M.R.; Morelli, G.; Galdiero, M.; Galdiero, S. Marine antimicrobial peptides: Nature provides templates for the design of novel compounds against pathogenic bacteria. Int. J. Mol. Sci. 2016, 17, 785. [Google Scholar] [CrossRef] [PubMed]
- De Mandal, S.; Panda, A.K.; Murugan, C.; Xu, X.; Kumar, N.S.; Jin, F. Antimicrobial peptides: Novel source and biological function with a special focus on entomopathogenic nematode/nacterium symbiotic complex. Front. Micro. 2021, 12, 555022. [Google Scholar] [CrossRef]
- Van, L.T.H.; Kim, S.W. Antimicrobial peptides from marine sources. Curr. Prot. Pept. Sci. 2013, 14, 205–211. [Google Scholar]
- Wu, R.; Patocka, J.; Nepovimova, E.; Oleksak, P.; Valis, M.; Wu, W.; Kuca, K. Marine invertebrate peptides: Antimicrobial peptides. Front. Microbiol. 2021, 12, 785085. [Google Scholar] [CrossRef] [PubMed]
- Magrone, T.; Russo, M.A.; Jirillo, E. Antimicrobial peptides: Phylogenic sources and biological activities. First of two parts. Curr. Pharm. Des. 2018, 24, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.K.; Lee, H.H.; Seo, C.H.; Park, Y. Antimicrobial and immunomodulatory properties and applications of marine-derived proteins and peptides. Mar. Drugs 2019, 17, 350. [Google Scholar] [CrossRef] [PubMed]
- Rojas, V.; Rivas, L.; Cárdenas, C.; Guzmán, F. Cyanobacteria and eukaryotic microalgae as emerging sources of antibacterial peptides. Molecules 2020, 25, 5804. [Google Scholar] [CrossRef] [PubMed]
- Aragão, C.; Gonçalves, A.T.; Costas, B.; Azeredo, R.; Xavier, M.J.; Engrola, S. Alternative proteins for fish diets: Implications beyond growth. Animals 2022, 12, 1211. [Google Scholar] [CrossRef]
- Ansari, F.A.; Guldhe, A.; Gupta, S.K.; Rawat, I.; Bux, F. Improving the feasibility of aquaculture feed by using microalgae. Environ. Sci. Pollut. Res. Int. 2021, 28, 43234–43257. [Google Scholar] [CrossRef]
- Ayswaria, R.; Vijayan, J.; Nathan, V.K. Antimicrobial peptides derived from microalgae for combating antibiotic resistance: Current status and prospects. Cell Biochem. Funct. 2023, 41, 142–151. [Google Scholar] [CrossRef]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol. 2020, 11, 2559. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef]
- Giordano, D.; Costantini, M.; Coppola, D.; Lauritano, C.; Pons, L.N.; Ruocco, N.; di Prisco, G.; Ianora, A.; Verde, C. Biotechnological applications of bioactive peptides from marine sources. Adv. Micro. Phys. 2018, 73, 171–220. [Google Scholar]
- Vizioli, J.; Salzet, M. Antimicrobial peptides versus parasitic infections? Trends Parasitol. 2022, 18, 475–476. [Google Scholar] [CrossRef] [PubMed]
- Boas, L.C.P.V.; Campos, M.L.; Berlanda, R.L.A.; Neves, N.d.C.; Franco, O.L. Antiviral peptides as promising therapeutic drugs. Cell. Mol. Life Sci. 2019, 76, 3525–3542. [Google Scholar] [CrossRef] [PubMed]
- Mohan, K.V.K.; Rao, S.S.; Atreya, C.D. Antiviral activity of selected antimicrobial peptides against vaccinia virus. Anti. Res. 2010, 86, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Valero, Y.; Saraiva-Fraga, M.; Costas, B.; Guardiola, F.A. Antimicrobial peptides from fish: Beyond the fight against pathogens. Rev. Aquac. 2018, 12, 224–253. [Google Scholar] [CrossRef]
- Wang, Y.D.; Kung, C.W.; Chen, J.Y. Antiviral activity by fish antimicrobial peptides of epinecidin-1 and hepcidin 1–5 against nervous necrosis virus in medaka. Peptides 2010, 31, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Chiou, P.P.; Lin, C.M.; Perez, L.; Chen, T.T. Effect of cecropin B and a synthetic analogue on propagation of fish viruses in vitro. Mar. Biotechnol. 2002, 4, 294–302. [Google Scholar] [CrossRef]
- Gordon, Y.J.; Romanowski, E.G.; Shanks, R.M.Q.; Yates, K.A.; Hinsley, H.; Pereira, H.A. CAP37-derived antimicrobial peptides have in vitro antiviral activity against adenovirus and herpes simplex virus type 1. Curr. Eye. Res. 2009, 34, 241–249. [Google Scholar] [CrossRef]
- Chia, T.J.; Wu, Y.C.; Chen, J.Y.; Chi, S.C. Antimicrobial peptides (AMP) with antiviral activity against fish nodavirus. Fish Shell. Immunol. 2010, 28, 434–439. [Google Scholar] [CrossRef]
- Dugan, A.S.; Maginnis, M.S.; Jordan, J.A.; Gasparovic, M.L.; Manley, K.; Page, R. Human alpha-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells. J. Biol. Chem. 2008, 283, 31125–31132. [Google Scholar] [CrossRef]
- Matanic, V.C.A.; Castilla, V. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int. J. Anti. Agents 2004, 23, 382–389. [Google Scholar] [CrossRef]
- Rivas, L.; Luque-Ortega, J.R.; Andreu, D. Amphibian antimicrobial peptides and Protozoa: Lessons from parasites. Biochim. Biophys. Acta Biomembr. 2008, 1788, 1570–1581. [Google Scholar] [CrossRef]
