Glycosylated and Succinylated Macrocyclic Lactones with Amyloid-β-Aggregation-Regulating Activity from a Marine Bacillus sp.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Elucidation
2.2. Biological Activity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Isolation and Identification of the Bacterial Strain Bacillus sp. AMD05
3.3. Cultivation and Extraction
3.4. Isolation of Succinyl Glyco-Oxydifficidin (1) and Succinyl Macrolactin O (2)
3.5. Determination of the Configuration of the Sugar in 1 and 2
3.6. MTPA Esterification of Succinyl Glyco-Oxydifficidin (1)
3.7. Conformational Search and DP4 Calculations
3.8. Peptide Synthesis
3.9. Aβ Aggregation Assay Plate Preparation
3.10. Aβ Aggregation Assay
3.11. Aβ Disociationn Assay
3.12. Docking Model Generation
3.13. Statistical Data Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Li, K.; Cai, J.; Su, Z.; Yang, B.; Liu, Y.; Zhou, X.; Huang, J.; Tao, H. Glycosylated natural products from marine microbes. Front. Chem. 2020, 7, 879. [Google Scholar] [CrossRef] [PubMed]
- Elshahawi, S.I.; Shaaban, K.A.; Kharel, M.K.; Thorson, J.S. A comprehensive review of glycosylated bacterial natural products. Chem. Soc. Rev. 2015, 44, 7591–7697. [Google Scholar] [PubMed] [Green Version]
- Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Yue, X.-J.; Tang, Y.-J.; Wu, C.; Li, Y.-Z. Effects of glycosylation on the bioactivity of rapamycin. Appl. Microbiol. Biotechnol. 2020, 104, 9125–9134. [Google Scholar] [CrossRef]
- Zheng, C.J.; Lee, S.; Lee, C.H.; Kim, W.G. Macrolactins O–R, glycosylated 24-membered lactones from Bacillus sp. AH159-1. J. Nat. Prod. 2007, 70, 1632–1635. [Google Scholar] [CrossRef] [PubMed]
- Demain, A.L.; Sanchez, S. Microbial drug discovery: 80 years of progress. J. Antibiot. 2009, 62, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Fenical, W.; Jensen, P.R. Developing a new resource for drug discovery: Marine actinomycete bacteria. Nat. Chem. Biol. 2006, 2, 666–673. [Google Scholar] [CrossRef]
- Moon, K.; Cui, J.; Kim, E.; Riandi, E.S.; Park, S.H.; Byun, W.S.; Kal, Y.; Park, J.Y.; Hwang, S.; Shin, D.; et al. Structures and biosynthetic pathway of pulvomycins B–D: 22-membered macrolides from an estuarine Streptomyces sp. Org. Lett. 2020, 22, 5358–5362. [Google Scholar] [CrossRef]
- Shin, B.; Ahn, S.; Noh, M.; Shin, J.; Oh, D.-C. Suncheonosides A–D, benzothioate glycosides from a marine-derived Streptomyces sp. J. Nat. Prod. 2015, 78, 1390–1396. [Google Scholar] [CrossRef]
- Im, J.H.; Shin, D.; Ban, Y.H.; Byun, W.S.; Bae, E.S.; Lee, D.; Du, Y.E.; Cui, J.; Kwon, Y.; Nam, S.-J.; et al. Targeted discovery of an enediyne-derived cycloaromatized compound, jejucarboside A, from a marine Actinomycete. Org. Lett. 2022, 24, 7188–7193. [Google Scholar] [CrossRef]
- Gustafson, K.; Roman, M.; Fenical, W. The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. J. Am. Chem. Soc. 1989, 111, 7519–7524. [Google Scholar] [CrossRef]
