Exploring the Antibiotic Production Potential of Heterotrophic Bacterial Communities Isolated from the Marine Sponges Crateromorpha meyeri, Pseudaxinella reticulata, Farrea similaris, and Caulophacus arcticus through Synergistic Metabolomic and Genomic Analyses
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Phylogenetic Analysis of Sponge-Associated Bacteria
2.2. Antimicrobial Activity Assessment Based on a Minimum Inhibitory Concentration Assay
2.3. Bioassay-Guided Fractionation and Mass Spectrometric Analysis
2.4. Thorough Functional Genome Annotation of a Novel Isolate of Qipengyuania pacifica NZ-96T
2.5. Subsystem and Functional-Role-Based Comparative Genomics of Qipengyuania pacifica NZ-96T
2.6. Discovering the Genomic Potential of Qipengyuania pacifica NZ-96T for Encoding Bioactive Secondary Metabolites
3. Materials and Methods
3.1. Sponge Sample Collection
3.2. Bacterial Culturing
3.3. Phylogenetic Analysis of Isolated Strains
3.4. Bacterial Extract Preparation and Antimicrobial Assay
3.5. Bioassay-Guided Fractionation and Mass Spectrometric Analysis
3.6. Genome Sequencing, Functional Annotation, and Mining of the Novel Sponge Isolate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghosh, S.; Sarkar, T.; Pati, S.; Kari, Z.A.; Edinur, H.A.; Chakraborty, R. Novel Bioactive Compounds from Marine Sources as a Tool for Functional Food Development. Front. Mar. Sci. 2022, 9, 76. [Google Scholar] [CrossRef]
- Graça, A.P.; Bondoso, J.; Gaspar, H.; Xavier, J.R.; Monteiro, M.C.; De La Cruz, M.; Oves-Costales, D.; Vicente, F.; Lage, O.M. Antimicrobial Activity of Heterotrophic Bacterial Communities from the Marine Sponge Erylus Discophorus (Astrophorida, Geodiidae). PLoS ONE 2013, 8, e78992. [Google Scholar] [CrossRef] [Green Version]
- Matobole, R.M.; Van Zyl, L.J.; Parker-Nance, S.; Davies-Coleman, M.T.; Trindade, M. Antibacterial Activities of Bacteria Isolated from the Marine Sponges Isodictya Compressa and Higginsia Bidentifera Collected from Algoa Bay, South Africa. Mar. Drugs 2017, 15, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Soest, R.W.M.; Boury-Esnault, N.; Vacelet, J.; Dohrmann, M.; Erpenbeck, D.; de Voogd, N.J.; Santodomingo, N.; Vanhoorne, B.; Kelly, M.; Hooper, J.N.A. Global Diversity of Sponges (Porifera). PLoS ONE 2012, 7, e35105. [Google Scholar] [CrossRef] [PubMed]
- Biotechnological Potential of Marine Sponges on JSTOR. Available online: https://www.jstor.org/stable/24108698 (accessed on 10 May 2022).
- Bhatnagar, I.; Kim, S.K. Immense Essence of Excellence: Marine Microbial Bioactive Compounds. Mar. Drugs 2010, 8, 2673. [Google Scholar] [CrossRef] [Green Version]
- Bibi, F.; Faheem, M.; Azhar, E.; Yasir, M.; Alvi, S.; Kamal, M.; Ullah, I.; Naseer, M. Bacteria from Marine Sponges: A Source of New Drugs. Curr. Drug Metab. 2016, 18, 11–15. [Google Scholar] [CrossRef]
- Blunt, J.W.; Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Michèle, M.; Prinsep, R. Marine Natural Products. Nat. Prod. Rep. 2018, 18, 1R–49R. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.G. Panning for Chemical Gold: Marine Bacteria as a Source of New Therapeutics. Trends Biotechnol. 2009, 27, 45–52. [Google Scholar] [CrossRef]
- Taylor, M.W.; Radax, R.; Steger, D.; Wagner, M. Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential. Microbiol. Mol. Biol. Rev. 2007, 71, 295–347. [Google Scholar] [CrossRef] [Green Version]
- World Porifera Database—Species. Available online: https://www.marinespecies.org/porifera/porifera.php?p=sourcedetails&id=7228 (accessed on 11 May 2022).
- WoRMS—World Register of Marine Species—Pseudaxinella reticulata (Ridley & Dendy, 1886). Available online: https://www.marinespecies.org/aphia.php?p=taxdetails&id=244451 (accessed on 13 May 2022).