- Anjum, K.; Abbas, S.Q.; Akhter, N.; Shagufta, B.I.; Shah, S.A.A.; ul Hassan, S.S. Emerging biopharmaceuticals from bioactive peptides derived from marine organisms. Chem. Biol. Drugs Des. 2017, 90, 12–30. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Wijesekara, I. Development and biological activities of marine-derived bioactive peptides: A review. J. Funct. Foods 2010, 2, 1–9. [Google Scholar] [CrossRef]
- Ruiz-Ruiz, F.; Mancera-Andrade, E.I.; Iqbal, H.M. Marine-derived bioactive peptides for biomedical sectors: A review. Prot. Pept. Lett. 2017, 24, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Caprani, M.C.; Healy, J.; Slattery, O.; O’Keeffe, J. Using an ensemble to identify and classify macroalgae antimicrobial peptides. Int. Sci. 2021, 13, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Wang, Z.; Hao, Y.; Zhang, W. Marine products as a promising resource of bioactive peptides: Update of extraction strategies and their physiological regulatory effects. J. Agric. Food Chem. 2022, 70, 3081–3095. [Google Scholar] [CrossRef]
- Fidor, A.; Konkel, R.; Mazur-Marzec, H. Bioactive peptides produced by cyanobacteria of the genus Nostoc: A review. Mar. Drugs 2019, 17, 561. [Google Scholar] [CrossRef]
- Rivas, L.; Rojas, V. Cyanobacterial peptides as a tour de force in the chemical space of antiparasitic agents. Arch. Biochem. Biophys. 2019, 664, 24–39. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.; Pinto, E.; Fernandes, C.; Sousa, E. Marine cyclic peptides: Antimicrobial activity and synthetic strategies. Mar. Drugs 2022, 20, 397. [Google Scholar] [CrossRef]
- Silva-Stenico, M.E.; Silva, C.S.P.; Lorenzi, A.S.; Shishidoa, T.K.; Etchegaray, A.; Lira, S.P.; Moraes, L.A.B.; Fiore, M.F. Non-ribosomal peptides produced by Brazilian cyanobacterial isolates with antimicrobial activity. Micro. Res. 2011, 166, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.; Prajapati, R.; Kanda, T.; Yadav, S.; Singh, N.; Yadav, S.; Mishra, R.; Atri, N. Phycochemistry and bioactivity of cyanobacterial secondary metabolites. Mol. Biol. Rep. 2022, 49, 11149–11167. [Google Scholar] [CrossRef]
- Raja, R.; Hemaiswarya, S.; Ganesan, V.; Carvalho, I.S. Recent developments in therapeutic applications of cyanobacteria. Crit. Rev. Micro. 2016, 42, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Hájek, J.; Bieringer, S.; Voráčová, K.; Macho, M.; Saurav, K.; Delawská, K.; Divoká, P.; Fišer, R.; Mikušvá, G.; Cheel, J.; et al. Semi-synthetic puwainaphycin/minutissamide cyclic lipopeptides with improved antifungal activity and limited cytotoxicity. RSC Adv. 2021, 11, 30873–30886. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.E. Cyclic peptides and depsipeptides from cyanobacteria: A review. J. Ind. Microbiol. 1996, 16, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Ali, D.M.; Saalis, J.M.; Sathya, R.; Irfan, N.; Kim, J.W. An evidence of microalgal peptides to target spike protein of COVID-19: In silico approach. Micro. Path. 2021, 160, 105189. [Google Scholar]
- Sathya, R.; Ali, D.M.; Nousheen, M.G.M.; Vasimalai, N.; Thajuddin, N.; Kim, J.W. An investigation of pepsin hydrolysate of short antibacterial peptides derived from Limnospira sp. Appl. Biochem. Biotech. 2022, 194, 5580–5593. [Google Scholar]
- Ishida, K.; Matsuda, H.; Murakami, M.; Yamaguchi, K. Kawaguchipeptin B, an antibacterial cyclic undecapeptide from the cyanobacterium Microcystis aeruginosa. J. Nat. Prod. 1997, 60, 724–726. [Google Scholar] [CrossRef]
- Banker, R.; Carmeli, S. Tenuecyclamides A–D, cyclic hexapeptides from the cyanobacterium Nostoc spongiaeforme var. tenue. J. Nat. Prod. 1998, 61, 1248–1251. [Google Scholar] [CrossRef]
- Jaki, B.; Zerbe, O.; Heilmann, J.; Sticher, O. Two novel cyclic peptides with antifungal activity from the cyanobacterium Tolypothrix byssoidea (EAWAG 195). J. Nat. Prod. 2001, 64, 154–158. [Google Scholar] [CrossRef]
- Linington, R.G.; González, J.; Urena, L.D.; Romero, L.I.; Ortega-Barría, E.; Gerwick, W.H. Venturamides A and B: Antimalarial constituents of the panamanian marine cyanobacterium Oscillatoria sp. J. Nat. Prod. 2007, 70, 397–401. [Google Scholar] [CrossRef]
- Portmann, C.; Blom, J.F.; Gademann, K.; Jüttner, F. Aerucyclamides A and B: Isolation and synthesis of toxic ribosomal heterocyclic peptides from the cyanobacterium Microcystis aeruginosa PCC 7806. J. Nat. Prod. 2008, 71, 1193–1196. [Google Scholar] [CrossRef] [PubMed]
- Portmann, C.; Blom, J.F.; Kaiser, M.; Brun, R.; Jüttner, F.; Gademann, K. Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: Heterocyclic ribosomal peptides from Microcystis aeruginosa PCC7806 and their antiparasite evaluation. J. Nat. Prod. 2008, 71, 1891–1896. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Lee, C. Partial purification and characterization of a novel antifungal compound against Aspergillus spp. from Synechocystis sp. PCC 6803. Biotech. Bioproc. Eng. 2009, 14, 383–390. [Google Scholar] [CrossRef]