- Tareq, F.S.; Kim, J.-H.; Lee, M.A.; Lee, H.-S.; Lee, Y.-J.; Lee, J.-S.; Shin, H.J. Ieodoglucomides A and B from a marine-derived bacterium Bacillus licheniformis. Org. Lett. 2012, 14, 1464–1467. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.Y.; Ishida, K.; Ito, Y.; Okada, S.; Murakami, M. Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium polykrikoides. Tetrahedron Lett. 2003, 44, 8005–8007. [Google Scholar] [CrossRef]
- Berrue, F.; Ibrahim, A.; Boland, P.; Kerr, R.G. Newly isolated marine Bacillus pumilus (SP21): A source of novel lipoamides and other antimicrobial agents. Pure Appl. Chem. 2009, 81, 1027–1031. [Google Scholar] [CrossRef]
- Barsby, T.; Kelly, M.T.; Anderson, R.J. Tupuseleiamides and Basiliskamides, New acyldipeptides and antifungal polyketides produced in culture by a Bacillus laterosporus isolate obtained from a tropical marine habitat. J. Nat. Prod. 2002, 65, 1447–1451. [Google Scholar] [CrossRef] [PubMed]
- Pretsch, E.; Bühlmann, P.; Affolter, C. Structure Determination of Organic Compounds-Tables of Spectral Data; Springer: New York, NY, USA, 2000; p. 404. [Google Scholar]
- Matsumori, N.; Kaneno, D.; Murata, M.; Nakamura, H.; Tachibana, K. Stereochemical determination of acyclic structures based on carbon−proton spin-coupling constants. A method of configuration analysis for natural products. J. Org. Chem. 1999, 64, 866–876. [Google Scholar] [CrossRef]
- Kurz, M.; Schmieder, P.; Kessler, H. HETLOC, an efficient method for determining heteronuclear long-range couplings with heteronuclei in natural abundance. Angew. Chem. Int. Ed. 1991, 30, 1329–1331. [Google Scholar] [CrossRef]
- Moon, K.; Ahn, C.-H.; Shin, Y.; Won, T.H.; Ko, K.; Lee, S.K.; Oh, K.-B.; Shin, J.; Nam, S.-I.; Oh, D.-C. New benzoxazine secondary metabolites from an arctic actinomycete. Mar. Drugs 2014, 12, 2526–2538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freire, F.; Seco, J.M.; Quiñoa, E.; Riguera, R. Determining the absolute stereochemistry of secondary/secondary diols by 1H NMR: basis and applications. J. Org. Chem. 2005, 70, 3778–3790. [Google Scholar] [CrossRef]
- Nazarski, R.B. Summary of DFT calculations coupled with current statistical and/or artificial neural network (ANN) methods to assist experimental NMR data in identifying diastereomeric structures. Tetrahedron Lett. 2021, 71, 152548. [Google Scholar] [CrossRef]
- Smith, S.G.; Goodman, J.M. Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: The DP4 probability. J. Am. Chem. Soc. 2010, 132, 12946–12959. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, S.B.; Schwartz, C.D.; Monaghan, R.L.; Pelak, B.A.; Weissberger, B.; Gilfillan, E.C.; Mochales, S.; Hernadez, S.; Currie, S.A.; Tejera, E.; et al. Difficidin and oxydifficidin: Novel broad-spectrum antibacterial antibiotics produced by Bacillus subtilis. I. Production, taxonomy and antibacterial activity. J. Antibiot. 1987, 40, 1677–1681. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.P.; LeVine, H. 3rd, Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis. 2010, 19, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Re, F.; Airoldi, C.; Zona, C.; Masserini, M.; Ferla, B.L.; Quattrocchi, N.; Nicotra, F. Beta amyloid aggregation inhibitors: Small molecules as candidate drugs for therapy of Alzheimers disease. Curr. Med. Chem. 2010, 17, 2990–3006. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.; Yoon, S.; Park, S.; Hong, S.W.; Cho, E.; Kim, E.; Kim, H.Y.; Kim, Y. Immobilized amyloid bexamer fragments to map active sites of amyloid-targeting chemicals. ACS Chem. Neurosci. 2023, 14, 9–18. [Google Scholar] [CrossRef]
