Potential Beneficial Effects of Sargassum spp. in Skin Aging
Abstract
:1. Introduction
2. Bioactive Functions of Sargassum spp.
2.1. Antioxidant and Photoprotective Activities
2.1.1. Sargassum muticum
2.1.2. Sargassum cristafolium
2.1.3. Sargassum siliquastrum
2.1.4. Sargassum fusiforme
2.1.5. Sargassum confusum
2.1.6. Sargassum coreanum
2.1.7. Sargassum horneri
2.2. Anti-Inflammatory Activity
2.2.1. Sargassum fulvellum
2.2.2. Sargassum horneri
2.2.3. Myagropsis myagroides
2.2.4. Ecklonia stolonifera
2.2.5. Sargassum macrocarpum
2.2.6. Sargassum fusiforme
2.2.7. Sargassum micracanthum
2.2.8. Sargassum binderi
2.3. Moisturization and Skin Barrier Repair
2.3.1. Sargassum muticum
2.3.2. Sargassum vachellianum
2.3.3. Sargassum horneri
2.3.4. Sargassum confusum
2.3.5. Sargassum glaucescens
2.3.6. Sargassum fusiforme
2.4. Anti-Melanogenesis Activity
2.4.1. Sargassum polycystum
2.4.2. Sargassum serratifolium
2.4.3. Sargassum thunbergii
2.4.4. Sargassum fusiforme
2.4.5. Sargassum siliquastrum
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fidai, Y.; Dash, J.; Tompkins, E.L.; Tonon, T. A systematic review of floating and beach landing records of Sargassum beyond the Sargasso Sea. Environ. Res. Commun. 2020, 2, 122001. [Google Scholar] [CrossRef]
- Mattio, L.; Payri, C.E. 190 years of Sargassum taxonomy, facing the advent of DNA phylogenies. Bot. Rev. 2011, 77, 31–70. [Google Scholar] [CrossRef]
- Chávez, V.; Uribe-Martínez, A.; Cuevas, E.; Rodríguez-Martínez, R.; Francisco, V.; Estevez, M.; Celis, L.; Monroy-Velázquez, L.; Leal-Bautista, R.; Masia, L.; et al. Massive Influx of Pelagic Sargassum spp. on the Coasts of the Mexican Caribbean 2014–2020: Challenges and Opportunities. Water 2020, 12, 2908. [Google Scholar] [CrossRef]
- Cipolloni, O.A.; Gigault, J.; Dassie, E.P.; Baudrimont, M.; Gourves, P.Y.; Amaral-Zettler, L.; Pascal, P.Y. Metals and metalloids concentrations in three genotypes of pelagic Sargassum from the Atlantic Ocean Basin-scale. Mar. Pollut. Bull. 2022, 178, 113564. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, R.; Tussenbroek, B.; Jordán-Dahlgren, E. Afluencia Masiva de Sargazo Pelágico a la Costa del Caribe Mexicano (2014–2015); CICESE: Ensenada, Mexico, 2016; pp. 352–365. [Google Scholar]
- Franks, J.; Johnson, D.; Ko, D.; Sanchez-Rubio, G.; Hendon, J.; Lay, M. Unprecedented influx of pelagic Sargassum along Caribbean island coastlines during summer 2011. In Proceedings of the 64th Gulf and Caribbean Fisheries Institute, Puerto Morelos, Mexico, 31 October–5 November 2011. [Google Scholar]
- Resiere, D.; Valentino, R.; Nevière, R.; Banydeen, R.; Gueye, P.; Florentin, J.; Cabié, A.; Lebrun, T.; Megarbane, B.; Guerrier, G.; et al. Sargassum seaweed on Caribbean islands: An international public health concern. Lancet 2018, 392, 2691. [Google Scholar] [CrossRef] [Green Version]
- Chandra, R.; Iqbal, H.M.N.; Vishal, G.; Lee, H.S.; Nagra, S. Algal biorefinery: A sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresour. Technol. 2019, 278, 346–359. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Heinrich, M.; Myers, S.; Dworjanyn, S.A. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: A phytochemical and pharmacological review. J. Ethnopharmacol. 2012, 142, 591–619. [Google Scholar] [CrossRef]
- Fitton, J.H. Brown marine algae: A survey of therapeutic potentials. Altern. Complementary Ther. 2003, 9, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Saraswati; Giriwono, P.E.; Iskandriati, D.; Tan, C.P.; Andarwulan, N. Sargassum Seaweed as a Source of Anti-Inflammatory Substances and the Potential Insight of the Tropical Species: A Review. Mar. Drugs 2019, 17, 590. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.-H.; Kim, J.; Lee, Y. Anti-inflammatory and anti-diabetic effects of brown seaweeds in high-fat diet-induced obese mice. Nutr. Res. Pract. 2016, 10, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Fernando, I.S.; Nah, J.-W.; Jeon, Y.-J. Potential anti-inflammatory natural products from marine algae. Environ. Toxicol. Pharmacol. 