- WoRMS—World Register of Marine Species—Farrea Bowerbank. 1862. Available online: https://www.marinespecies.org/aphia.php?p=taxdetails&id=132107 (accessed on 11 May 2022).
- WoRMS—World Register of Marine Species—Caulophacus Schulze. 1886. Available online: https://www.marinespecies.org/aphia.php?p=taxdetails&id=132112 (accessed on 11 May 2022).
- Jamison, M.T.; Molinski, T.F. Antipodal Crambescin A2 Homologues from the Marine Sponge Pseudaxinella Reticulata. Antifungal Structure-Activity Relationships. J. Nat. Prod. 2015, 78, 557–561. [Google Scholar] [CrossRef]
- Vynne, N.G.; Mansson, M.; Gram, L. Gene Sequence Based Clustering Assists in Dereplication of Pseudoalteromonas Luteoviolacea Strains with Identical Inhibitory Activity and Antibiotic Production. Mar. Drugs 2012, 10, 1729. [Google Scholar] [CrossRef] [PubMed]
- Sivasubramanian, K.; Ravichandran, S.; Vijayapriya, M. Antagonistic Activity of Marine Bacteria Pseudoalteromonas Tunicata against Microbial Pathogens. Afr. J. Microbiol. Res. 2011, 5, 562–567. [Google Scholar] [CrossRef]
- Isnansetyo, A.; Kamei, Y. Bioactive Substances Produced by Marine Isolates of Pseudomonas. J. Ind. Microbiol. Biotechnol. 2009, 36, 1239–1248. [Google Scholar] [CrossRef] [PubMed]
- Jeganathan, P.; Rajasekaran, K.M.; Asha Devi, N.K.; Karuppusamy, S. Antimicrobial Activity and Characterization of Marine Bacteria. Indian J. Pharm. Biol. Res. 2013, 1, 38–44. [Google Scholar] [CrossRef]
- Velmurugan, S.; Raman, K.; Thanga Viji, V.; Donio, M.B.S.; Adlin Jenifer, J.; Babu, M.M.; Citarasu, T. Screening and Characterization of Antimicrobial Secondary Metabolites from Halomonas Salifodinae MPM-TC and Its in Vivo Antiviral Influence on Indian White Shrimp Fenneropenaeus Indicus against WSSV Challenge. J. King Saud Univ.-Sci. 2013, 25, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Fariq, A.; Yasmin, A.; Jamil, M. Production, Characterization and Antimicrobial Activities of Bio-Pigments by Aquisalibacillus Elongatus MB592, Salinicoccus Sesuvii MB597, and Halomonas Aquamarina MB598 Isolated from Khewra Salt Range, Pakistan. Extremophiles 2019, 23, 435–449. [Google Scholar] [CrossRef]
- Tareen, S.; Risdian, C.; Müsken, M.; Wink, J. Qipengyuania Pacifica sp. nov., a Novel Carotenoid-Producing Marine Bacterium of the Family Erythrobacteraceae, Isolated from Sponge (Demospongiae), and Antimicrobial Potential of Its Crude Extract. Diversity 2022, 14, 295. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, W.; Qin, X.; Ju, J. Genome Sequencing of Streptomyces Olivaceus SCSIO T05 and Activated Production of Lobophorin CR4 via Metabolic Engineering and Genome Mining. Mar. Drugs 2019, 17, 593. [Google Scholar] [CrossRef] [Green Version]
- Shao, M.; Ma, J.; Li, Q.; Ju, J. Identification of the Anti-Infective Aborycin Biosynthetic Gene Cluster from Deep-Sea-Derived Streptomyces sp. SCSIO ZS0098 Enables Production in a Heterologous Host. Mar. Drugs 2019, 17, 127. [Google Scholar] [CrossRef] [Green Version]
- Overbeek, R.; Begley, T.; Butler, R.M.; Choudhuri, J.V.; Chuang, H.Y.; Cohoon, M.; de Crécy-Lagard, V.; Diaz, N.; Disz, T.; Edwards, R.; et al. The Subsystems Approach to Genome Annotation and Its Use in the Project to Annotate 1000 Genomes. Nucleic Acids Res. 2005, 33, 5691–5702. [Google Scholar] [CrossRef] [Green Version]
- Massova, I.; Mobashery, S. Kinship and Diversification of Bacterial Penicillin-Binding Proteins and Beta-Lactamases. Antimicrob. Agents Chemother. 1998, 42, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Relationship between Mutations in the gyrA Gene and Quinolone Resistance in Clinical Isolates of Corynebacterium striatum and Corynebacterium amycolatum—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1087617/ (accessed on 26 May 2022).