- Sinha, S.; Du, Z.; Maiti, P.; Klärner, F.-G.; Schrader, T.; Wang, C.; Bitan, G. Comparison of three amyloid assembly inhibitors: The sugar scyllo-inositol, the polyphenol epigallocatechin gallate, and the molecular tweezer CLR01. ACS Chem. Neurosci. 2012, 3, 451–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.Y.; Kim, H.V.; Jo, S.; Lee, C.J.; Choi, S.Y.; Kim, D.J.; Kim, Y. EPPS rescues hippocampus-dependent cognitive deficits in APP/PS1 mice by disaggregation of amyloid-β oligomers and plaques. Nat. Commun. 2015, 6, 8997. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.-H.; Shin, J.; Shin, N.N.; Hwang, J.-H.; Hong, S.-C.; Park, K.; Lee, J.W.; Lee, S.; Baek, S.; Kim, K.; et al. A small molecule Nec-1 directly induces amyloid clearance in the brains of aged APP/PS1 mice. Sci. Rep. 2019, 9, 4183. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, B.A.; Chen, A.P.-J.; Savage, G.P.; Williams, C.M. Cubane: A new NMR internal standard. Aust. J. Chem. 2010, 63, 1108–1110. [Google Scholar] [CrossRef]
- Lee, H.; Baek, S.; Cha, M.; Yang, S.-H.; Cho, I.; Shin, H.; Lee, S.; Kim, H.Y.; Lee, S.; Shin, J.; et al. Amyloid against amyloid: Dimeric amyloid fragment ameliorates cognitive impairments by direct clearance of oligomers and plaques. Angew. Chem. Int. Ed. 2022, e202210209. [Google Scholar] [CrossRef]
- Schäfer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571. [Google Scholar] [CrossRef] [Green Version]
- Kwon, O.-S.; Kim, D.; Kim, C.-K.; Sun, J.; Sim, C.J.; Oh, D.-C.; Lee, S.K.; Oh, K.-B.; Shin, J. Cytotoxic scalarane sesterterpenes from the sponge Hyrtios erectus. Mar. Drugs 2020, 18, 253. [Google Scholar] [CrossRef] [PubMed]
- Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res. 2005, 33, W363–W367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comp. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | ||||
---|---|---|---|---|---|
C/H | δC, Type | δH, Mult (J in Hz) | C/H | δC, Type | δH, Mult (J in Hz) |
1 | 174.03, C | 1 | 167.97, C | ||
2 | 47.03, CH2 | 3.059, d (14.5) | 2 | 117.83, CH | 5.544, d (11.0) |
3.444, d (14.5) | 3 | 145.37, CH | 6.628, d (11.0) | ||
3 | 148.67, C | 4 | 130.23, CH | 7.229. dd (15.0, 11.0) | |
4 | 41.19, CH | 2.369, m | 5 | 141.73, CH | 6.214, ddd (15.0, 8.0, 6.0) |
5 | 86.94, CH | 3.693, m | 6 | 40.97, CH2 | 2.560, m |
6 | 32.03, CH2 | 2.512, m | 2.456, m | ||
2.732, m | 7 | 78.73, CH | 4.370, dd (13.0, 7.0) | ||
7 | 128.61, CH | 5.639, td (11.0, 4.0) | 8 | 134.17, CH | 5.636, dd (15.0, 7.0) |
8 | 128.72, CH | 6.440, t (12.5) | 9 | 129.45, CH | 6.581, dd (15.0, 11.0) |
9 | 123.86, CH | 6.162, m | 10 | 131.71, CH | 6.146, t (11.0) |
10 | 130.46, CH | 5.998, t (11.0) | 11 | 128.85, CH | 5.545, m |
11 | 126.55, CH | 6.439, t (12.5) | 12 | 35.85, CH2 | 2.463, m |
12 | 135.80, CH | 5.707, m | 2.373, dt (14.0, 7.0) | ||
