Ulva rigida Valorization into Poly(3-hydroxybutyrate), Organic Acids and Functional Ingredients
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biomass Characterization
2.2. Production of Hydrolysates from Ulva rigida
2.3. Shake Flask Assays
2.4. Proposed Batch Valorization Strategies
2.5. Fed-Batch Bioreactor Assays
3. Materials and Methods
3.1. Halomonas elongata 1H9T Media Composition and Storage
3.2. Algae Biomass
3.3. Ulva rigida Biomass Characterization
3.4. Hydrolysis of the Carbohydrate Fraction of Whole Ulva rigida Biomass
3.5. Production of Concentrated Hydrolysates for the Bioreactor Assays
3.6. Shake Flask Cultivations
3.7. Bioreactor Cultivations
3.8. Analytical Methods
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Birner, R. Bioeconomy Concepts. In Bioeconomy: Shaping the Transition to a Sustainable, Biobased Economy; Lewandowski, I., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 17–38. ISBN 978-3-319-68152-8. [Google Scholar]
- Cesário, M.T.; da Fonseca, M.M.R.; Marques, M.M.; de Almeida, M.C.M.D. Marine Algal Carbohydrates as Carbon Sources for the Production of Biochemicals and Biomaterials. Biotechnol. Adv. 2018, 36, 798–817. [Google Scholar] [CrossRef]
- Vreeland, R.H.; Litchfield, C.D.; Martin, E.L.; Elliot, E. Halomonas elongata, a New Genus and Species of Extremely Salt-Tolerant Bacteria. Int. J. Syst. Evol. Microbiol. 1980, 30, 485–495. [Google Scholar] [CrossRef]
- Leandro, T.; Oliveira, M.; da Fonseca, M.; Cesário, M. Co-Production of Poly(3-Hydroxybutyrate) and Gluconic Acid from Glucose by Halomonas elongata. Bioengineering 2023, 10, 643. [Google Scholar] [CrossRef] [PubMed]
- Kirimura, K.; Honda, Y.; Hattori, T. 3.14—Gluconic and Itaconic Acids. In Comprehensive Biotechnology, 2nd ed.; Moo-Young, M., Ed.; Academic Press: Burlington, MA, USA, 2011; pp. 143–147. ISBN 978-0-08-088504-9. [Google Scholar]
- Pal, P.; Kumar, R.; Banerjee, S. Manufacture of Gluconic Acid: A Review towards Process Intensification for Green Production. Chem. Eng. Process. Process Intensif. 2016, 104, 160–171. [Google Scholar] [CrossRef]
- Kourmentza, C.; Plácido, J.; Venetsaneas, N.; Burniol-Figols, A.; Varrone, C.; Gavala, H.N.; Reis, M.A.M. Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering 2017, 4, 55. [Google Scholar] [CrossRef]
- Favaro, L.; Basaglia, M.; Casella, S. Improving Polyhydroxyalkanoate Production from Inexpensive Carbon Sources by Genetic Approaches: A Review. Biofuels Bioprod. Biorefining 2019, 13, 208–227. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S.Y. Process Analysis and Economic Evaluation for Poly(3-Hydroxybutyrate) Production by Fermentation. Bioprocess Eng. 1997, 17, 335–342. [Google Scholar] [CrossRef]
- Vázquez-Rodríguez, J.A.; Amaya-Guerra, C.A. Ulva Genus as Alternative Crop: Nutritional and Functional Properties. In Alternative Crops and Cropping Systems; Konvalina, P., Ed.; IntechOpen: Rijeka, Croatia, 2016; pp. 29–44. ISBN 978-953-51-2279-1. [Google Scholar]
- Kidgell, J.T.; Magnusson, M.; de Nys, R.; Glasson, C.R.K. Ulvan: A Systematic Review of Extraction, Composition and Function. Algal Res. 2019, 39, 101422. [Google Scholar] [CrossRef]
- Mo’o, F.R.C.; Wilar, G.; Devkota, H.P.; Wathoni, N. Ulvan, a Polysaccharide from Macroalga Ulva sp.: A Review of Chemistry, Biological Activities and Potential for Food and Biomedical Applications. Appl. Sci. 2020, 10, 5488. [Google Scholar] [CrossRef]
- Teixeira-Guedes, C.; Gomes-Dias, J.S.; Cunha, S.A.; Pintado, M.E.; Pereira, R.; Teixeira, J.A.; Rocha, C.M.R. Enzymatic Approach for the Extraction of Bioactive Fractions from Red, Green and Brown Seaweeds. Food Bioprod. Process. 2023, 138, 25–39. [Google Scholar] [CrossRef]
- Queirós, A.S.; Circuncisão, A.R.; Pereira, E.; Válega, M.; Abreu, M.H.; Silva, A.M.S.; Cardoso, S.M. Valuable Nutrients from Ulva rigida: Modulation by Seasonal and Cultivation Factors. Appl. Sci. 2021, 11, 6137. [Google Scholar] [CrossRef]