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Medema, M.H.; Kottmann, R.; Yilmaz, P.; Cummings, M.; Biggins, J.B.; Blin, K.; De Bruijn, I.; Chooi, Y.H.; Claesen, J.; Coates, R.C.; et al. Minimum Information about a Biosynthetic Gene Cluster. Nat. Chem. Biol. 2015, 11, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S.Y.; Medema, M.H.; Weber, T. AntiSMASH 5.0: Updates to the Secondary Metabolite Genome Mining Pipeline. Nucleic Acids Res. 2019, 47, W81–W87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, R.A.; Wilson, M.M.; Guss, A.M.; Metcalf, W.W. Genetic Analysis of Pigment Biosynthesis in Xanthobacter Autotrophicus Py2 Using a New, Highly Efficient Transposon Mutagenesis System That Is Functional in a Wide Variety of Bacteria. Arch. Microbiol. 2002, 178, 193–201. [Google Scholar] [CrossRef]
- Graça, A.P.; Viana, F.; Bondoso, J.; Correia, M.I.; Gomes, L.; Humanes, M.; Reis, A.; Xavier, J.R.; Gaspar, H.; Lage, O.M. The Antimicrobial Activity of Heterotrophic Bacteria Isolated from the Marine Sponge Erylus deficiens (Astrophorida, Geodiidae). Front. Microbiol. 2015, 6, 389. [Google Scholar] [CrossRef]
- Tareen, S.; Risdian, C.; Müsken, M.; Wink, J. Alteriqipengyuania Abyssalis sp. nov., a Novel Member of the Class Alphaproteobacteria Isolated from Sponge, and Emended Description of the Genus Alteriqipengyuania. Diversity 2021, 13, 670. [Google Scholar] [CrossRef]
- Esteves, A.I.S.; Amer, N.; Nguyen, M.; Thomas, T. Sample Processing Impacts the Viability and Cultivability of the Sponge Microbiome. Front. Microbiol. 2016, 7, 499. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.H.; Ha, S.M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A Taxonomically United Database of 16S RRNA Gene Sequences and Whole-Genome Assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Khodamoradi, S.; Hahnke, R.L.; Mast, Y.; Schumann, P.; Kämpfer, P.; Steinert, M.; Rückert, C.; Surup, F.; Rohde, M.; Wink, J. Streptomonospora Litoralis sp. nov., a Halophilic Thiopeptides Producer Isolated from Sand Collected at Cuxhaven Beach. Antonie Van Leeuwenhoek 2021, 114, 1483–1496. [Google Scholar] [CrossRef]
- Dictionary of Natural Products 30.2 Chemical Search. Available online: https://dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml (accessed on 25 September 2021).
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long Sequencing Reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, R.K.; Bartels, D.; Best, A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations Using Subsystems Technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medema, M.H.; Blin, K.; Cimermancic, P.; De Jager, V.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R. AntiSMASH: Rapid Identification, Annotation and Analysis of Secondary Metabolite Biosynthesis Gene Clusters in Bacterial and Fungal Genome Sequences. Nucleic Acids Res. 2011, 39 (Suppl. S2), W339–W346. [Google Scholar] [CrossRef] [PubMed]
Isolate | Closest Strain | Accession No. | Similarity | Genera | Phylum/Class |
---|---|---|---|---|---|
NZ-01 | Psychrobacter celer SW-238 | NR043225 | 99.81% | Psychrobacter | Gammaproteobacteria |