2016, 48, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.-S.; Ngo, D.-H.; Kim, S.-K. Potential targets for anti-inflammatory and anti-allergic activities of marine algae: An overview. Inflamm. Allergy Drug Targets 2012, 11, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Han, E.; Kim, S.-Y.; Han, H.-J.; Kim, H.-S.; Kim, K.-N.; Fernando, S.; Madusanka, D.M.; Dias, M.K.; Cheong, S.-H.; Park, S.; et al. UVB protective effects of Sargassum horneri through the regulation of Nrf2 mediated antioxidant mechanism. Sci. Rep. 2021, 11, 9963. [Google Scholar] [CrossRef] [PubMed]
- Fernando, I.P.S.; Jayawardena, T.U.; Sanjeewa, K.K.A.; Wang, L.; Jeon, Y.J.; Lee, W.W. Anti-inflammatory potential of alginic acid from Sargassum horneri against urban aerosol-induced inflammatory responses in keratinocytes and macrophages. Ecotoxicol. Environ. Saf. 2018, 160, 24–31. [Google Scholar] [CrossRef]
- Murakami, S.; Hirazawa, C.; Ohya, T.; Yoshikawa, R.; Mizutani, T.; Ma, N.; Moriyama, M.; Ito, T.; Matsuzaki, C. The Edible Brown Seaweed Sargassum horneri (Turner) C. Agardh Ameliorates High-Fat Diet-Induced Obesity, Diabetes, and Hepatic Steatosis in Mice. Nutrients 2021, 13, 551. [Google Scholar] [CrossRef] [PubMed]
- Han, E.J.; Fernando, I.P.S.; Kim, H.S.; Jeon, Y.J.; Madusanka, D.M.D.; Dias, M.; Jee, Y.; Ahn, G. Oral Administration of Sargassum horneri Improves the HDM/DNCB-Induced Atopic Dermatitis in NC/Nga Mice. Nutrients 2020, 12, 2482. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.; Madusanka, D.M.D.; Han, E.J.; Kim, H.S.; Jeon, Y.J.; Jee, Y.; Kim, K.N.; Lee, K.; Fernando, I.P.S.; Ahn, G. Sargassum horneri (Turner) C. Agardh ethanol extract attenuates fine dust-induced inflammatory responses and impaired skin barrier functions in HaCaT keratinocytes. J. Ethnopharmacol. 2021, 273, 114003. [Google Scholar] [CrossRef]
- Wang, L.; Lee, W.; Oh, J.Y.; Cui, Y.R.; Ryu, B.; Jeon, Y.J. Protective Effect of Sulfated Polysaccharides from Celluclast-Assisted Extract of Hizikia fusiforme against Ultraviolet B-Induced Skin Damage by Regulating NF-κB, AP-1, and MAPKs Signaling Pathways In Vitro in Human Dermal Fibroblasts. Mar. Drugs 2018, 16, 239. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zuo, J.; Yan, L.; Cheng, Y.; Li, Q.; Wu, S.; Chen, L.; Thring, R.W.; Yang, Y.; Gao, Y.; et al. Sargassum fusiforme Fucoidan Alleviates High-Fat Diet-Induced Obesity and Insulin Resistance Associated with the Improvement of Hepatic Oxidative Stress and Gut Microbiota Profile. J. Agric. Food Chem. 2020, 68, 10626–10638. [Google Scholar] [CrossRef]
- Li, Z.R.; Jia, R.B.; Wu, J.; Lin, L.; Ou, Z.R.; Liao, B.; Zhang, L.; Zhang, X.; Song, G.; Zhao, M. Sargassum fusiforme polysaccharide partly replaces acarbose against type 2 diabetes in rats. Int. J. Biol. Macromol. 2021, 170, 447–458. [Google Scholar] [CrossRef]
- Ye, Y.; Ji, D.; You, L.; Zhou, L.; Zhao, Z.; Brennan, C. Structural properties and protective effect of Sargassum fusiforme polysaccharides against ultraviolet B radiation in hairless Kun Ming mice. J. Funct. Foods 2018, 43, 8–16. [Google Scholar] [CrossRef]
- Wang, L.; Oh, J.Y.; Jayawardena, T.U.; Jeon, Y.-J.; Ryu, B. Anti-inflammatory and anti-melanogenesis activities of sulfated polysaccharides isolated from Hizikia fusiforme. Int. J. Biol. Macromol. 2020, 142, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Piao, M.J.; Han, X.; Kang, K.A.; Kang, H.K.; Yoon, W.J.; Ko, M.H.; Lee, N.H.; Lee, M.Y.; Chae, S.; et al. Anti-wrinkle effects of Sargassum muticum ethyl acetate fraction on ultraviolet B-irradiated hairless mouse skin and mechanistic evaluation in the human HaCaT keratinocyte cell line. Mol. Med. Rep. 2016, 14, 2937–2944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.C.; Kang, N.J.; Yoon, W.J.; Kim, S.; Na, M.C.; Koh, Y.S.; Hyun, J.W.; Lee, N.H.; Ko, M.H.; Kang, H.K.; et al. External Application of Apo-9’-fucoxanthinone, Isolated from Sargassum muticum, Suppresses Inflammatory Responses in a Mouse Model of Atopic Dermatitis. Toxicol. Res. 2016, 32, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.A.; Cho, Y.R.; Hong, S.S.; Ahn, E.K. Anti-Obesity Activity of Saringosterol Isolated from Sargassum muticum (Yendo) Fensholt Extract in 3T3-L1 Cells. Phytother. Res. 2017, 31, 1694–1701. [Google Scholar] [CrossRef]
