Protein Hydrolysate from Spirulina platensis Prevents Dexamethasone-Induced Muscle Atrophy via Akt/Foxo3 Signaling in C2C12 Myotubes
Abstract
:1. Introduction
2. Results
2.1. The SPH Composition and Effect on C2C12 Cell Viability
2.2. Effect of SPH on C2C12 Myotube Length and Diameter
2.3. Effect of SPH on C2C12 Myotube Differentiation-Related Factors
2.4. Effect of SPH on the Protein Expression of MyoD1 and Myogenin of C2C12 Myotubes at Day 6 of Differentiation
2.5. Effect of SPH on Myotube Length and Diameter in DEX-Treated C2C12 Myotubes
2.6. Effects of SPH on the Expression of Atrogin-1, MuRF-1, and Forkhead Box O3a (FoxO3a) in DEX-Treated C2C12 Myotubes
2.7. Effect of SPH on the Protein Expression of Cytosolic Akt and Nuclear Atrogin-1, MuRF-1, and FoxO3a in DEX-Treated C2C12 Myotubes
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Myotube Differentiation and DEX-Induced Muscle Atrophy of C2C12 Cells
4.3. Cell Viability
4.4. Measurement of Myotube Length and Diameter
4.5. qPCR
4.6. Western Blot Analysis
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petermann-Rocha, F.; Balntzi, V.; Gray, S.R.; Lara, J.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Global prevalence of sarcopenia and severe sarcopenia: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Doherty, T.J. Invited review: Aging and sarcopenia. J. Appl. Physiol. 2003, 95, 1717–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, S.; Collins, P.; Rattray, M. Identifying and managing malnutrition, frailty and sarcopenia in the community: A narrative review. Nutrients 2021, 13, 2316. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Oh, C.; No, J. Associations between sarcopenia and metabolic risk factors: A systematic review and meta-analysis. J. Obes. Metab. Syndr. 2018, 27, 175–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, V.d.O.N.; Filippin, L.I.; Xavier, R.M. Mechanisms of muscle wasting in sarcopenia. Rev. Bras. Reumatol. 2012, 52, 252–259. [Google Scholar] [CrossRef]
- Gumucio, J.P.; Mendias, C.L. Atrogin-1, MuRF-1, and sarcopenia. Endocrine 2013, 43, 12–21. [Google Scholar] [CrossRef]
- Foletta, V.C.; White, L.J.; Larsen, A.E.; Léger, B.; Russell, A.P. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflügers Arch. Eur. J. Physiol. 2011, 461, 325–335. [Google Scholar] [CrossRef]
- Berkes, C.A.; Tapscott, S.J. MyoD and the transcriptional control of myogenesis. Semin Cell Dev. Biol. 2005, 16, 585–595. [Google Scholar] [CrossRef]
- Lecomte, V.; Meugnier, E.; Euthine, V.; Durand, C.; Freyssenet, D.; Nemoz, G.; Rome, S.; Vidal, H.; Lefai, E. A new role for sterol regulatory element binding protein 1 transcription factors in the regulation of muscle mass and muscle cell differentiation. Mol. Cell. Biol. 2010, 30, 1182–1198. [Google Scholar] [CrossRef] [Green Version]
- Thomson, R.L.; Buckley, J.D. Protein hydrolysates and tissue repair. Nutr. Res. Rev. 2011, 24, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.-H.; Choung, S.-Y. Oyster hydrolysates attenuate muscle atrophy via regulating protein turnover and mitochondria biogenesis in C2C12 cell and immobilized mice. Nutrients 2021, 13, 4385. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-J.; Chang, C.-F.; Angayarkanni, J.; Lin, W.-T. Alcalase potato protein hydrolysate-PPH902 enhances myogenic differentiation and enhances skeletal muscle protein synthesis under high glucose condition in C2C12 cells. Molecules 2021, 26, 6577. [Google Scholar] [CrossRef] [PubMed]
- Okiura, T.; Oishi, Y.; Takemura, A.; Ishihara, A. Effects of collagen hydrolysate on the tibialis anterior muscle and femur in senescence-accelerated mouse prone 6. J. Musculoskelet. Neuronal Interact. 2016, 16, 161–167. [Google Scholar] [PubMed]
- Saranraj, P.; Sivasakthi, S. Spirulina platensis–food for future: A review. Asian J. Pharm. Sci. Technol. 2014, 4, 26–33. [Google Scholar]
- Liu, Q.; Huang, Y.; Zhang, R.; Cai, T.; Cai, Y. Medical application of Spirulina platensis derived C-phycocyanin. Evid. Based Complement. Alternat. Med. 2016, 2016, 7803846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soheili, M.; Khosravi-Darani, K. The potential health benefits of algae and micro algae in medicine: A review on Spirulina platensis. Curr. Nutr. Food Sci. 2011, 7, 279–285. [Google Scholar] [CrossRef]