NZ-02 | Mesonia mobilis KMM 6059 | NR043758 | 99.17% | Mesonia | Bacteroidetes |
NZ-03 | Micromonospora chokoriensis 2-19(6) | NR041349 | 99.42% | Micromonospora | Actinobacteria |
NZ-04 | Zunongwangia profunda SM-A87 | NR074656 | 99.64% | Zunongwangia | Bacteroidetes |
NZ-05 | Micromonospora chokoriensis 2-19(6) | NR041349 | 99.32% | Micromonospora | Actinobacteria |
NZ-06 | Alteriqipengyuania lutimaris S-5 | NR134028 | 98.65% | Alteriqipengyuania | Alphaproteobacteria |
NZ-07 | Alteriqipengyuania lutimaris S-5 | NR134028 | 99.04% | Alteriqipengyuania | Alphaproteobacteria |
NZ-08 | Paenisporosarcina quisquiliarum SK55 | NR043720 | 99.61% | Paenisporosarcina | Firmicutes |
NZ-09 | Staphylococcus edaphicus CCN 8730 | NR156818 | 99.62% | Staphylococcus | Firmicutes |
NZ-10 | Alteriqipengyuania lutimaris S-5 | NR134028 | 98.88 | Alteriqipengyuania | Alphaproteobacteria |
NZ-11 | Alteriqipengyuania lutimaris S-5 | NR134028 | 99.11% | Alteriqipengyuania | Alphaproteobacteria |
NZ-12 | Zunongwangia profunda SM-A87 | NR074656 | 99.52% | Zunongwangia | Bacteroidetes |
NZ-13 | Qipengyuania pelagi UST081027-248 | NR117936 | 99.02% | Qipengyuania | Alphaproteobacteria |
NZ-14 | Psychrobacter submarinus KMM225 | NR025457 | 99.29% | Psychrobacter | Gammaproteobacteria |
NZ-15 | Staphylococcus saprophyticus NBRC46 | NR114090 | 99.71% | Staphylococcus | Firmicutes |
NZ-16 | Staphylococcus saprophyticus NBRC46 | NR114090 | 99.62% | Staphylococcus | Firmicutes |
NZ-17 | Alteriqipengyuania lutimaris S-5 | NR134028 | 98.98% | Alteriqipengyuania | Alphaproteobacteria |
NZ-18 | Qipengyuania pelagi UST081027-248 | NR117936 | 99.21% | Qipengyuania | Alphaproteobacteria |
NZ-19 | Psychrobacter celer SW-238 | NR043225 | 99.23% | Psychrobacter | Gammaproteobacteria |
NZ-20 | Psychrobacter submarinus KMM225 | NR025457 | 99.13% | Psychrobacter | Gammaproteobacteria |
NZ-21 | Mesonia mobilis KMM 6059 | NR043758 | 99.15% | Mesonia | Bacteroidetes |
NZ-22 | Halomonas profundus AT1214 | NR114956 | 98.58% | Halomonas | Gammaproteobacteria |
NZ-23 | Qipengyuania citrea 35F/1 | NR028741 | 99.09% | Qipengyuania | Alphaproteobacteria |
NZ-24 | Halomonas profundus AT1214 | NR114956 | 98.71% | Halomonas | Gammaproteobacteria |
NZ-25 | Qipengyuania citrea 35F/1 | NR028741 | 99.63% | Qipengyuania | Alphaproteobacteria |
NZ-26 | Halmonastitanicae BH1 | NR117300 | 98.82% | Halomonas | Gammaproteobacteria |
NZ-27 | Halomonas titanicae BH1 | NR117300 | 98.64% | Halomonas | Gammaproteobacteria |
NZ-28 | Halomonas titanicae BH1 | NR117300 | 98.77% | Halomonas | Gammaproteobacteria |
NZ-29 | Alteriqipengyuania lutimaris S-5 | NR134028 | 99.23% | Alteriqipengyuania | Alphaproteobacteria |
NZ-30 | Qipengyuania citrea 35F/1 | NR028741 | 99.62% | Qipengyuania | Alphaproteobacteria |
NZ-31 | Microbacterium marytypicum DSM12512 | NR114986 | 99.43% | Microbacterium | Actinobacteria |
NZ-32 | Mesonia mobilis KMM 6059 | NR043758 | 99.17% | Mesonia | Bacteroidetes |
NZ-33 | Halomonas titanicae BH1 | NR117300 | 98.81% | Halomonas | Gammaproteobacteria |
NZ-34 | Qipengyuania citrea 35F/1 | NR028741 | 99.72% | Qipengyuania | Alphaproteobacteria |