- Ruiz, A.; Rodrı, R.M.; Fernandes, B.D.; Vicente, A.; Teixeira, A. Hydrothermal Processing, as an Alternative for Upgrading Agriculture Residues and Marine Biomass According to the Biorefinery Concept: A Review. Renew. Sustain. Energy Rev. 2013, 21, 35–51. [Google Scholar] [CrossRef]
- Jeong, S.-Y.; Lee, J.-W. Chapter 5—Hydrothermal Treatment. In Pretreatment of Biomass; Pandey, A., Negi, S., Binod, P., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 61–74. ISBN 978-0-12-800080-9. [Google Scholar]
- Moniz, P.; Pereira, H.; Duarte, L.C.; Carvalheiro, F. Hydrothermal Production and Gel Filtration Purification of Xylo-Oligosaccharides from Rice Straw. Ind. Crops Prod. 2014, 62, 460–465. [Google Scholar] [CrossRef]
- Yang, B.; Tao, L.; Wyman, C.E. Strengths, Challenges, and Opportunities for Hydrothermal Pretreatment in Lignocellulosic Biorefineries. Biofuels Bioprod. Biorefining 2018, 12, 125–138. [Google Scholar] [CrossRef]
- Guarnieri, M.T.; Ann Franden, M.; Johnson, C.W.; Beckham, G.T. Conversion and Assimilation of Furfural and 5-(Hydroxymethyl)Furfural by Pseudomonas putida KT2440. Metab. Eng. Commun. 2017, 4, 22–28. [Google Scholar] [CrossRef]
- Salinas, A.; French, C.E. The Enzymatic Ulvan Depolymerisation System from the Alga-Associated Marine Flavobacterium Formosa agariphila. Algal Res. 2017, 27, 335–344. [Google Scholar] [CrossRef]
- Offei, F.; Mensah, M.; Kemausuor, F. Cellulase and Acid-Catalysed Hydrolysis of Ulva fasciata, Hydropuntia dentata and Sargassum vulgare for Bioethanol Production. SN Appl. Sci. 2019, 1, 1469. [Google Scholar] [CrossRef]
- Poespowati, T.; Riyanto, A.; Hazlan, H.; Mahmudi, A. Kartika-Dewi Rini Enzymatic Hydrolysis of Liquid Hot Water Pre-Treated Macro-Alga (Ulva lactuca) for Fermentable Sugar Production. MATEC Web Conf. 2018, 156, 1015. [Google Scholar] [CrossRef]
- Tůma, S.; Izaguirre, J.K.; Bondar, M.; Marques, M.M.; Fernandes, P.; da Fonseca, M.M.R.; Cesário, M.T. Upgrading End-of-Line Residues of the Red Seaweed Gelidium sesquipedale to Polyhydroxyalkanoates Using Halomonas boliviensis. Biotechnol. Rep. 2020, 27, e00491. [Google Scholar] [CrossRef] [PubMed]
- del Río, P.G.; Gomes-Dias, J.S.; Rocha, C.M.R.; Romaní, A.; Garrote, G.; Domingues, L. Recent Trends on Seaweed Fractionation for Liquid Biofuels Production. Bioresour. Technol. 2020, 299, 122613. [Google Scholar] [CrossRef]
- Ventosa, A.; de la Haba, R.R.; Arahal, D.R.; Sánchez-Porro, C. Halomonas. In Bergey’s Manual of Systematics of Archaea and Bacteria; John Wiley & Sons, Inc.: New York, NY, USA, 2021; pp. 1–111. ISBN 9781118960608. [Google Scholar]
- Chanasit, W.; Hodgson, B.; Sudesh, K.; Umsakul, K. Efficient Production of Polyhydroxyalkanoates (PHAs) from Pseudomonas Mendocina PSU Using a Biodiesel Liquid Waste (BLW) as the Sole Carbon Source. Biosci. Biotechnol. Biochem. 2016, 80, 1440–1450. [Google Scholar] [CrossRef]
- Aachary, A.A.; Prapulla, S.G. Xylooligosaccharides (XOS) as an Emerging Prebiotic: Microbial Synthesis, Utilization, Structural Characterization, Bioactive Properties, and Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 2–16. [Google Scholar] [CrossRef]
- Forchhammer, K. Glutamine Signalling in Bacteria. Front. Biosci.-Landmark 2007, 12, 358–370. [Google Scholar] [CrossRef] [PubMed]
- Kindzierski, V.; Raschke, S.; Knabe, N.; Siedler, F.; Scheffer, B.; Pflüger-Grau, K.; Pfeiffer, F.; Oesterhelt, D.; Marin-Sanguino, A.; Kunte, H.-J. Osmoregulation in the Halophilic Bacterium Halomonas elongata: A Case Study for Integrative Systems Biology. PLoS ONE 2017, 12, e0168818. [Google Scholar] [CrossRef]
- Balderrama-Subieta, A.; Quillaguamán, J. Genomic Studies on Nitrogen Metabolism in Halomonas boliviensis: Metabolic Pathway, Biochemistry and Evolution. Comput. Biol. Chem. 2013, 47, 96–104. [Google Scholar] [CrossRef]