- Susano, P.; Silva, J.; Alves, C.; Martins, A.; Pinteus, S.; Gaspar, H.; Goettert, M.I.; Pedrosa, R. Mitigating the negative impacts of marine invasive species—Sargassum muticum—A key seaweed for skincare products development. Algal Res. 2022, 62, 102634. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Dias, M.; Madusanka, D.M.D.; Han, E.J.; Kim, M.J.; Jeon, Y.J.; Ahn, G. Fucoidan refined by Sargassum confusum indicate protective effects suppressing photo-oxidative stress and skin barrier perturbation in UVB-induced human keratinocytes. Int. J. Biol. Macromol. 2020, 164, 149–161. [Google Scholar] [CrossRef]
- Yang, C.F.; Lai, S.S.; Chen, Y.H.; Liu, D.; Liu, B.; Ai, C.; Wan, X.Z.; Gao, L.Y.; Chen, X.H.; Zhao, C. Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via JNK-IRS1/PI3K signalling pathways and regulation of gut microbiota. Food Chem. Toxicol. 2019, 131, 110562. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Dias, M.; Madusanka, D.M.D.; Han, E.J.; Kim, M.J.; Jeon, Y.J.; Ahn, G. Step gradient alcohol precipitation for the purification of low molecular weight fucoidan from Sargassum siliquastrum and its UVB protective effects. Int. J. Biol. Macromol. 2020, 163, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.H.; KO, S.C.; Kim, D.; Jeon, Y.J. Screening of marine algae for potential tyrosinase inhibitor: Those inhibitors reduced tyrosinase activity and melanin synthesis in zebrafish. J. Dermatol. 2011, 38, 354–363. [Google Scholar] [CrossRef]
- Ren, B.; Chen, C.; Li, C.; Fu, X.; You, L.; Liu, R.H. Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities. Carbohydr. Polym. 2017, 173, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.C.; Lee, H.G.; Kim, H.S.; Song, K.M.; Chun, Y.G.; Lee, M.H.; Kim, B.K.; Jeon, Y.J. Anti-Obesity Effects of Sargassum thunbergii via Downregulation of Adipogenesis Gene and Upregulation of Thermogenic Genes in High-Fat Diet-Induced Obese Mice. Nutrients 2020, 12, 3325. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Wu, W.; Tang, H.; Wei, B.; Wang, H.; Sun, J.; Zhang, W.; Zhong, W. Structure Analysis and Anti-Tumor and Anti-Angiogenic Activities of Sulfated Galactofucan Extracted from Sargassum thunbergii. Mar. Drugs 2019, 17, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gam, D.H.; Park, J.H.; Hong, J.W.; Jeon, S.J.; Kim, J.H.; Kim, J.W. Effects of Sargassum thunbergii Extract on Skin Whitening and Anti-Wrinkling through Inhibition of TRP-1 and MMPs. Molecules 2021, 26, 7381. [Google Scholar] [CrossRef]
- Wang, L.; Oh, J.Y.; Hwang, J.; Ko, J.Y.; Jeon, Y.J.; Ryu, B. In Vitro and In Vivo Antioxidant Activities of Polysaccharides Isolated from Celluclast-Assisted Extract of an Edible Brown Seaweed, Sargassum fulvellum. Antioxidants 2019, 8, 493. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Park, G.H.; Ahn, E.M.; Park, C.I.; Jang, J.H. Sargassum fulvellum Protects HaCaT Cells and BALB/c Mice from UVB-Induced Proinflammatory Responses. Evid. Based Complement. Alternat. Med. 2013, 2013, 747846. [Google Scholar] [CrossRef] [Green Version]
- Motshakeri, M.; Ebrahimi, M.; Goh, Y.M.; Othman, H.H.; Hair-Bejo, M.; Mohamed, S. Effects of Brown Seaweed (Sargassum polycystum) Extracts on Kidney, Liver, and Pancreas of Type 2 Diabetic Rat Model. Evid. Based. Complement. Alternat. Med. 2014, 2014, 379407. [Google Scholar] [CrossRef] [Green Version]
- Palanisamy, S.; Vinosha, M.; Marudhupandi, T.; Rajasekar, P.; Prabhu, N.M. Isolation of fucoidan from Sargassum polycystum brown algae: Structural characterization, in vitro antioxidant and anticancer activity. Int. J. Biol. Macromol. 2017, 102, 405–412. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Kim, K.H.; Cheah, S.H. Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. J. Ethnopharmacol. 2011, 137, 1183–1188. [Google Scholar] [CrossRef]