NZ-35 | Qipengyuania citrea 35F/1 | NR028741 | 99.63% | Qipengyuania | Alphaproteobacteria |
NZ-36 | Roseovarius nubinhibens ISM | NR028728 | 100% | Roseovarius | Alphaproteobacteria |
NZ-37 | Qipengyuania citrea 35F/1 | NR028741 | 99.53% | Qipengyuania | Alphaproteobacteria |
NZ-38 | Roseovarius nubinhibens ISM | NR028728 | 99.87% | Roseovarius | Alphaproteobacteria |
NZ-39 | Maribacter dokdonensis DSW-8 | NR043294 | 99.71% | Maribacter | Bacteroidetes |
NZ-40 | Qipengyuania citrea 35F/1 | NR028741 | 99.45% | Qipengyuania | Alphaproteobacteria |
NZ-41 | Halomonas profundus AT1214 | NR114956 | 98.72% | Halomonas | Gammaproteobacteria |
NZ-42 | Joostella marina En5 | NR044346 | 99.90% | Joostella | Bacteroidetes |
NZ-43 | Pseudoalteromonas spongiae UST723 | NR043172 | 99.25% | Pseudoalteromonas | Gammaproteobacteria |
NZ-44 | Bacillus hwajnpoensis SW-72 | AF541966 | 99.91% | Bacillus | Firmicutes |
NZ-45 | Salinicola salarius M27 | NR042490 | 99.35% | Salinicola | Gammaproteobacteria |
NZ-46 | Bacillus hwajnpoensis SW-72 | AF541966 | 99.72% | Bacillus | Firmicutes |
NZ-47 | Pseudomonas zhaodongensis STS-21 | NR134795 | 99.32% | Pseudomonas | Gammaproteobacteria |
NZ-48 | Joostella marina En5 | NR044346 | 99.85% | Joostella | Bacteroidetes |
NZ-49 | Pseudoalteromonas spongiae UST723 | NR043172 | 99.01% | Pseudoalteromonas | Gammaproteobacteria |
NZ-50 | Pseudoalteromonas spongiae UST723 | NR043172 | 99.25% | Pseudoalteromonas | Gammaproteobacteria |
NZ-51 | Salegentibacter mishustinae NBR100592 | NR113918 | 99.59% | Salegentibacter | Bacteroidetes |
NZ-52 | Halomonas axialensis Althf1 | NR027219 | 99.90% | Halomonas | Gammaproteobacteria |
NZ-53 | Sulfitobacter pontiacus ChLG-10 | NR026418 | 99.61% | Sulfitobacter | Alphaproteobacteria |
NZ-54 | Qipengyuania citrea 35F/1 | NR028741 | 99.56% | Qipengyuania | Alphaproteobacteria |
NZ-55 | Tritonibacter mobilis NBRC101030 | NR041454 | 99.90% | Tritonibacter | Alphaproteobacteria |
NZ-56 | Qipengyuania pelagi UST081027-248 | NR117936 | 98.86% | Qipengyuania | Alphaproteobacteria |
NZ-57 | Bacillus hwajnpoensis SW-72 | AF541966 | 99.63% | Bacillus | Firmicutes |
NZ-58 | Erythrobacter aureus strain YH-07 | NR169452 | 99.05% | Erythrobacter | Alphaproteobacteria |
NZ-59 | Mesonia mobilis KMM 6059 | NR043758 | 99.26% | Mesonia | Bacteroidetes |
NZ-60 | Sulfitobacter pontiacus ChLG-10 | NR026418 | 99.72% | Sulfitobacter | Alphaproteobacteria |
NZ-61 | Sulfitobacter pontiacus ChLG-10 | NR026418 | 99.70% | Sulfitobacter | Alphaproteobacteria |
NZ-62 | Tritonibacter mobilis NBRC101030 | NR041454 | 99.56% | Tritonibacter | Alphaproteobacteria |
NZ-63 | Pseudoalteromonas tetraodonis 458 | NR114547 | 100% | Pseudoalteromonas | Gammaproteobacteria |
NZ-64 | Tritonibacter mobilis NBRC101030 | NR041454 | 99.81% | Tritonibacter | Alphaproteobacteria |
NZ-65 | Bacillus hwajnpoensis SW-72 | AF541966 | 99.74% | Bacillus | Firmicutes |
NZ-66 | Marinobacter hydrocarbonoclasticus RAD | MH725589 | 99.81% | Marinobacter | Gammaproteobacteria |
NZ-67 | Pseudoalteromonas spiralis Te-2-2 | NR114801 | 99.81% | Pseudoalteromonas | Gammaproteobacteria |
NZ-68 | Qipengyuania citrea 35F/1 | NR028741 | 99.63% | Qipengyuania | Alphaproteobacteria |