- Raveh, A.; Carmeli, S. Aeruginazole A, a novel thiazole-containing cyclopeptide from the cyanobacterium Microcystis sp. Org. Lett. 2010, 12, 3536–3539. [Google Scholar] [CrossRef]
- Adiv, S.; Ahronov-Nadborny, R.; Carmeli, S. New aeruginazoles, a group of thiazole-containing cyclic peptides from Microcystis aeruginosa blooms. Tetrahedron 2012, 68, 1376–1383. [Google Scholar] [CrossRef]
- Vo, T.S.; Ryu, B.M.; Kim, S.K. Purification of novel anti-inflammatory peptides from enzymatic hydrolysate of the edible microalgal Spirulina maxima. J. Funct. Foods 2013, 5, 1336–1346. [Google Scholar] [CrossRef]
- Vo, T.S.; Ngo, D.H.; Kang, K.H.; Park, S.J.; Kim, S.K. The role of peptides derived from Spirulina maxima in downregulation of Fcepsilon RI-mediated allergic responses. Mol. Nutr. Food Res. 2014, 58, 2226–2234. [Google Scholar] [CrossRef]
- Kim, N.H.; Jung, S.H.; Kim, J.; Kim, S.H.; Ahn, H.J.; Song, K.B. Purification of an iron-chelating peptide from spirulina protein hydrolysates. J. Appl. Biol. Chem. 2014, 57, 91–95. [Google Scholar] [CrossRef]
- Portmann, C.; Sieber, S.; Wirthensohn, S.; Blom, J.F.; da Silva, L.; Baudat, E.; Kaiser, M.; Brun, R.; Gademann, K. Balgacyclamides, antiplasmodial heterocyclic peptides from Microcystis aeruguinosa EAWAG 251. J. Nat. Prod. 2014, 77, 557–562. [Google Scholar] [CrossRef]
- Sun, Y.; Chang, R.; Li, O.; Li, B. Isolation and characterization of an antibacterial peptide from protein hydrolysates of Spirulina platensis. Eur. Food. Res. Technol. 2016, 242, 685–692. [Google Scholar] [CrossRef]
- Yu, J.; Hu, Y.; Xue, M.; Dun, Y.; Li, S.; Peng, N.; Liang, Y.; Zhao, S. Purification and identification of antioxidant peptides from enzymatic hydrolysate of Spirulina platensis. J. Microbiol. Biotechnol. 2016, 26, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Safitri, N.M.; Herawati, E.Y.; Hsu, J.L. Antioxidant activity of purified active peptide derived from Spirulina platensis enzymatic hydrolysates. Res. J. Life Sci. 2017, 4, 119–128. [Google Scholar] [CrossRef]
- Sannasimuthu, A.; Kumaresan, V.; Pasupuleti, M.; Paray, B.A.; Al-Sadoon, M.K.; Arockiaraj, J. Radical scavenging property of a novel peptide derived from C-terminal SOD domain of superoxide dismutase enzyme in Arthrospira platensis. Alg. Res. 2018, 35, 519–529. [Google Scholar] [CrossRef]
- Zeng, Q.H.; Fan, X.D.; Zheng, Q.P.; Wang, J.J.; Zhang, X.W. Anti-oxidant, hemolysis inhibition, and collagen-stimulating activities of a new hexapeptide derived from Arthrospira (Spirulina) platensis. J. Appl. Phycol. 2018, 30, 1655–1665. [Google Scholar] [CrossRef]
- Sannasimuthu, A.; Arockiaraj, J. Intracellular free radical scavenging activity and protective role of mammalian cells by antioxidant peptide from thioredoxin disulfide reductase of Arthrospira platensis. J. Funct. Foods 2019, 61, 103513. [Google Scholar] [CrossRef]
- Sannasimuthu, A.; Kumaresan, V.; Anilkumar, S.; Pasupuleti, M.; Ganesh, M.R.; Mala, K.; Paray, B.A.; Al-Sadoon, M.K.; Albeshr, M.F.; Arockiaraj, J. Design and characterization of a novel Arthrospira platensis glutathione oxidoreductase-derived antioxidant peptide GM15 and its potent anti-cancer activity via caspase-9 mediated apoptosis in oral cancer cells. Free Radic. Biol. Med. 2019, 135, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, P.; Stef, R.V.; Pasupuleti, M.; Paray, B.A.; Al-Sadoon, M.K.; Arockiaraj, J. Antioxidant molecular mechanism of adenosyl homocysteinase from cyanobacteria and its wound healing process in fbroblast cells. Mol. Biol. Rep. 2020, 47, 1821–1834. [Google Scholar] [CrossRef]
- Wang, K.; Luo, Q.; Hong, H.; Liu, H.; Luo, Y. Novel antioxidant and ACE inhibitory peptide identified from Arthrospira platensis protein and stability against thermal/pH treatments and simulated gastrointestinal digestion. Int. Food. Res. 2020, 139, 109908. [Google Scholar] [CrossRef]
- Zeng, Q.H.; Wang, J.J.; Zhang, Y.H.; Song, Y.Q.; Liang, J.L.; Zhang, X.W. Recovery and identification bioactive peptides from protein isolate of Spirulina platensis and their in vitro effectiveness against oxidative stress-induced erythrocyte hemolysis. J. Sci. Food. Agric. 2020, 100, 3776–3782. [Google Scholar] [CrossRef]
- Velayutham, M.; Ojha, B.; Issac, P.K.; Lite, C.; Guru, A.; Pasupuleti, M.; Arasu, M.V.; Al-Dhabi, N.A.; Arockiaraj, J. NV14 from serine O-acetyltransferase of cyanobacteria influences the antioxidant enzymes in vitro cells, gene expression against H2O2 and other responses in vivo zebrafish larval model. Cell Biol. Int. 2021, 45, 2331. [Google Scholar] [CrossRef]