13 | 29.18, CH2 | 1.945, m | 13 | 68.66, CH | 4.118, m |
2.311, m | 14 | 49.42, CH2 | 2.580, d (6.5) | ||
14 | 34.10, CH2 | 1.803, m | 2.555, d (6.5) | ||
1.739, m | 15 | 211.82, C | |||
15 | 68.14, CH | 4.680, dd (9.0, 6.0) | 16 | 44.40, CH2 | 2.461, m |
16 | 140.83, C | 17 | 27.95, CH2 | 2.197, m | |
17 | 123.89, CH | 6.232, d (11.0) | 18 | 130.30, CH | 5.411, m |
18 | 126.58, CH | 6.208, d (11.0) | 19 | 132.01, CH | 5.411, m |
19 | 126.47, CH | 5.257, m | 20 | 33.00, CH2 | 2.051, ddd (17.0, 12.0, 5.5) |
20 | 32.29, CH2 | 2.403, m | 1.959, dt (13.0, 7.0) | ||
2.601, m | 21 | 26.19, CH2 | 1.428, m | ||
21 | 75.89, CH | 4.802, m | 1.393, m | ||
22 | 33.45, CH2 | 1.703, m | 22 | 36.29, CH2 | 1.630, m |
1.817, m | 1.531, m | ||||
23 | 36.75, CH2 | 2.102, t (8.0) | 23 | 71.75, CH | 5.001, m |
24 | 139.27, C | 24 | 20.26, CH3 | 1.232, m | |
25 | 127.37, CH | 5.861, broad d (11.0) | 25 | 101.37, CH | 4.309, d (8.0) |
26 | 134.48, CH | 6.584, dtd (14.5, 10.5, 4.0) | 26 | 75.07, CH | 3.239, d (8.5) |
27 | 115.53, CH2 | 4.969, dd (10.0, 2.0) | 27 | 78.00, CH | 3.328, dd (18.0, 9.0) |
5.071, dd (17.0, 2.0) | 28 | 71.78, CH | 3.300, m | ||
28 | 105.91, CH | 4.285, d (8.0) | 29 | 75.28, CH | 3.402, ddd (9.0, 6.0, 2.0) |
29 | 75.50, CH | 3.188, dd (9.0, 8.0) | 30 | 64.94, CH2 | 4.423, dd (12.0, 2.0) |
30 | 78.09, CH | 3.315, m | 4.250, dd (12.0, 2.0) | ||
31 | 71.92, CH | 3.267, d (9.0) | 31 | 174.21, C | |
32 | 75.19, CH | 3.420, ddd (9.0, 6.5, 2.5) | 32 | 29.97, CH2 | 2.605, t (6.5) |
33 | 64.93, CH2 | 4.405, dd (12.0, 2.0) | 33 | 30.17, CH2 | 2.654, t (6.5) |
4.220, dd (12.0, 6.5) | 34 | 176.15, C | |||
34 | 174.37, C | ||||
35 | 30.90, CH2 | 2.546, m | |||
36 | 30.64, CH2 | 2.596, m | |||
37 | 177.20, C | ||||
38 | 113.99, CH2 | 5.026, s 5.046, s | |||
39 | 17.40, CH3 | 0.979, d (7.0) | |||
40 | 17.76, CH3 | 1.802, s | |||
41 | 16.62, CH3 | 1.779, s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Ye, S.; Shin, D.; Cho, I.; Kim, H.Y.; Kwon, Y.; Park, K.; Nam, S.-J.; Kim, Y.; Oh, D.-C. Glycosylated and Succinylated Macrocyclic Lactones with Amyloid-β-Aggregation-Regulating Activity from a Marine Bacillus sp. Mar. Drugs 2023, 21, 67. https://doi.org/10.3390/md21020067
Cui J, Ye S, Shin D, Cho I, Kim HY, Kwon Y, Park K, Nam S-J, Kim Y, Oh D-C. Glycosylated and Succinylated Macrocyclic Lactones with Amyloid-β-Aggregation-Regulating Activity from a Marine Bacillus sp. Marine Drugs. 2023; 21(2):67. https://doi.org/10.3390/md21020067
Chicago/Turabian StyleCui, Jinsheng, Suhyun Ye, Daniel Shin, Illhwan Cho, Hye Yun Kim, Yun Kwon, Keunwan Park, Sang-Jip Nam, YoungSoo Kim, and Dong-Chan Oh. 2023. "Glycosylated and Succinylated Macrocyclic Lactones with Amyloid-β-Aggregation-Regulating Activity from a Marine Bacillus sp." Marine Drugs 21, no. 2: 67. https://doi.org/10.3390/md21020067
APA StyleCui, J., Ye, S., Shin, D., Cho, I., Kim, H. Y., Kwon, Y., Park, K., Nam, S. -J., Kim, Y., & Oh, D. -C. (2023). Glycosylated and Succinylated Macrocyclic Lactones with Amyloid-β-Aggregation-Regulating Activity from a Marine Bacillus sp. Marine Drugs, 21(2), 67. https://doi.org/10.3390/md21020067