- Otto, C.; Yovkova, V.; Barth, G. Overproduction and Secretion of α-Ketoglutaric Acid by Microorganisms. Appl. Microbiol. Biotechnol. 2011, 92, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Bondar, M.; Pedro, F.; Oliveira, M.C.; da Fonseca, M.M.R.; Cesário, M.T. Red Algae Industrial Residues as a Sustainable Carbon Platform for the Co-Production of Poly-3-Hydroxybutyrate and Gluconic Acid by Halomonas boliviensis. Front. Bioeng. Biotechnol. 2022, 10, 934432. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Kimura, K.; Yamaguchi, M.; Yamaguchi, K. Method for Producing Alpha-Ketoglutaric Acid. U.S. Patent No. 3,723,248, 27 March 1973. [Google Scholar]
- Cañete-Rodríguez, A.M.; Santos-Dueñas, I.M.; Jiménez-Hornero, J.E.; Ehrenreich, A.; Liebl, W.; García-García, I. Gluconic Acid: Properties, Production Methods and Applications—An Excellent Opportunity for Agro-Industrial by-Products and Waste Bio-Valorization. Process Biochem. 2016, 51, 1891–1903. [Google Scholar] [CrossRef]
- Widdel, F.; Kohring, G.-W.; Mayer, F. Studies on Dissimilatory Sulfate-Reducing Bacteria That Decompose Fatty Acids. Arch. Microbiol. 1983, 134, 286–294. [Google Scholar] [CrossRef]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass; Technical Report NREL/TP-510-42619; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; Technical Report NREL/TP-510-42618; National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Hames, B.; Scarlata, C.; Sluiter, A. Determination of Protein Content in Biomass; Technical Report NREL/TP-510-42625; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Lourenço, S.O.; Barbarino, E.; De-Paula, J.C.; Otávio, L.; Pereira, S.; Marquez, U.M.L. Amino Acid Composition, Protein Content and Calculation of Nitrogen-to-Protein Conversion Factors for 19 Tropical Seaweeds. Phycol. Res. 2002, 50, 233–241. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarllata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass; Technical Report NREL/TP-510-42622; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples; Technical Report NREL/TP-510-42623; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Mihaljev, Ž.A.; Jakšić, S.M.; Prica, N.B.; Ćupić, Ž.N.; Živkov-Baloš, M.M. Comparison of the Kjeldahl Method, Dumas Method and NIR Method for Total Nitrogen Determination in Meat and Meat Products. J. Agroaliment. Process. Technol. 2015, 21, 365–370. [Google Scholar]
Component | g/100 g Dry Weight |
---|---|
Ash | 33.32 ± 0.22 |
Protein | 11.35 ± 0.36 |
Lipids (ethanol extractives) | 2.56 ± 0.26 |
Water extractives | 40.22 ± 1.88 |
Acid Insoluble Residues | 12.40 ± 0.31 |
Glucuronic acid | 1.28 ± 0.03 |
Glucan | 11.87 ± 0.89 |
Xylan/Galactan/Mannan | 10.34 ± 1.42 |
Arabinan | 1.98 ± 0.24 |
Rhamnan | 8.95 ± 0.17 |
Ulva Hydrolysate Used in the Batch Phase (g/L) | Ulva Hydrolysate Used in the Fed-Batch Phase (g/L) | Supplemented Ulva Hydrolysate Used as Feed in the Fed-Batch Phase (g/L) | |
---|---|---|---|
Glucose | 19 | 117.8 | 410 |
Xylose | 15 | 12.5 | 6.2 |
Rhamnose | 10 | - | - |
HMF | 0.05 | 0.97 | 0.48 |
Furfural | 0.07 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leandro, T.; Teles, M.; Gomes-Dias, J.S.; Marques, M.; Rocha, C.M.R.; da Fonseca, M.M.R.; Cesário, M.T. Ulva rigida Valorization into Poly(3-hydroxybutyrate), Organic Acids and Functional Ingredients. Mar. Drugs 2023, 21, 537. https://doi.org/10.3390/md21100537
Leandro T, Teles M, Gomes-Dias JS, Marques M, Rocha CMR, da Fonseca MMR, Cesário MT. Ulva rigida Valorization into Poly(3-hydroxybutyrate), Organic Acids and Functional Ingredients. Marine Drugs. 2023; 21(10):537. https://doi.org/10.3390/md21100537
Chicago/Turabian StyleLeandro, Tânia, Marco Teles, Joana S. Gomes-Dias, Mafalda Marques, Cristina M. R. Rocha, M. Manuela R. da Fonseca, and M. Teresa Cesário. 2023. "Ulva rigida Valorization into Poly(3-hydroxybutyrate), Organic Acids and Functional Ingredients" Marine Drugs 21, no. 10: 537. https://doi.org/10.3390/md21100537
APA StyleLeandro, T., Teles, M., Gomes-Dias, J. S., Marques, M., Rocha, C. M. R., da Fonseca, M. M. R., & Cesário, M. T. (2023). Ulva rigida Valorization into Poly(3-hydroxybutyrate), Organic Acids and Functional Ingredients. Marine Drugs, 21(10), 537. https://doi.org/10.3390/md21100537