- Fernando, S.; Sanjeewa, A.; Lee, H.-G.; Kim, H.-S.; Vaas, A.P.J.P.; De Silva, I.; Nanayakkara, C.; Abeytunga, D.; Lee, D.-S.; Lee, J.-S.; et al. Fucoidan Purified from Sargassum polycystum Induces Apoptosis through Mitochondria-Mediated Pathway in HL-60 and MCF-7 Cells. Mar. Drugs 2020, 18, 196. [Google Scholar] [CrossRef] [Green Version]
- Palanisamy, S.; Vinosha, M.; Rajasekar, P.; Anjali, R.; Sathiyaraj, G.; Marudhupandi, T.; Selvam, S.; Prabhu, N.M.; You, S. Antibacterial efficacy of a fucoidan fraction (Fu-F2) extracted from Sargassum polycystum. Int. J. Biol. Macromol. 2019, 125, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Kwon, M.S.; Choi, J.W.; Shin, T.; No, H.K.; Choi, J.S.; Byun, D.S.; Kim, J.I.; Kim, H.R. Anti-inflammatory activities of an ethanol extract of Ecklonia stolonifera in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. J. Agric. Food Chem. 2012, 60, 9120–9129. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Lee, K.; Chei, S.; Oh, H.J.; Lee, K.P.; Lee, B.Y. Ecklonia stolonifera Extract Suppresses Lipid Accumulation by Promoting Lipolysis and Adipose Browning in High-Fat Diet-Induced Obese Male Mice. Cells 2020, 9, 871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.S.; Kasin Yadunandam, A.; Kim, S.J.; Woo, H.C.; Kim, H.R.; Kim, G.D. Dieckol, isolated from Ecklonia stolonifera, induces apoptosis in human hepatocellular carcinoma Hep3B cells. J. Nat. Med. 2013, 67, 519–527. [Google Scholar] [CrossRef]
- Prasedya, E.S.; Martyasari, N.W.R.; Abidin, A.S.; Pebriani, S.A.; Ilhami, B.T.K.; Frediansyah, A.; Sunarwidhi, A.L.; Widyastuti, S.; Sunarpi, H. Macroalgae Sargassum cristaefolium Extract Inhibits Proinflammatory Cytokine Expression in BALB/C Mice. Scientifica 2020, 2020, 9769454. [Google Scholar] [CrossRef]
- Hu, J.; Yao, W.; Chang, S.; You, L.; Zhao, M.; Chi-Keung Cheung, P.; Hileuskaya, K. Structural characterization and anti-photoaging activity of a polysaccharide from Sargassum fusiforme. Food Res. Int. 2022, 157, 111267. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Dias, M.; Madusanka, D.M.D.; Han, E.J.; Kim, M.J.; Heo, S.J.; Ahn, G. Fucoidan Fractionated from Sargassum coreanum via Step-Gradient Ethanol Precipitation Indicate Promising UVB-Protective Effects in Human Keratinocytes. Antioxidants 2021, 10, 347. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Heo, S.J.; Dias, M.; Madusanka, D.M.D.; Han, E.J.; Kim, M.J.; Sanjeewa, K.K.A.; Lee, K.; Ahn, G. (-)-Loliolide Isolated from Sargassum horneri Abate UVB-Induced Oxidative Damage in Human Dermal Fibroblasts and Subside ECM Degradation. Mar. Drugs 2021, 19, 435. [Google Scholar] [CrossRef]
- Wang, L.; Kim, H.S.; Je, J.G.; Fu, X.; Huang, C.; Ahn, G.; Oh, J.Y.; Sanjeewa, K.K.A.; Xu, J.; Gao, X.; et al. In Vitro and In Vivo Photoprotective Effects of (-)-Loliode Isolated from the Brown Seaweed, Sargassum horneri. Molecules 2021, 26, 6898. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Dias, M.; Madusanka, D.M.D.; Han, E.J.; Kim, M.J.; Jeon, Y.J.; Lee, K.; Cheong, S.H.; Han, Y.S.; Park, S.R.; et al. Human Keratinocyte UVB-Protective Effects of a Low Molecular Weight Fucoidan from Sargassum horneri Purified by Step Gradient Ethanol Precipitation. Antioxidants 2020, 9, 340. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.A.; Ahn, B.N.; Kong, C.S.; Kim, S.K. Protective effect of chromene isolated from Sargassum horneri against UV-A-induced damage in skin dermal fibroblasts. Exp. Dermatol. 2012, 21, 630–631. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Ahn, B.N.; Kong, C.S.; Kim, S.K. The chromene sargachromanol E inhibits ultraviolet A-induced ageing of skin in human dermal fibroblasts. Br. J. Dermatol. 