- Guzmán, F.; Wong, G.; Román, T.; Cárdenas, C.; Alvárez, C.; Schmitt, P.; Albericio, F.; Rojas, V. Identification of antimicrobial peptides from the microalgae Tetraselmis suecica (Kylin) butcher and bactericidal activity improvement. Mar. Drugs 2019, 17, 453. [Google Scholar] [CrossRef] [PubMed]
- Sheih, I.C.; Wu, T.K.; Fang, T.J. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresour. Technol. 2009, 100, 3419–3425. [Google Scholar] [CrossRef] [PubMed]
- Sheih, I.C.; Fang, T.J.; Wu, T.K.; Lin, P.H. Anticancer and antioxidant activities of the peptide fraction from algae protein in waste. J. Agric. Food Chem. 2010, 58, 1202–1207. [Google Scholar] [CrossRef]
- Cherng, J.Y.; Liu, C.C.; Shen, C.R.; Lin, H.H.; Shih, M.F. Beneficial effects of chlorella-11 peptide on blocking LPS-induced macrophage activation and alleviating thermal injury-induced inflammation in rats. Int. J. Immunopath. Pharm. 2010, 23, 811–820. [Google Scholar] [CrossRef]
- Shih, M.F.; Chen, L.C.; Cherng, J.Y. Chlorella 11-peptide inhibits the production of macrophage-induced adhesion molecules and reduces endothelin-1 expression and endothelial permeability. Mar. Drugs 2013, 11, 3861–3874. [Google Scholar] [CrossRef]
- Chen, C.L.; Liou, S.F.; Chen, S.J.; Shih, M.F. Protective effects of chlorella-derived peptide on UVB-induced production of MMP-1 and degradation of procollagen genes in human skin fibroblasts. Reg. Toxic. Pharm. 2011, 60, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Shih, M.F.; Cherng, J.Y. Protective effects of chlorella-derived peptide against UVC-induced cytotoxicity through inhibition of caspase-3 activity and reduction of the expression of phosphorylated FADD and cleaved PARP-1 in skin fibroblasts. Molecules 2012, 17, 9116–9128. [Google Scholar] [CrossRef]
- Ryu, B.M. A Peptide Derived from Microalga, Pavlova lutheri, Fermented by Candida rugopelliculosa Induces Myofibroblasts Differentiation in Human Dermal Fibroblasts. Ph.D. Thesis, Department of Chemistry, Pukyoung National University, Busan, Republic of Korea, 2011. [Google Scholar]
- Ko, S.C.; Kim, D.; Jeon, Y.J. Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food Chem. Toxic. 2012, 50, 2294–2302. [Google Scholar] [CrossRef]
- Kang, K.H.; Qian, Z.J.; Ryu, B.; Karadeni, F.; Daekyunge, K.; Kim, S.W. Antioxidant peptides from protein hydrolysate of microalgae Navicula incerta and their protective effects in Hepg2/CYP2E1 cells induced by ethanol. Phytother. Res. 2012, 26, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.H.; Qian, Z.J.; Ryu, B.; Karadeniz, F.; Kim, D.; Kim, S.K. Hepatic fibrosis inhibitory effect of peptides isolated from Navicula incerta on TGF-β1 induced activation of LX-2 human hepatic stellate cells. Prev. Nutr. Food Sci. 2013, 18, 124–132. [Google Scholar] [CrossRef]
- Nguyen, M.H.T.; Qian, Z.J.; Nguyen, V.T.; Choi, I.W.; Heo, S.J.; Oh, C.H.; Kang, D.H.; Kim, G.H.; Jung, W.K. Tetrameric peptide purified from hydrolysates of biodiesel byproducts of Nannochloropsis oculata induces osteoblastic differentiation through MAPK and Smad pathway on MG-63 and D1 cells. Proc. Biochem. 2013, 48, 1387–1394. [Google Scholar] [CrossRef]
- Oh, G.W.; Ko, S.C.; Heo, S.Y.; Nguyen, V.T.; Kim, G.H.; Jang, C.H.; Park, W.S.; Choi, I.W.; Qian, Z.J.; Jung, W.K. A novel peptide purified from the fermented microalga Pavlova lutheri attenuates oxidative stress and melanogenesis in B16F10 melanoma cells. Proc. Biochem. 2015, 50, 1318–1326. [Google Scholar] [CrossRef]
- Montone, C.M.; Capriotti, A.L.; Cavaliere, C.; la Barbera, G.; Piovesana, S.; Chiozzi, R.Z.; Laganà, A. Peptidomic strategy for purification and identification of potential ACE-inhibitory and antioxidant peptides in Tetradesmus obliquus microalgae. Anal. Bioanal. Chem. 2018, 410, 3573–3586. [Google Scholar] [CrossRef]
- Xia, E.; Zhai, L.; Huang, Z.; Liang, H.; Yang, H.; Song, G.; Tang, H. Optimization and identification of antioxidant peptide from underutilized Dunaliella salina protein: Extraction, in vitro gastrointestinal digestion and fractionation. BioMed Res. Int. 2019, 6424651. [Google Scholar] [CrossRef]
- Duque-Salazar, G.; Mendez-Otalvaro, E.; Ceballos-Arroyo, A.M.; Orduz, S. Design of antimicrobial and cytolytic peptides by computational analysis of bacterial, algal, and invertebrate proteomes. Amino Acids 2020, 52, 1403–1412. [Google Scholar] [CrossRef]
