Xenoacremones D–H, Bioactive Tyrosine-decahydrofluorene Analogues from the Plant-Derived Fungus Xenoacremonium sinensis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Elucidation
2.2. Biological Assay
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Extraction and Isolation
3.4. Computational of ECD
3.5. Cytotoxicity Assays
3.6. Assay of the Inhibition of NO Production in RAW264.7 Murine Macrophages
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ortega, H.E.; Torres-Mendoza, D.; Caballero, Z.E.; Cubilla-Rios, L. Structurally uncommon secondary metabolites derived from endophytic fungi. J. Fungi 2021, 7, 570. [Google Scholar] [CrossRef] [PubMed]
- El-Bondkly, E.A.M.; El-Bondkly, A.A.M.; El-Bondkly, A.A.M. Marine endophytic fungal metabolites: A whole new world of pharmaceutical therapy exploration. Heliyon 2021, 7, e06362. [Google Scholar] [CrossRef] [PubMed]
- Adeleke, B.S.; Babalola, O.O. Pharmacological potential of fungal endophytes associated with medicinal plants: A review. J. Fungi 2021, 7, 147. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Li, X.Q.; Zhao, D.L.; Zhang, P. Antifungal secondary metabolites produced by the fungal endophytes: Chemical diversity and potential use in the development of biopesticides. Front. Microbiol. 2021, 12, 689527. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Chaturvedi, P.; Kulkarni, M.G.; Staden, J.V. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol. Adv. 2020, 39, 107462. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Li, S.; Zhang, X.; Zhao, C. Biological ativities of some new secondary metabolites isolated from endophytic fungi: A review study. Int. J. Mol. Sci. 2021, 22, 959. [Google Scholar] [CrossRef] [PubMed]
- Manganyi, M.C.; Ateba, C.N. Untapped potentials of endophytic fungi: A review of novel bioactive compounds with biological applications. Microorganisms 2020, 8, 1934. [Google Scholar] [CrossRef]
- Lombard, L.; van der Merwe, N.A.; Groenewald, J.Z.; Crous, P.W. Generic concepts in Nectriaceae. Stud. Mycol. 2015, 80, 189–245. [Google Scholar] [CrossRef] [Green Version]
- Isaka, M.; Rugseree, N.; Maithip, P.; Kongsaeree, P.; Prabpai, S.; Thebtaranonth, Y. Hirsutellones A-E, antimycobacterial alkaloids from the insect pathogenic fungus Hirsutella nivea BCC 2594. Tetrahedron 2005, 61, 5577–5583. [Google Scholar] [CrossRef]
- Isaka, M.; Prathumpai, W.; Wongsa, P.; Tanticharoen, M. Hirsutellone F, a dimer of antitubercular alkaloids from the seed fungus Trichoderma species BCC 7579. Org. Lett. 2006, 8, 2815–2817. [Google Scholar] [CrossRef]
- He, H.; Yang, H.Y.; Bigelis, R.; Eric, H.; Greenstein, S.M.; Carter, G.T. Pyrrocidines A and B, new antibiotics produced by a filamentous fungus. Tetrahedron Lett. 2002, 43, 1633–1636. [Google Scholar] [CrossRef]
- Shiono, Y.; Kosukegawa, A.; Koseki, T.; Murayama, T.; Kwon, E.; Uesugi, S.; Kimura, K. A dimeric pyrrocidine from Neonectria ramulariae is an inhibitor of prolyl oligopeptidase. Phytochem. Lett. 2012, 5, 91–95. [Google Scholar] [CrossRef]
- Shiono, Y.; Shimanuki, K.; Hiramatsu, F.; Koseki, T.; Murayama, T.; Fujisawa, N.; Kimura, K. Pyrrospirones A and B, apoptosis inducers in HL-60 cells, from an endophytic fungus, Neonectria Ramulariae Wollenw KS-246. Bioorg. Med. Chem. Lett. 2008, 23, 6050–6053. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.; Liermann, J.C.; Opatz, T.; Anke, H.; Thines, E. GKK1032A2, a secondary metabolite from Penicillium sp. IBWF-029-96, inhibits conidial germination in the rice blast fungus Magnaporthe oryzae. J. Antibiot. 