NZ-69 | Pseudomonas zhaodongensis STS21 | NR134795 | 99.35% | Pseudomonas | Gammaproteobacteria |
NZ-70 | Pseudoalteromonas spiralis Te-2-2 | NR114801 | 99.77% | Pseudoalteromonas | Gammaproteobacteria |
NZ-71 | Mesonia mobilis KMM 6059 | NR043758 | 99.42% | Mesonia | Bacteroidetes |
NZ-72 | Kangiella japonica KMM 3899 | NR112923 | 99.41% | Kangiella | Gammaproteobacteria |
NZ-73 | Psychrobacter submarinus KMM 225 | NR025457 | 99.29% | Psychrobacter | Gammaproteobacteria |
NZ-74 | Qipengyuania citrea 35F/1 | NR028741 | 99.58% | Qipengyuania | Alphaproteobacteria |
NZ-75 | Maribacter dokdonensis DSW-8 | NR043294 | 99.29% | Maribacter | Bacteroidetes |
NZ-76 | Qipengyuania pelagi UST081027-248 | NR117936 | 99.04% | Qipengyuania | Alphaproteobacteria |
NZ-77 | Kangiella japonica KMM 3899 | NR112923 | 99.63% | Kangiella | Gammaproteobacteria |
NZ-78 | Joostella marina En5 | NR044346 | 99.91% | Joostella | Bacteroidetes |
NZ-79 | Tritonibacter mobilis NBRC101030 | NR041454 | 99.92% | Tritonibacter | Alphaproteobacteria |
NZ-80 | Halomonas axialensis Althf1 | NR027219 | 99.64% | Halomonas | Gammaproteobacteria |
NZ-81 | Bacillus thuringiensis IAM 12077 | NR043403 | 99.71% | Bacillus | Firmicutes |
NZ-82 | Psychrobacter celer SW-238 | NR043225 | 99.78% | Psychrobacter | Gammaproteobacteria |
NZ-83 | Bacillus dakarensis Marseille-P3515 | NR147382 | 99.70% | Bacillus | Firmicutes |
NZ-84 | Bacillus dakarensis Marseille-P3515 | NR147382 | 99.58% | Bacillus | Firmicutes |
NZ-85 | Qipengyuania pelagi UST081027-248 | NR117936 | 99.12% | Qipengyuania | Alphaproteobacteria |
NZ-86 | Dietzia kunjamensis DSM 44907 | NR116684 | 99.90% | Dietzia | Actinobacteria |
NZ-87 | Dietzia kunjamensis DSM 44907 | NR116684 | 100% | Dietzia | Actinobacteria |
NZ-88 | Zunongwangia profunda SM-A87 | NR074656 | 99.79% | Zunongwangia | Bacteroidetes |
NZ-89 | Qipengyuania pelagi UST081027-248 | NR117936 | 99.16% | Qipengyuania | Alphaproteobacteria |
NZ-90 | Psychrobacter celer SW-238 | NR043225 | 99.91% | Psychrobacter | Gammaproteobacteria |
NZ-91 | Qipengyuania citrea 35F/1 | NR028741 | 99.01% | Qipengyuania | Alphaproteobacteria |
NZ-92 | Zunongwangia profunda SM-A87 | NR074656 | 99.79% | Zunongwangia | Bacteroidetes |
NZ-93 | Qipengyuania pelagi UST081027-248 | NR117936 | 99.22% | Qipengyuania | Alphaproteobacteria |
NZ-94 | Halomonas titanicae BH1 | NR117300 | 98.52% | Halomonas | Gammaproteobacteria |
NZ-95 | Maribacter sedimenticola KMM 3903 | NR025748 | 98.56% | Maribacter | Bacteroidetes |
NZ-96 | Qipengyuania flava SW-46 | NR025245 | 98.30% | Qipengyuania | Alphaproteobacteria |
NZ-97 | Bacillus dakarensis Marseille-P3515 | NR147382 | 99.23% | Bacillus | Firmicutes |
NZ-98 | Tritonibacter mobilis NBRC101030 | NR041454 | 99.79% | Tritonibacter | Alphaproteobacteria |
NZ-99 | Marinobacter hydrocarbonoclasticus RAD | MH725589 | 99.73% | Marinobacter | Gammaproteobacteria |
NZ-100 | Halomonas axialensis Althf1 | NR027219 | 99.94% | Halomonas | Gammaproteobacteria |
NZ-101 | Microbacterium marytypicum 12512 | NR114986 | 99.59% | Microbacterium | Actinobacteria |
NZ-102 | Microbacterium marytypicum 12512 | NR114986 | 99.47% | Microbacterium | Actinobacteria |