- Ennamany, R.; Saboureau, D.; Mekideche, N.; Creppy, E.E. SECMA 1, a mitogenic hexapeptide from Ulva algeae modulates the production of proteoglycans and glycosaminoglycans in human foreskin fibroblast. Hum. Exp. Toxic. 1998, 17, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, C.; Gallagher, E.; O’Connor, P.; Prieto, J.; MoraSoler, L.; Grealy, M.; Hayes, M. Development of a seaweed derived platelet activating factor acetyl hydrolase (PAF-AH) inhibitory hydrolysate, synthesis of inhibitory peptides and assessment of their toxicity using the zebrafish larvae assay. Peptides 2013, 50, 119–124. [Google Scholar] [CrossRef]
- Beaulieu, L.; Bondu, S.; Doiron, K.; Rioux, L.; Turgeon, S.L. Characterization of antibacterial activity from protein hydrolysates of the macroalga Saccharina longicruris and identification of peptides implied in bioactivity. J. Funct. Foods 2015, 17, 685–697. [Google Scholar] [CrossRef]
- Lee, M.K.; Kim, I.H.; Choi, Y.H.; Choi, J.W.; Kim, Y.M.; Nam, T.J. The proliferative effects of Pyropia yezoensis peptide on IEC-6 cells are mediated through the epidermal growth factor receptor signaling pathway. Int. J. Mol. Med. 2015, 35, 909–914. [Google Scholar] [CrossRef]
- Lee, M.K.; Kim, I.H.; Choi, Y.H.; Nam, T.J. A peptide from Porphyra yezoensis stimulates the proliferation of IEC-6 cells by activating the insulin-like growth factor I receptor signaling pathway. Int. J. Mol. Med. 2015, 35, 533–538. [Google Scholar] [CrossRef]
- Lee, H.A.; Kim, I.H.; Nam, T.J. Bioactive peptide from Pyropia yezoensis and its anti-inflammatory activities. Int. J. Mol. Med. 2015, 36, 1701–1706. [Google Scholar] [CrossRef]
- Harnedy, P.A.; O’Keeffe, M.B.; FitzGerald, R.J. Fractionation and identification of antioxidant peptides from an enzymatically hydrolysed Palmaria palmata protein isolate. Food Res. Int. 2017, 100, 416–422. [Google Scholar] [CrossRef]
- Kim, E.Y.; Choi, Y.H.; Nam, T.J. Identification and antioxidant activity of synthetic peptides from phycobiliproteins of Pyropia yezoensis. Int. J. Mol. Med. 2018, 42, 789–798. [Google Scholar] [CrossRef]
- Cermeño, M.; Stack, J.; Tobin, P.R.; O’Keeffe, M.B.; Harnedy, P.A.; Stengel, D.B.; FitzGerald, R.J. Peptide identification from a Porphyra dioica protein hydrolysate with antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities. Food Funct. 2019, 10, 3421–3429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cao, D.; Sun, X.; Sun, S.; Xu, N. Preparation and identification of antioxidant peptides from protein hydrolysate of marine alga Gracilariopsis lemaneiformis. J. Appl. Phycol. 2019, 31, 2585–2596. [Google Scholar] [CrossRef]
- Samarakoon, K.; Jeon, Y.J. Bio-functionalities of proteins derived from marine algae. A review. Food Res. Int. 2012, 48, 948–960. [Google Scholar] [CrossRef]
- Kang, H.K.; Seo, C.H.; Park, Y. Marine peptides and their anti-infective activities. Mar. Drugs 2015, 13, 618–654. [Google Scholar] [CrossRef]
- Brown, M.R.; Jeffrey, S.W.; Volkman, J.K.; Dunstan, G.A. Nutritional properties of microalgae for mariculture. Aquaculture 1997, 151, 315–331. [Google Scholar] [CrossRef]
- Camacho, F.; Macedo, A.; Malcata, F. Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review. Mar. Drugs 2019, 17, 312. [Google Scholar] [CrossRef]
- Silva, A.; Silva, S.A.; Carpena, M.; Garcia-Oliveira, P.; Gullón, P.; Barroso, M.F.; Prieto, M.A.; Simal-Gandara, J. Macroalgae as a source of valuable antimicrobial compounds: Extraction and applications. Antibiotics 2020, 9, 642. [Google Scholar] [CrossRef]
- Sathya, R.; Ali, D.M.; Saalis, J.M.; Kim, J.W. A systemic review on microalgal peptides: Bioprocess and sustainable applications. Sustainability 2021, 13, 3262. [Google Scholar] [CrossRef]
- Harnedy, P.A.; FitzGerald, R.J. Bioactive proteins, peptides, and amino acids from macroalgae. J. Phycol. 2011, 47, 218–232. [Google Scholar] [CrossRef]
- Talero, E.; García-Mauriño, S.; Ávila-Román, J.; Rodríguez-Luna, A.; Alcaide, A.; Motilva, V. Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Mar. Drugs 2015, 13, 6152–6209. [Google Scholar] [CrossRef] [PubMed]
- Echave, J.; Fraga-Corral, M.; Garcia-Perez, P.; Popovic-Djordjevic, J.; Avdovic, E.H.; Radulovic, M.; Xiao, J.; Prieto, M.A.; Simal-Gandara, J. Seaweed protein hydrolysates and bioactive peptides: Extraction, purification, and applications. Mar. Drugs 2021, 19, 500. [Google Scholar] [CrossRef]
- Echave, J.; Otero, P.; Garcia-Oliveira, P.; Munekata, P.E.S.; Pateiro, M.; Lorenzo, J.M.; Simal-Gandara, J.; Prieto, M.A. Seaweed-derived proteins and peptides: Promising marine bioactives. Antioxidants 2022, 11, 176. [Google Scholar] [CrossRef]
- Joubert, Y.; Fleurence, J. Simultaneous extraction of proteins and DNA by an enzymatic treatment of the cell wall of Palmaria palmata (Rhodophyta). J. Appl. Phycol. 2008, 20, 55–61. [Google Scholar] [CrossRef]
- Vizcaíno, A.J.; Galafat, A.; Sáez, M.I.; Martínez, T.F.; Alarcón, F.J. Partial characterization of protease inhibitors of Ulva ohnoi and their effect on digestive proteases of marine fish. Mar. Drugs 2020, 18, 319. [Google Scholar] [CrossRef] [PubMed]