2013, 168, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Hwang, P.A.; Phan, N.N.; Lu, W.J.; Ngoc Hieu, B.T.; Lin, Y.C. Low-molecular-weight fucoidan and high-stability fucoxanthin from brown seaweed exert prebiotics and anti-inflammatory activities in Caco-2 cells. Food Nutr. Res. 2016, 60, 32033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Liu, Y.; Cao, M.J.; Liu, G.M.; Chen, Q.; Sun, L.; Chen, H. Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria japonica. Carbohydr. Polym. 2017, 172, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Bi, D.; Yu, B.; Han, Q.; Lu, J.; White, W.L.; Lai, Q.; Cai, N.; Luo, W.; Gu, L.; Li, S.; et al. Immune Activation of RAW264.7 Macrophages by Low Molecular Weight Fucoidan Extracted from New Zealand Undaria pinnatifida. J. Agric. Food Chem. 2018, 66, 10721–10728. [Google Scholar] [CrossRef] [PubMed]
- Usov, A.; Bilan, M.I. Fucoidans—Sulfated polysaccharides of brown algae. Russ. Chem. Rev. 2009, 78, 785. [Google Scholar] [CrossRef]
- Dickinson, S.E.; Wondrak, G.T. TLR4-directed Molecular Strategies Targeting Skin Photodamage and Carcinogenesis. Curr. Med. Chem. 2018, 25, 5487–5502. [Google Scholar] [CrossRef]
- Janda, J.; Burkett, N.B.; Blohm-Mangone, K.; Huang, V.; Curiel-Lewandrowski, C.; Alberts, D.S.; Petricoin, E.F., III; Calvert, V.S.; Einspahr, J.; Dong, Z.; et al. Resatorvid-based Pharmacological Antagonism of Cutaneous TLR4 Blocks UV-induced NF-κB and AP-1 Signaling in Keratinocytes and Mouse Skin. Photochem. Photobiol. 2016, 92, 816–825. [Google Scholar] [CrossRef] [Green Version]
- Gwon, W.G.; Lee, M.S.; Kim, J.S.; Kim, J.I.; Lim, C.W.; Kim, N.G.; Kim, H.R. Hexane fraction from Sargassum fulvellum inhibits lipopolysaccharide-induced inducible nitric oxide synthase expression in RAW 264.7 cells via NF-κB pathways. Am. J. Chin. Med. 2013, 41, 565–584. [Google Scholar] [CrossRef]
- Joung, E.J.; Lee, M.S.; Choi, J.W.; Kim, J.S.; Shin, T.; Jung, B.M.; Yoon, N.Y.; Lim, C.W.; Kim, J.I.; Kim, H.R. Anti-inflammatory effect of ethanolic extract from Myagropsis myagroides on murine macrophages and mouse ear edema. BMC Complement. Altern. Med. 2012, 12, 171. [Google Scholar] [CrossRef] [Green Version]
- Joung, E.J.; Lee, M.S.; Choi, J.W.; Kim, J.S.; Shin, T.; Jung, B.M.; Kim, J.I.; Kim, H.R. Anti-inflammatory effects of phlorofucofuroeckol B-rich ethyl acetate fraction obtained from Myagropsis myagroides on lipopolysaccharide-stimulated RAW 264.7 cells and mouse edema. Int. Immunopharmacol. 2012, 14, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Joung, E.J.; Lee, B.; Gwon, W.G.; Shin, T.; Jung, B.M.; Yoon, N.Y.; Choi, J.S.; Oh, C.W.; Kim, H.R. Sargaquinoic acid attenuates inflammatory responses by regulating NF-κB and Nrf2 pathways in lipopolysaccharide-stimulated RAW 264.7 cells. Int. Immunopharmacol. 2015, 29, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Joung, E.J.; Cao, L.; Lee, B.; Gwon, W.G.; Park, S.H.; Kim, H.R. Sargahydroquinoic Acid, a Cyclooxygenase-2 Inhibitor, Attenuates Inflammatory Responses by Regulating NF-κB Inactivation and Nrf2 Activation in Lipopolysaccharide-Stimulated Cells. Inflammation 2021, 44, 2120–2131. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.J.; Ham, Y.M.; Yang, K.W.; Lee, N.H.; Hyun, C.G. Sargachromenol from Sargassum micracanthum inhibits the lipopolysaccharide-induced production of inflammatory mediators in RAW 264.7 macrophages. Sci. World J. 2013, 2013, 712303. [Google Scholar] [CrossRef] [Green Version]
- Je, J.G.; Lee, H.G.; Fernando, K.H.N.; Jeon, Y.J.; Ryu, B. Purification and Structural Characterization of Sulfated Polysaccharides Derived from Brown Algae, Sargassum binderi: Inhibitory Mechanism of iNOS and COX-2 Pathway Interaction. Antioxidants 2021, 10, 822. [Google Scholar] [CrossRef] [PubMed]
- Loden, M. Role of topical emollients and moisturizers in the treatment of dry skin barrier disorders. Am. J. Clin. Dermatol. 2003, 4, 771–788. [Google Scholar] [CrossRef]