2012, 65, 99–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, T.; Chen, M.; Ge, Z.; Chai, W.; Li, X.; Zhang, Z.; Lian, X. Bioactive penicipyrrodiether A, an adduct of GKK1032 analogue and phenol A derivative, from a marine-sourced fungus Penicillium sp. ZZ380. J. Org. Chem. 2018, 83, 13395–13401. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Shen, H.; Zhang, P.; Cheng, H.; Dai, X.; Liu, L. Anti-glioma trichobamide A with an unprecedented tetrahydro-5H-furo[2,3-b]pyrrol-5-one functionality form ascidian-derived fungus Trichobotrys effuse 4729. Chem. Commun. 2019, 55, 1438–1441. [Google Scholar] [CrossRef] [PubMed]
- Madla, S.; Isaka, M.; Wongsa, P. Modification of culture conditions for production of the anti–tubercular hirsutellones by the insect pathogenic fungus Hirsutella nivea BCC 2594. Lett. Appl. Microbiol. 2008, 47, 74–78. [Google Scholar] [CrossRef]
- Shiono, Y.; Furukawa, M.; Koseki, T.; Kwon, E.; Kurniawan, A.H.; Sato, S.; Harneti, D.; Maharani, R.; Supratman, U.; Uesugi, S.; et al. A pyrrocidine derivative produced by fungus Neonectria ramulariae In–2 isolated from a Beetle Holotrichia picea. Phytochem. Lett. 2018, 26, 120–124. [Google Scholar] [CrossRef]
- Wicklow, D.T.; Poling, S.M.; Summerbell, R.C. Occurrence of pyrrocidine and dihydroresorcylide production among Acremonium zeae populations from maize grown in different regions. Can. J. Plant Pathol. 2008, 30, 425–433. [Google Scholar] [CrossRef]
- Shi, Y.; Gao, S. Recent advances of synthesis of fluorenone and fluorene containing natural products. Tetrahedron 2016, 72, 1717–1735. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Sarlah, D.; Wu, T.R.; Zhan, W. Total synthesis of hirsutellone B. Angew. Chem. Int. Ed. 2009, 48, 6870–6874. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, K.C.; Sun, Y.P.; Sarlah, D.; Zhan, W.; Wu, T.R. Bioinspired synthesis of hirsutellones A, B, and C. Org. Lett. 2011, 13, 5708–5710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchiro, H.; Kato, R.; Arai, Y.; Hasegawa, M.; Kobayakawa, Y. Total synthesis of hirsutellone B via UIImann-type direct 13-membered macrocyclization. Org. Lett. 2011, 13, 6268–6271. [Google Scholar] [CrossRef] [PubMed]
- Reber, K.P.; Tilley, S.D.; Carson, C.A.; Sorensen, E.J. Toward a synthesis of hirsutellone B by the concept of double cyclization. J. Org. Chem. 2013, 78, 9584–9607. [Google Scholar] [CrossRef] [Green Version]
- Sugata, H.; Inagaki, K.; Ode, T.; Hayakawa, T.; Karoji, Y.; Baba, M.; Kato, R.; Hasegawa, D.; Tsubogo, T.; Uchiro, H. Total synthesis of GKK1032A2 via direct 13-membered macrocyclization using a nucleophilic aromatic substitution of an (η6-arene) Chromium complex. Chem. Asian J. 2017, 12, 628–632. [Google Scholar] [CrossRef]
- Liu, Z.G.; Li, W.; Zhang, P.; Fan, J.; Zhang, F.B.; Wang, C.X.; Li, S.M.; Sun, Y.; Chen, S.L.; Yin, W.B. Tricarbocyclic core formation of tyrosine decahydrofluorenes implies a three-enzyme cascade with XenF-mediated sigmatropic rearrangement as a prerequisite. Acta Pharm. Sin. B 2021, 11, 3655–3664. [Google Scholar] [CrossRef]
- MOE2009.10. Chemical Computing Group Inc. Available online: https://www.chemcomp.com/Products.htm (accessed on 31 July 2021).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Haghdani, S.; Hoff, B.H.; Koch, H.; Åstrand, P.O. Optical rotation calculations for fluorinated alcohols, amines, amides, and esters. J. Phys. Chem. A 2016, 120, 7973–7986. [Google Scholar] [CrossRef]
- Bruhn, T.; Schaumlöffel, A.; Hemberger, Y.; Pescitelli, G. SpecDis Version 1.71. 2017. Available online: https:/specdis-software.jimdo.com (accessed on 12 July 2021).