- Teuling, E.; Wierenga, P.A.; Agboola, J.O.; Gruppen, H.; Schrama, J.W. Cell wall disruption increases bioavailability of Nannochloropsis gaditana nutrients for juvenile Nile tilapia (Oreochromis niloticus). Aquaculture 2019, 499, 269–282. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Mann, J.; Dumas, A. Apparent digestibility of nutrients, energy, essential amino acids and fatty acids of juvenile Atlantic salmon (Salmo salar L.) diets containing whole-cell or cell-ruptured Chlorella vulgaris meals at five dietary inclusion levels. Aquaculture 2017, 481, 25–39. [Google Scholar] [CrossRef]
- Ayala, M.D.; Galián, C.; Fernández, V.; Chaves-Pozo, E.; García de la Serrana, D.; Sáez, M.I.; Galafaz Díaz, A.; Alarcón, F.J.; Martínez, T.F.; Arizcun, M. Influence of Low Dietary Inclusion of the Microalga Nannochloropsis gaditana (Lubián 1982) on Performance, Fish Morphology, and Muscle Growth in Juvenile Gilthead Seabream (Sparus aurata). Animals 2020, 10, 2270. [Google Scholar] [CrossRef]
- Galafat, A.; Vizcaíno, A.J.; Sáez, M.I.; Martínez, T.F.; Arizcun, M.; Chaves-Pozo, E.; Alarcón, F.J. Assessment of dietary inclusion of crude or hydrolysed Arthrospira platensis biomass in starter diets for gilthead seabream (Sparus aurata). Aquaculture 2022, 548, 737680–737692. [Google Scholar] [CrossRef]
- Sáez, M.I.; Galafat, A.; Vizcaíno, A.J.; Chaves-Pozo, E.; Ayala, M.D.; Arizcun, M.; Alarcón, F.J.; Suárez, M.D.; Martínez, T.F. Evaluation of Nannochloropsis gaditana raw and hydrolysed biomass at low inclusion level as dietary functional additive for gilthead seabream (Sparus aurata) juveniles. Aquaculture 2022, 556, 738288–738301. [Google Scholar] [CrossRef]
- Villar-Navarro, E.; Ruiz, J.; Garrido-Pérez, C.; Perales, J.A. Microalgae biotechnology for simultaneous water treatment and feed ingredient production in aquaculture. J. Water Process Eng. 2022, 49, 103115–103126. [Google Scholar] [CrossRef]
- Falaise, C.; François, C.; Travers, M.A.; Morga, B.; Haure, J.; Tremblay, R.; Turcotte, F.; Pasetto, P.; Gastineau, R.; Hardivillier, Y.; et al. Antimicrobial Compounds from Eukaryotic Microalgae against Human Pathogens and Diseases in Aquaculture. Mar. Drugs 2016, 14, 159. [Google Scholar] [CrossRef]
- Yaakob, Z.; Ali, E.; Zainal, A.; Mohamad, M.; Takriff, M.S. An overview: Biomolecules from microalgae for animal feed and aquaculture. J. Biol. Res. 2014, 21, 6. [Google Scholar] [CrossRef]
- Cakmak, Y.S.; Kaya, M.; Asan-Ozusaglam, M. Biochemical composition and bioactivity screening of various extracts from Dunaliella salina, a green microalga. EXCLI J. 2014, 13, 679–690. [Google Scholar]
- Vallejos-Vidal, E.; Reyes-López, F.; Teles, M.; Mackenzie, S. The response of fish to immunostimulant diets. Fish Shellfish Immunol. 2016, 56, 34–69. [Google Scholar] [CrossRef]
- De Araujo, R.D.S.F.; Calderon, F.V.; Lopez, J.S.; Azevedo, I.; Bruhn, A.; Fluch, S.; Tasende, M.G.; Ghaderiardakani, F.; Ilmjarv, T.; Laurans, M.; et al. Current status of the algae production industry in Europe: An emerging sector of the Blue Bioeconomy. Front. Mar. Sci. 2021, 7, 626389. [Google Scholar] [CrossRef]
Peptides | Sequences | Species | Activity | References |
---|---|---|---|---|
ND | LDAVNR MMLDF | Arthrospira maxima | Antiviral activity against COVID-19 by binding spike protein | [46] |
NALKCCHSCPA GVPMPNK IGP | Arthrospira platensis | |||
ND | KLENCNYAVELGK | Limnospira maxima | Antibacterial activity against Gram− Escherichia coli and Gram+ Staphylococcus aureus | [47] |
Kawaguchipeptin A,B Cyclic peptides | WLNGDNNWSTP Kawaguchipeptin A: two prenylated tryptophans | Microcystis aeruginosa (NIES-88) | Antibacterial activity against Gram+ Staphylococcus aureus | [48] |
Tenuecyclamide A–D Cyclic peptides | Tzl and mOzl rings Tenuecyclamide D: sulfoxide group | Nostoc spongiaeforme var. tenue | Antibacterial activity against Gram+ Bacillus subtilis and Staphylococcus aureus | [49] |
Tolybyssidin A,B Cyclic peptides | FdhhaVT (acetate moiety) TVVPRLT VTITVVVFVdhhaRY | Tolypothrix byssoidea (EAWAG 195) | Antifungal activity against Candida albicans | [50] |
Venturamide A,B Cyclic peptides | V(Tzl)A(Tzl)A(mOzl) T(Tzl)V(Tzl)A(mOzl) | Oscillatoria sp. | Antiparasitic activity against Plasmodium falciparum, Trypanosoma cruzi, and Leishmania donovani Weak toxicity against Vero cells | [51] |
Aerucyclamide A-D Cyclic peptides | I(Tzl)T(mOzn)GCI(Tzn)C I(Tzl)T(mOzn)GCI(Tzl)C A(mOzn)TV(Ozl)SI(Tzl)C F(mOzn)TG(Tzn)CM(Tzl)C | Microcystis aeruginosa (PCC 7806) | Antiparasitic activity against Plasmodium falciparum and Trypanosoma brucei rhodesiense | [52,53] |