- Li, Z.-y.; Yu, C.-H.; Lin, Y.-T.; Su, H.-L.; Kan, K.-W.; Liu, F.-C.; Chen, C.-T.; Lin, Y.-T.; Hsu, H.-F.; Lin, Y.-H. The Potential Application of Spring Sargassum glaucescens Extracts in the Moisture-Retention of Keratinocytes and Dermal Fibroblast Regeneration after UVA-Irradiation. Cosmetics 2019, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Jesumani, V.; Du, H.; Pei, P.; Aslam, M.; Huang, N. Comparative study on skin protection activity of polyphenol-rich extract and polysaccharide-rich extract from Sargassum vachellianum. PLoS ONE 2020, 15, e0227308. [Google Scholar] [CrossRef] [Green Version]
- Fernando, I.P.S.; Dias, M.; Madusanka, D.M.D.; Han, E.J.; Kim, M.J.; Heo, S.J.; Lee, K.; Cheong, S.H.; Ahn, G. Low molecular weight fucoidan fraction ameliorates inflammation and deterioration of skin barrier in fine-dust stimulated keratinocytes. Int. J. Biol. Macromol. 2021, 168, 620–630. [Google Scholar] [CrossRef]
- Shao, P.; Chen, X.; Sun, P. Improvement of antioxidant and moisture-preserving activities of Sargassum horneri polysaccharide enzymatic hydrolyzates. Int. J. Biol. Macromol. 2015, 74, 420–427. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Derm. Endocrinol. 2012, 4, 253–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kezic, S.; Kemperman, P.M.; Koster, E.S.; de Jongh, C.M.; Thio, H.B.; Campbell, L.E.; Irvine, A.D.; McLean, W.H.; Puppels, G.J.; Caspers, P.J. Loss-of-function mutations in the filaggrin gene lead to reduced level of natural moisturizing factor in the stratum corneum. J. Invest. Dermatol. 2008, 128, 2117–2119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, E.; Chang, B.; Kim, D.; Cho, H.; Kim, S. Melanogenesis inhibitory effect of aerial part of Pueraria thunbergiana in vitro and in vivo. Arch. Dermatol. Res. 2015, 307, 57–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quah, C.C.; Kim, K.H.; Lau, M.S.; Kim, W.R.; Cheah, S.H.; Gundamaraju, R. Pigmentation and dermal conservative effects of the astonishing algae Sargassum polycystum and Padina tenuis on guinea pigs, human epidermal melanocytes (HEM) and Chang cells. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Azam, M.S.; Kwon, M.; Choi, J.; Kim, H.R. Sargaquinoic acid ameliorates hyperpigmentation through cAMP and ERK-mediated downregulation of MITF in α-MSH-stimulated B16F10 cells. Biomed. Pharmacother. 2018, 104, 582–589. [Google Scholar] [CrossRef]
- Azam, M.S.; Kim, J.I.; Choi, C.G.; Choi, J.; Lee, B.; Kim, H.R. Sargahydroquinoic Acid Suppresses Hyperpigmentation by cAMP and ERK1/2-Mediated Downregulation of MITF in α-MSH-Stimulated B16F10 Cells. Foods 2021, 10, 2254. [Google Scholar] [CrossRef]
- Wang, L.; Oh, J.-Y.; Kim, Y.-S.; Lee, H.-G.; Lee, J.-S.; Jeon, Y.-J. Anti-photoaging and anti-melanogenesis effects of fucoidan isolated from Hizikia fusiforme and its underlying mechanisms. Mar. Drugs 2020, 18, 427. [Google Scholar] [CrossRef]
- Takashi, H. Cosmetic Potential of Boiled Water of Hijiki (Sargassum fusiforme) Grown in the Ocean in Okinawa, Japan. Research Square. Available online: https://www.researchsquare.com/article/rs-278127/v1 (accessed on 12 March 2021). [CrossRef]
- Azam, M.S.; Joung, E.-J.; Choi, J.; Kim, H.-R. Ethanolic extract from Sargassum serratifolium attenuates hyperpigmentation through CREB/ERK signaling pathways in α-MSH-stimulated B16F10 melanoma cells. J. Appl. Phycol. 2017, 29, 2089–2096. [Google Scholar] [CrossRef]
Species | Bioactive Compounds | Biological Properties | References |
---|---|---|---|
S. horneri | phlorotannins polysaccharide (alginates) plastoquinone (sargachromenol) monogalactosyldiacyl-glycerols proteoglycans | antioxidant anti-photoaging, anti-inflammatory anti-obesity, anti-atopic dermatitis skin barrier repair | [15,16,17,18,19] |
S. fusiforme | plastoquinones polysaccharide (alginates) carotenoid (fucoxanthin) lectin glycyrrhizin fucosterol saringosterol | antioxidant anti-photoaging, anti-inflammatory anti-obesity, antidiabetic activity anti-melanogenesis, skin barrier repair | [20,21,22,23,24] |
S. muticum | phlorotannins meroterpenoids polysaccharides (fucoidans, alginate, laminarin) | anti-winkle anti-obesity, anti-atopic dermatitis skin barrier repair | [25,26,27,28] |