NZ-103 | Mesonia mobilis KMM 6059 | NR043758 | 99.25% | Mesonia | Bacteroidetes |
NZ-104 | Psychrobacter celer SW-238 | NR043225 | 99.59% | Psychrobacter | Gammaproteobacteria |
NZ-105 | Sulfitobacter pontiacus ChLG-10 | NR026418 | 99.67% | Sulfitobacter | Alphaproteobacteria |
Test Organism | Minimum Inhibitory Concentration (MIC) (µg/mL) | ||||
---|---|---|---|---|---|
K. japonica | T. mobilis | P. zhaodongensis | Z. profunda | Positive Control | |
P. aeruginosa PA14 | >66.67 | >66.67 | >66.67 | >66.67 | 0.52 3 |
B. subtilis DSM 10 | 1.04 | 2.08 | 4.16 | 66.67 | 0.52 1 |
E. coli DSM1116 | >66.67 | > 66.67 | >66.67 | >66.67 | 0.52 3 |
S. aureus Newman | 8.3 | 33.3 | 16.6 | >66.67 | 0.52 3 |
M. smegmatis ATCC700084 | >66.67 | >66.67 | >66.67 | 66.67 | 0.52 4 |
C. freundii DSM 30039 | >66.67 | >66.67 | >66.67 | >66.67 | 66.67 |
C. albicans DSM 1665 | >66.67 | >66.67 | >66.67 | >66.67 | 16.66 2 |
P. anomala DSM 6766 | >66.67 | >66.67 | >66.67 | >66.67 | 8.33 2 |
M. hiemalis DSM 2656 | >66.67 | >66.67 | >66.67 | 66.67 | 16.6 2 |
Strains | Subsystem | Functional Roles |
---|---|---|
Qipengyuania pelagi | 274 | 813 |
Qipengyuania citreus | 272 | 803 |
Qipengyuania pacifica NZ-96T | 282 | 877 |
Total | 828 | 2493 |
Distinctive | 308 | 973 |
BGC | Position From-To | Size | Proposed Type (Known Product) |
---|---|---|---|
Cluster 1 | 298,580–326,894 | 28,315 | Beta lactone |
Cluster 2 | 112,027–136,358 | 24,332 | Terpene (Zeaxanthin) |
Cluster 3 | 35,697–73,244 | 37,548 | Hserlactone, Lassopeptide |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tareen, S.; Schupp, P.J.; Iqbal, N.; Wink, J. Exploring the Antibiotic Production Potential of Heterotrophic Bacterial Communities Isolated from the Marine Sponges Crateromorpha meyeri, Pseudaxinella reticulata, Farrea similaris, and Caulophacus arcticus through Synergistic Metabolomic and Genomic Analyses. Mar. Drugs 2022, 20, 463. https://doi.org/10.3390/md20070463
Tareen S, Schupp PJ, Iqbal N, Wink J. Exploring the Antibiotic Production Potential of Heterotrophic Bacterial Communities Isolated from the Marine Sponges Crateromorpha meyeri, Pseudaxinella reticulata, Farrea similaris, and Caulophacus arcticus through Synergistic Metabolomic and Genomic Analyses. Marine Drugs. 2022; 20(7):463. https://doi.org/10.3390/md20070463
Chicago/Turabian StyleTareen, Sanaullah, Peter J. Schupp, Naveed Iqbal, and Joachim Wink. 2022. "Exploring the Antibiotic Production Potential of Heterotrophic Bacterial Communities Isolated from the Marine Sponges Crateromorpha meyeri, Pseudaxinella reticulata, Farrea similaris, and Caulophacus arcticus through Synergistic Metabolomic and Genomic Analyses" Marine Drugs 20, no. 7: 463. https://doi.org/10.3390/md20070463
APA StyleTareen, S., Schupp, P. J., Iqbal, N., & Wink, J. (2022). Exploring the Antibiotic Production Potential of Heterotrophic Bacterial Communities Isolated from the Marine Sponges Crateromorpha meyeri, Pseudaxinella reticulata, Farrea similaris, and Caulophacus arcticus through Synergistic Metabolomic and Genomic Analyses. Marine Drugs, 20(7), 463. https://doi.org/10.3390/md20070463