AK-3 Cyclic peptide | IIEFAGGGKVMMY Most probable sequence: YGCMIFE | Synechocystis sp. (PCC 6803) | Antifungal activity against Aspergillus niger, A. flavus, and A. fumigatus | [54] |
Aeruginazole A Cyclic peptide | N(Tzl)YL(Tzl)V(Tzl)FVGGG | Microcystis sp. (IL-323) | Antibacterial activity against Gram+ Bacillus subtilis No activity against Gram− Escherichia coli or Gram+ Staphylococcus albus Antifungal activity against Saccharomyces cerevisiae Cytotoxicity against human peripheral blood lymphocytes | [55] |
Aeruginazole DA1497 Cyclic peptide | F(Tzl)GAIA(Tzl)SV(Tzl)PGVL(Tzl)PG | Microcystis aeruginosa | Antibacterial activity against Gram+ Staphylococcus aureus | [56] |
ND | LDAVNR MMLDF | Arthrospira maxima | Anti-inflammatory activity by decreasing histamine release or producing reactive oxygen species (ROS) or modulating cytokine production depending on target cell type | [57,58] |
ND | TDP(I or L)AAC(I or L) | Arthrospira sp. | Antibacterial and iron-chelating activity | [59] |
Balgacyclamide A-B Cyclic peptides | V(mOzn)A(mOzn)I(Tzl) V(mOzn)TAI(Tzl) | Microcystis aeruguinosa (EAWAG 251) | Antiparasitic activity against Plasmodium falciparum, Trypanosoma brucei rhodesiense, and Leishmania donovani | [60] |
SP-1 | KLVDASHRLATGDVAVRA | Arthrospira platensis | Antibacterial activity against Gram− Escherichia coli and Gram+ Staphylococcus aureus | [61] |
ND | PNN | Arthrospira platensis | Antioxidant activity through hydroxyl, superoxide, and 1,1′-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity | [62] |
FY11 | FSESSAPEQHY Imidazole (intermediate biosynthesis) in histidine and pyrrolidine (secondary amine) ring in proline | Arthrospira platensis | Antioxidant activity through DPPH radical scavenging activity | [63] |
LL12 | LGLDVWEHAYYL | Arthrospira platensis | Antioxidant activity through hydroxyl, superoxide, DPPH, and 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) or trolox equivalent antioxidant capacity (TEAC) radical scavenging activity and decreasing intracellular ROS upon induction of oxidative stress | [64] |
ND | GMCCSR | Arthrospira platensis | Antioxidant activity through DPPH and ABTS radical scavenging activity, ferric reducing ability of plasma (FRAP), and protection against induced oxidative stress, proliferation activity, and collagen production | [65] |
VH12 | VKYVSPTCGPCH Imidazole in histidine and dithiol (-SH) active site in cysteine | Arthrospira platensis | Antioxidant activity through hydroxyl, superoxide, DPPH, and ABTS radical scavenging activity and decreasing ROS upon induction of oxidative stress | [66] |
GM15 | GGTCVIRGCVPKKLM Dithiol active site | Arthrospira platensis | Antioxidant activity through hydroxyl, superoxide, DPPH, and ABTS radical scavenging activity and decreasing ROS upon induction of oxidative stress Immunomodulatory activity by increasing granulocyte population | [67] |
NL13 | NPLSTQDDVAASL | Arthrospira platensis | Antioxidant activity through hydroxyl, superoxide, nitric oxide (NO), DPPH, and ABTS radical scavenging activity and decreasing ROS upon induction of oxidative stress Stimulation of cell migration and wound healing | [68] |
ND | LAQELGSNR LGGEEVQEVLQQ ITGNASTIVSNAAR APYDESEIAFH APLDESEMAFH VTAGLVGGGAGK | Arthrospira platensis | Antioxidant activity through hydroxyl and ABTS radical scavenging activity Antibacterial and iron-chelating activity | [69] |
ND | FFEFF EYFDALA VTAPAASVAL | Arthrospira platensis | Antioxidant activity through DPPH and ABTS radical scavenging activity, decreasing hemolysis and malondialdehyde (MDA), and increasing antioxidant enzyme activity upon induction of oxidative stress | [70] |
NV-14 | NVRIGAGSVVLRDV | Arthrospira platensis | Antioxidant activity through hydroxyl, superoxide, hydrogen peroxide (H2O2), NO, DPPH, and ABTS radical scavenging activity and protecting against induced oxidative stress | [71] |
Peptides | Sequences | Species | Activity | References |
---|---|---|---|---|
AQ-1766 H | LWFYTMW | Tetraselmis suecica | Antibacterial activity against Gram− Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa and Gram+ Bacillus cereus, methicillin-resistant Staphylococcus aureus, Micrococcus luteus, and Listeria monocytogenes | [72] |
Alanine and lysine synthetic analogs of AQ-1766 | AWFYTMWH LWFATMWH LWFYAMWH LWFYTAWH KWFYTMWH LWFKTMWH LWFYKMWH LWFYTKWH | Tetraselmis suecica | Synthetic alanine and lysine synthetic enhances antibacterial activity of AQ-1766; lysine replacement causes a change of beta turn tendency to helical trend | [72] |
APWP | VECYGPNRPQF | Chlorella vulgaris | Antioxidant activity through hydroxyl, superoxide, DPPH, ABTS, and peroxyl radical scavenging activity and anti-inflammatory activity through decreasing levels of adhesion molecules and chemokines | [73,74,75,76] |