S. pallidum(S. confusum) | polysaccharides (alginates, fucoidan) oligosaccharides | anti-photoaging antidiabetic activity, skin barrier repair | [29,30] |
S. siliquastrum | chromanols (sargachromanol D, E, K) Sulfated polysaccharide (fucoidan) carotenoid (fucoxanthin) | antioxidant anti-photoaging, anti-melanogenesis | [31,32] |
S. thunbergii | phlorotannins polysaccharides sulfated galactofucan isopentadiene | antioxidant anti-obesity, anti-cancer anti-melanogenesis | [33,34,35,36] |
S. fulvellum | phlorotannins (fucols, phlorethols, fucophlorethols), polysaccharides (fucoidan, alginates, laminaran), carotenoid (fucoxanthin) | antioxidant anti-inflammatory | [37,38] |
S. polycystum | polysaccharides (fucoidan, alginates) | antioxidant antidiabetic activity, anti-melanogenesis anti-cancer, antibacterial | [39,40,41,42,43] |
E. stolonifera | phlorotannin (dieckol, eckol, phlorofucofuroeckol A, B) | antioxidant anti-inflammatory anti-obesity anti-cancer | [44,45,46] |
Type of Sargassum | Solvent | Model | Conc. | Effects | Active Component | Ref. |
---|---|---|---|---|---|---|
S. muticum | 80% EtOH | Male HR-1 strain hairless mice | 100 mg/kg body weight | ↓ average length and depth of wrinkles ↓ epidermal thickness ↑ collagen bundle formation | ND | [25] |
HaCaT cells | ND | ↓ collagen degradation | ||||
S. cristafolium | EtOH | FemaleBALBL/c mice | 20 μM | ↓ wrinkles and desquamation ↑ skin healing process ↑ antibacterial activity | fucoxanthin | [47] |
S. siliquastrum | chloroform and MeOH 1:1 | HaCaT cells | 25–100 μg/mL | ↓ oxidative damage ↓ apoptosis | fucoidan | [31] |
S. fusiforme | 80% EtOH | HaCaT cells | 31.25–125 μg/mL | ↓ oxidative damage ↓ inflammatory responses ↓ collagen degradation | polysaccharides | [48] |
EtOH | HDF cells | 25–100 μg/mL | ↓ oxidative damage ↑ cell viability ↑ collagen synthesis | sulfated polysaccharides | [20] | |
S. confusum | chloroform and MeOH 1:1 | HaCaT cells | 25–100 μg/mL | ↓ oxidative damage ↑ cell viability ↓ stratum corneum hydration damage | fucoidan | [29] |
S. coreanum | EtOH | HaCaT cells | 25–100 μg/mL | ↓ oxidative damage ↓ apoptosis | fucoidan | [49] |
S. horneri | 80% MeOH | HaCaT cells | 31.6–125 μg/mL | ↓ oxidative damage ↑ cell viability ↓ apoptosis | HTT, apo-9′-fucoxanthinone | [15] |
70% EtOH | HDF cells | 50–200 μM | ↓ oxidative damage ↓ apoptosis ↓ inflammatory responses ↓ degradation of ECM components | HTT | [50] | |
80% MeOH | HaCaT cells | 6.25–25 μg/mL | ↓ oxidative damage ↑ cell viability ↓ apoptosis | (-)-loliode | [51] | |
HDF cells | ↓ oxidative damage ↑ collagen synthesis | |||||
zebrafish | ↓ oxidative damage | |||||
chloroform and MeOH 1:1 | HaCaT cells | 25–100 μg/mL | ↓ oxidative damage ↑ cell viability ↓ apoptosis | fucoidan | [52] | |
ND | HDF cells | 5–20 μM | ↓ skin cell damage ↓ collagen degradation | sargachromenol | [53] | |
MeOH | HDF cells | 5–20 μM | ↓ oxidative damage ↓ collagen degradation | sargachromanol E | [54] |
Type of Sargassum | Solvent | Model | Conc. | Effects | Active Component | Ref. |
---|---|---|---|---|---|---|
S. fulvellum | 95% EtOH | HaCaT cells | 30–100 μg/mL | ↑ antioxidant defenses ↓ inflammatory responses | ethyl acetate fraction | [38] |
BALB/c mice | 3–10 μg | |||||
96% EtOH | RAW264.7 cells | 10–50 μg/mL | ↓ inflammatory responses | hexane fraction | [61] | |
ICR mice | 45 μg/ear | ↓ mouse ears edema | ||||
S. horneri | 70% EtOH | HaCaT cells | 25–100 μg/mL | ↓ inflammatory responses ↓ oxidative damage | alginic acid | [16] |
M. myagroides | 96% EtOH | RAW264.7 cells | 10–100 μg/mL | ↓ inflammatory responses | 6,6′-bieckol | [62] |
ICR mice | 90 μg/ear | ↓ mouse ears edema | ||||
96% EtOH | RAW264.7 cells | 25–100 μg/mL | ↓ inflammatory responses | phlorofucofuroeckol B | [63] | |
ICR mice | 90 μg/ear | ↓ mouse ears edema | ||||
96% EtOH | RAW264.7 cells | 0.3–1.2 μM | ↓ inflammatory responses | sargaquinoic acid | [64] | |
E. stolonifera | 96% EtOH | RAW264.7 cells | 50–200 μg/mL | ↓ inflammatory responses | phlorofucofuroeckol A and B | [44] |