1 | 2 | 3 a | 4 a | 5 b | ||||||
---|---|---|---|---|---|---|---|---|---|---|
No. | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) |
1 | 49.9 | Hα: 1.38, t (12.2) Hβ: 2.10, m | 119.0 | 4.90, d (17.0) 4.97, d (16.8) | 119.2 | 4.91, d (17.1) 5.09, d (10.2) | 117.6 | 4.88, m 4.98, dd (10.2, 1.3) | 116.7 | 5.07, d (10.6) 5.10, d (17.5) |
2 | 64.6 | 5.16, dd (12.2, 6.0) | 134.8 | 5.30, dd (16.8, 9.0) | 139.0 | 5.77, ddd (17.1, 10.4, 5.7) | 140.7 | 5.71, dd (17.0, 9.6) | 137.9 | 5.80, ddd (17.5, 10.4, 7.1) |
3 | 48.9 | 2.86, m | 48.7 | 2.56, m | 43.8 | 3.33, m | 46.8 | 2.42, m | 43.1 | 2.90, m |
4 | 125.8 | 5.60, dd (9.1, 3.3) | 68.8 | 3.84, dd (4.2, 1.2) | 127.7 | 5.25, dd (9.6, 4.6) | 130.5 | 5.65, dd (9.0, 4.2) | 126.9 | 5.61, dd (9.0, 3.1) |
5 | 132.8 | 6.02, dd (9.1, 3.0) | 118.0 | 5.56, d (1.2) | 130.6 | 6.01, d (9.6) | 133.4 | 5.95, d (9.0) | 133.0 | 6.24, dd (9.0, 2.9) |
6 | 46.5 | 1.45, m | 148.7 | 41.8 | 2.97, m | 44.0 | 2.19, m | 43.1 | 1.64, m | |
7 | 46.3 | 1.51, m | 46.3 | 2.63, m | 42.7 | 2.24, m | 48.1 | 1.91, m | 48.5 | 1.53, m |
8 | 39.4 | Hα: 2.01, m Hβ: 0.67, ddd (11.7, 11.7, 5.7) | 39.5 | Hα: 2.09, m Hβ: 0.89, m | 38.6 | Hα: 1.97, m Hβ: 0.77, m | 41.1 | Hα: 2.10, m Hβ: 0.81, m | 38.7 | Hα: 2.01, m Hβ: 0.62, m |
9 | 33.9 | 1.52, m | 34.6 | 1.63, m | 35.5 | 1.61, m | 34.1 | 1.57, m | 32.4 | 1.55, m |
10 | 46.7 | Hα: 1.80, m Hβ: 0.72, ddd (11.7, 11.7, 5.7) | 45.9 | Hα: 1.76, m Hβ: 0.73, m | 46.5 | Hα: 1.76, m Hβ: 0.66, m | 45.4 | Hα: 1.76, m Hβ: 0.74, m | 45.1 | Hα: 1.78, m Hβ: 0.69, m |
11 | 33.1 | 1.89, m | 32.9 | 1.78, m | 33.8 | 1.74, m | 32.4 | 1.78, m | 31.5 | 1.87, m |
12 | 58.3 | 1.20, m | 57.0 | 1.10, m | 61.7 | 1.01, m | 57.5 | 1.03, m | 57.7 | 1.05, m |
13 | 86.6 | 4.75, dd (8.3, 6.5) | 80.4 | 4.98, m | 82.4 | 5.04, m | 83.2 | 4.65, t (3.4) | 88.7 | 4.47, dd (7.7, 4.9) |
14 | 51.7 | 2.13, m | 46.8 | 2.64, m | 47.5 | 1.79, m | 49.8 | 2.70, m | 54.3 | 1.95, m |
15 | 45.8 | 3.57, dd (7.9, 6.8) | 46.4 | 2.45, dd (11.4, 3.6) | 50.4 | 2.68, dd (10.2, 5.4) | 51.8 | 2.45, dd (10.8, 6.6) | 49.5 | 3.80, t (8.0) |
16 | 202.4 | 201.9 | 206.1 | 203.2 | 201.6 | |||||
17 | 60.5 | - | 60.8 | - | 81.1 | - | 134.8 | - | 56.5 | 3.12, dd (12.2, 4.2) |
18 | 177.0 | 169.3 | 175.9 | 170.6 | 172.3 | |||||
19 | 22.9 | 0.96, d (6.6) | 22.7 | 0.98, d (6.6) | 22.9 | 0.97, d (6.6) | 22.8 | 0.99, d (6.6) | 22.6 | 0.94, d (6.5) |
20 | 20.7 | 1.11, d (6.3) | 20.0 | 1.07, d (6.6) | 20.1 | 1.05, d (6.6) | 20.4 | 1.06, d (6.6) | 20.1 | 1.09, d (6.2) |