CDP (Chlorella-derived peptide) | ND | Chlorella sp. | Anti-UVB and UVC irradiation damage through regulating specific gene expression | [77] |
Chlorella pyrenoidosa | [78] | |||
ND | MPGPLSPL | Pavlova lutheri | Involved in myofibroblast differentiation | [79] |
ND | LNGDVW | Chlorella ellipsoidea | Antioxidant activity through hydroxyl, peroxyl, and DPPH radical scavenging activity Enhanced cell viability against induced cytotoxicity by decreasing sub-G1 hypodiploid cells and apoptotic body formation | [80] |
NIPP-1 NIPP-2 | PGWNQWFL VEVLPPAEL | Navicula incerta | Protection against ethanol-induced cytotoxicity and hepatic fibrosis Antioxidant activity by increasing glutathione (GSH) levels and decreasing gamma-glutamyltransferase (GGT) activity Anti-inflammatory activity by regulating cytokine levels | [81,82] |
ND | MPDW | Nannochloropsis oculata | Promotion of osteoblast differentiation | [83] |
ND | MGRY | Pavlova lutheri | Antioxidant activity through hydroxyl, H2O2, and DPPH radical scavenging activity and decreasing ROS production Modulation of inflammatory response by activating some elements of extracellular signal kinase pathways | [84] |
ND | WPRGYFL SDWDRF | Tetradesmus obliquus | Antioxidant activity through DPPH and ABTS radical scavenging activity | [85] |
ND | ILTKAAIEGK IIYFQGK NDPSTVK TVRPPQG | Dunaliella salina | Antioxidant activity through DPPH radical scavenging activity | [86] |
Coco1 Coco2 Coco3 | FTILKKLKSFIK KLVKKLLKKYITF LARFVLRILKYGFK | Coccomyxa subellipsoidea (C-169) | Antibacterial activity against Gram− Pseudomonas aeruginosa (coco1 and coco2), Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae and Gram+ Staphylococcus aureus (coco3) | [87] |
Peptides | Sequences | Species | Activity | References |
---|---|---|---|---|
SECMA1 | EDRLKP | Ulva sp. | Increase production of proteoglycans and glycosaminoglycans | [88] |
ND | IRLIIVLMPILMA PAIA FPAI ILMA VFPAIAM AQILP NIGK | Palmaria palmata | Anti-inflammatory activity | [89] |
ND | TITLDVEPSDTIDGVK ISGLIYEETR MALSSLPR ILVLQSNQIR ISAILPSR IGNGGELPR LPDAALNR EAESSLTGGNGCAK QVHPDTGISK | Saccharina longicruris | Antibacterial activity against Gram+ Staphylococcus aureus | [90] |
PYP1 / PY-PE | ALEGGKSSGGGEATRDPEPT | Pyropia yezoensis | Proliferation activity and stimulation of cell growth Immunomodulatory activity by regulating protein kinase signaling pathways and cellular cycle | [91,92] |
PPY1 | KAQAD | Pyropia yezoensis | Antioxidant activity by inhibiting release of ROS and NO intermediate in activated macrophages and anti-inflammatory activity by regulating cytokine and protein kinase signaling pathways | [93] |
ND | FITDGNK NAATIIK ANAATIIK SDITRPGGQM DNIQGTKPA LITGA LITGAA LITGAAQA LGLSGK LTIAPK ITLAPK ITIAPK VVPT QARGAAQA | Palmaria palmata | Antioxidant activity through FRAP and oxygen radical absorbance capacity (ORAC) | [94] |
PBP1 PBP2 PBP3 PBP4 PBP5 PBP6 PBP7 PBP8 PBP9 PBP10 PBP11 PBP12 PBP13 | KAAAVAFITNTASQRK RYVSYALLAGDPSVLEDRC MQDAITSVINAADVQGKY RAAATIAANAATIIKE RYATYGMLAGDPSILEERV RLVTYGIVAGDVTPIEEIGLVGVKE RFPSSSDLESVQGNIQRA KSVITTTISAADAAGRFPSSSDLESVQGNIQRA RTLNLPTSAYVASFAFARD RFLSNGELQAINGRY RLITGAAQSVYTKF KTPITEAIASADSQGRF KFPYVTQMPGPTYASSAIGKA | Pyropia yezoensis | Antioxidant activity against induced oxidative stress in human cells, decreasing ROS and increasing antioxidant enzyme activity and expression | [95] |
ND | DYYLR AGFY YLVA AFIT MKTPITE TYIA LDLW | Porphyra dioica | Antioxidant activity through enhanced ORAC upon gastrointestinal digestion | [96] |
ND | ELWKTF | Gracilariopsis lemaneiformis | Antioxidant activity through DPPH radical scavenging activity | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Beltrán, J.M.; Arizcun, M.; Chaves-Pozo, E. Antimicrobial Peptides from Photosynthetic Marine Organisms with Potential Application in Aquaculture. Mar. Drugs 2023, 21, 290. https://doi.org/10.3390/md21050290
García-Beltrán JM, Arizcun M, Chaves-Pozo E. Antimicrobial Peptides from Photosynthetic Marine Organisms with Potential Application in Aquaculture. Marine Drugs. 2023; 21(5):290. https://doi.org/10.3390/md21050290
Chicago/Turabian StyleGarcía-Beltrán, José María, Marta Arizcun, and Elena Chaves-Pozo. 2023. "Antimicrobial Peptides from Photosynthetic Marine Organisms with Potential Application in Aquaculture" Marine Drugs 21, no. 5: 290. https://doi.org/10.3390/md21050290
APA StyleGarcía-Beltrán, J. M., Arizcun, M., & Chaves-Pozo, E. (2023). Antimicrobial Peptides from Photosynthetic Marine Organisms with Potential Application in Aquaculture. Marine Drugs, 21(5), 290. https://doi.org/10.3390/md21050290