S. macrocarpum | 80% EtOH | RAW264.7 cells | 0.4–0.8 μM | ↓ pro-inflammatory activity ↓ oxidative damage | sargahydroquinoic acid | [65] |
mice | 10–15 mg/mL | ↓ pro-inflammatory activity | ||||
S. fusiforme | EtOH | RAW264.7 cells | 25–100 μg/mL | ↓ inflammatory responses | sulfated polysaccharides | [24] |
S. micracanthum | 80% EtOH | RAW264.7 cells | 12.5–100 μM | ↓ inflammatory responses | sargachromenol | [66] |
S. binderi | 95% EtOH | RAW264.7 cells | 25–100 μg/mL | ↓ cell death ↓ oxidative stress ↓ inflammatory activity | sulfated polysaccharides | [67] |
zebrafish larvae |
Type of Sargassum | Solvent | Model | Conc. | Effects | Active Component | Ref. |
---|---|---|---|---|---|---|
S. muticum | EtOH:water (70:30) | enzyme activity test | 200 μg/mL | ↓ collagenase activity ↓ hyaluronidase activity | ethyl acetate fraction | [28] |
S. vachellianum | 90% EtOH | enzyme activity test | 200–1000 μg/mL | ↑ moisture absorption ↑ moisture retention rate | polyphenol, polysaccharide | [70] |
S. horneri | 70% EtOH | HaCaT cells | 31.3–125 μg/mL | ↑ skin moisture ↓ cutaneous inflammation ↓ acidification of stratum corneum ↓ skin dryness | polyphenol | [19] |
95% EtOH | 12.5–50 μg/mL | fucoidan | [71] | |||
60% EtOH | ND | ND | ↑ moisture absorption ↑ moisture retention rate | polysaccharide | [72] | |
S. confusum | Chloroform:MeOH (1:1) | HaCaT cells | 25–100 μg/mL | ↓ skin barrier dysfunction ↓ moisturization defects | fucoidan | [29] |
S. glaucescens | water | human primary epidermal keratinocytes | 0.03125 mg/mL | ↑ retention of moisture | ND | [69] |
S. fusiforme | 95% EtOH | hairless Kun Ming mice | 200–600 mg/kg | ↓ skin moisture loss ↑ immunological function ↓ thickness of epidermis and dermis ↓ sebaceous hyperplasia ↓ dermal collagen fibers symptoms | polysaccharides | [23] |
Type of Sargassum | Solvent | Model | Conc. | Effects | Active Component | Ref. |
---|---|---|---|---|---|---|
S. polycystum | 95% EtOH | B16F10 cells | 100–500 µg/mL | ↓ intracellular tyrosinase activity ↓ melanin contents | hexane fraction | [41] |
Guinea pig | 130 µg/mL | ↓ pigmentation | [76] | |||
72 µg/mL | ↓ pigmentation | ND | ||||
S. serratifolium | 70% EtOH | B16F10 cells | 1–4 µM | ↓ intracellular tyrosinase activity ↓ melanin contents | sargahydroquinoic acid, sargaquinoic acid | [77,78] |
S. thunbergii | 53.5% EtOH | B16F10 cells | 1–2 mg/mL | ↑ mushroom tyrosinase inhibition activity ↓ melanogenic activity | ND | [36] |
S. fusiforme | EtOH | B16F10 cells | 12.5–50 µg/mL | ↓ intracellular tyrosinase activity ↓ melanin contents | sulfated polysaccharide | [24] |
25–100 µg/mL | ↑ mushroom tyrosinase inhibition activity ↓ melanin contents | fucoidan | [79] | |||
hexane and dichloromethane 1:1 | 3D human skin models | 5–20 mg/mL | ↑ mushroom tyrosinase inhibition activity ↓ pigmentation | MeOH fraction | [80] | |
S. siliquastrum | Water | B16F10 cells | 100 µg/mL | ↑ mushroom tyrosinase inhibition activity ↓ intracellular tyrosinase activity ↓ melanin contents | ND | [32] |
Zebrafish embryo |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.-K.; Ryu, H.; Lee, J.Y.; Jeong, H.H.; Baek, J.; Van, J.Y.; Kim, M.-J.; Jung, W.-K.; Lee, B. Potential Beneficial Effects of Sargassum spp. in Skin Aging. Mar. Drugs 2022, 20, 540. https://doi.org/10.3390/md20080540
Lee M-K, Ryu H, Lee JY, Jeong HH, Baek J, Van JY, Kim M-J, Jung W-K, Lee B. Potential Beneficial Effects of Sargassum spp. in Skin Aging. Marine Drugs. 2022; 20(8):540. https://doi.org/10.3390/md20080540
Chicago/Turabian StyleLee, Min-Kyeong, Heeyeon Ryu, Ji Yun Lee, Hyeon Hak Jeong, Jiwon Baek, Ji Yun Van, Myeong-Jin Kim, Won-Kyo Jung, and Bonggi Lee. 2022. "Potential Beneficial Effects of Sargassum spp. in Skin Aging" Marine Drugs 20, no. 8: 540. https://doi.org/10.3390/md20080540
APA StyleLee, M. -K., Ryu, H., Lee, J. Y., Jeong, H. H., Baek, J., Van, J. Y., Kim, M. -J., Jung, W. -K., & Lee, B. (2022). Potential Beneficial Effects of Sargassum spp. in Skin Aging. Marine Drugs, 20(8), 540. https://doi.org/10.3390/md20080540