1’ | 42.8 | Hα: 2.97, d (14.0) Hβ: 1.52, d (14.0) | 65.0 | 3.60, s | 39.4 | Hα: 2.17 d (16.2) Hβ: 1.99, d (16.2) | 153.7 | 6.44, s | 34.6 | Hα: 2.85, dd (15.0, 4.2) Hβ: 1.96, dd (15.0, 4.2) |
2’ | 88.9 | 84.9 | 92.5 | 89.3 | 88.2 | |||||
3’ | 46.7 | Hα: 2.99, d (13.4) Hβ 2.72, d (13.4) | 46.1 | Hα: 3.32, d (13.2) Hβ: 3.10, d (13.2) | 45.1 | Hα: 3.15, d (13.5) Hβ: 2.81, d (13.5) | 45.8 | Hα: 3.26, d (12.6) Hβ: 3.19, d (12.6) | 46.9 | Hα: 2.95, d (13.1) Hβ: 2.89, d (13.1) |
4’ | 129.4 | 129.7 | 132.5 | 129.7 | 128.4 | |||||
5’ | 133.7 | 6.95, dd (8.4, 1.8) | 130.4 | 7.08, dd (8.4, 1.8) | 131.0 | 6.97, dd (8.4, 2.4) | 129.7 | 6.94, dd (8.4, 1.8) | 133.4 | 6.98, dd (8.4, 2.0) |
6’ | 121.0 | 6.70, dd (8.4, 2.4) | 120.0 | 6.91, dd (8.4, 2.4) | 123.5 | 6.84, dd (8.4, 2.4) | 119.0 | 6.90, dd (8.4, 2.4) | 124.3 | 6.74, dd (7.8,1.8) |
7’ | 159.1 | 160.6 | 159.7 | 162.0 | 157.9 | |||||
8’ | 125.2 | 6.94, dd (8.4, 2.4) | 13.8 | 7.03, dd (8.4, 2.4) | 123.3 | 7.02, dd (8.4, 2.4) | 123.1 | 6.84, dd (8.4, 2.4) | 120.2 | 7.02, dd (8.4, 1.8) |
9’ | 134.0 | 6.96, dd (8.4, 1.8) | 134.1 | 7.29, dd (8.4, 2.4) | 133.4 | 7.16, dd (8.4, 2.4) | 133.0 | 7.28, dd (8.4, 2.4) | 131.9 | 7.07, dd (7.8, 2.0) |
10’ | 49.7 | 3.24, s | - | - | - | - |
1 | 2 | 3 | 4 | 5 | Resveratrol a | |
---|---|---|---|---|---|---|
IC50± SD (μM) | 45.8 ± 0.5 | 37.5 ± 0.4 | 12.8 ± 0.3 | -- b | 6.7 ± 0.3 | 36.0 ± 0.4 |
Compound | NB4 | U937 |
---|---|---|
1 | 12.6 ± 0.2 | 13.9 ± 0.3 |
2 | -- b | -- b |
3 | 18.4 ± 0.4 | 13.5 ± 0.1 |
4 | 11.9 ± 0.2 | 8.5 ± 0.2 |
5 | 6.4 ± 0.1 | 10.6 ± 0.2 |
Adriamycin | 0.4 ± 0.1 | 0.2 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Liu, L.; Wang, A.; Li, L.; Zhao, S.; Wang, Y.; Sun, Y. Xenoacremones D–H, Bioactive Tyrosine-decahydrofluorene Analogues from the Plant-Derived Fungus Xenoacremonium sinensis. Mar. Drugs 2022, 20, 375. https://doi.org/10.3390/md20060375
Liu Z, Liu L, Wang A, Li L, Zhao S, Wang Y, Sun Y. Xenoacremones D–H, Bioactive Tyrosine-decahydrofluorene Analogues from the Plant-Derived Fungus Xenoacremonium sinensis. Marine Drugs. 2022; 20(6):375. https://doi.org/10.3390/md20060375
Chicago/Turabian StyleLiu, Zhiguo, Li Liu, Anqi Wang, Li Li, Sinan Zhao, Yanan Wang, and Yi Sun. 2022. "Xenoacremones D–H, Bioactive Tyrosine-decahydrofluorene Analogues from the Plant-Derived Fungus Xenoacremonium sinensis" Marine Drugs 20, no. 6: 375. https://doi.org/10.3390/md20060375
APA StyleLiu, Z., Liu, L., Wang, A., Li, L., Zhao, S., Wang, Y., & Sun, Y. (2022). Xenoacremones D–H, Bioactive Tyrosine-decahydrofluorene Analogues from the Plant-Derived Fungus Xenoacremonium sinensis. Marine Drugs, 20(6), 375. https://doi.org/10.3390/md20060375