- Burattini, S.; Ferri, P.; Battistelli, M.; Curci, R.; Luchetti, F.; Falcieri, E. C2C12 murine myoblasts as a model of skeletal muscle development: Morpho-functional characterization. Eur. J. Histochem. 2004, 48, 223–233. [Google Scholar]
- Bentzinger, C.F.; Wang, Y.X.; Rudnicki, M.A. Building muscle: Molecular regulation of myogenesis. Cold Spring Harb. Perspect. Biol. 2012, 4, a008342. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Mittal, A.; Gupta, S.K.; Kumar, A. TWEAK causes myotube atrophy through coordinated activation of ubiquitin-proteasome system, autophagy, and caspases. J. Cell. Physiol. 2012, 227, 1042–1051. [Google Scholar] [CrossRef] [Green Version]
- Menconi, M.; Gonnella, P.; Petkova, V.; Lecker, S.; Hasselgren, P.O. Dexamethasone and corticosterone induce similar, but not identical, muscle wasting responses in cultured L6 and C2C12 myotubes. J. Cell. Biochem. 2008, 105, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Li, N.; Jia, W.; Wang, N.; Liang, M.; Yang, X.; Du, G. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol. Res. 2021, 172, 105807. [Google Scholar] [CrossRef] [PubMed]
- Little, J.P.; Phillips, S.M. Resistance exercise and nutrition to counteract muscle wasting. Appl. Physiol. Nutr. Metab. 2009, 34, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Sedighi, M.; Jalili, H.; Darvish, M.; Sadeghi, S.; Ranaei-Siadat, S.O. Enzymatic hydrolysis of microalgae proteins using serine proteases: A study to characterize kinetic parameters. Food Chem. 2019, 284, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Hu, Y.; Xue, M.; Dun, Y.; Li, S.; Peng, N.; Liang, Y.; Zhao, S. Purification and identification of antioxidant peptides from enzymatic hydrolysate of Spirulina platensis. J. Microbiol. Biotechnol. 2016, 26, 1216–1223. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D.; Kuča, K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: An overview. Arch. Toxicol. 2016, 90, 1817–1840. [Google Scholar] [CrossRef]
- Sadeghi, S.; Jalili, H.; Ranaei Siadat, S.O.; Sedighi, M. Anticancer and antibacterial properties in peptide fractions from hydrolyzed spirulina protein. J. Agric. Sci. Technol. 2018, 20, 673–683. [Google Scholar]
- Herningtyas, E.H.; Okimura, Y.; Handayaningsih, A.E.; Yamamoto, D.; Maki, T.; Iida, K.; Takahashi, Y.; Kaji, H.; Chihara, K. Branched-chain amino acids and arginine suppress MaFbx/atrogin-1 mRNA expression via mTOR pathway in C2C12 cell line. Biochim. Biophys. Acta 2008, 1780, 1115–1120. [Google Scholar] [CrossRef]
- Maki, T.; Yamamoto, D.; Nakanishi, S.; Iida, K.; Iguchi, G.; Takahashi, Y.; Kaji, H.; Chihara, K.; Okimura, Y. Branched-chain amino acids reduce hindlimb suspension-induced muscle atrophy and protein levels of atrogin-1 and MuRF1 in rats. Nutr. Res. 2012, 32, 676–683. [Google Scholar] [CrossRef]
- Ferri, P.; Barbieri, E.; Burattini, S.; Guescini, M.; D’Emilio, A.; Biagiotti, L.; Del Grande, P.; De Luca, A.; Stocchi, V.; Falcieri, E. Expression and subcellular localization of myogenic regulatory factors during the differentiation of skeletal muscle C2C12 myoblasts. J. Cell. Biochem. 2009, 108, 1302–1317. [Google Scholar] [CrossRef]
- Singh, A.; Phogat, J.; Yadav, A.; Dabur, R. The dependency of autophagy and ubiquitin proteasome system during skeletal muscle atrophy. Biophys. Rev. 2021, 13, 203–219. [Google Scholar] [CrossRef]
- Bodine, S.C.; Baehr, L.M. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am. J. Physiol Endocrinol. Metab. 2014, 307, E469–E484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.B.; Ahn, Y.; Suh, H.J.; Jo, K. Yeast hydrolysate ameliorates dexamethasone-induced muscle atrophy by suppressing MuRF-1 expression in C2C12 cells and C57BL/6 mice. J. Funct. Foods 2022, 90, 104985. [Google Scholar] [CrossRef]
- Denison, H.J.; Cooper, C.; Sayer, A.A.; Robinson, S.M. Prevention and optimal management of sarcopenia: A review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin. Interv. Aging 2015, 10, 859–869. [Google Scholar] [PubMed] [Green Version]
- Gomes, M.D.; Lecker, S.H.; Jagoe, R.T.; Navon, A.; Goldberg, A.L. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc. Natl. Acad. Sci. USA 2001, 98, 14440–14445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Park, M.Y.; Kim, H.K.; Park, Y.; Whang, K.Y. Cortisone and dexamethasone inhibit myogenesis by modulating the AKT/mTOR signaling pathway in C2C12. Biosci. Biotechnol. Biochem. 2016, 80, 2093–2099. [Google Scholar] [CrossRef] [Green Version]
- Sandri, M.; Sandri, C.; Gilbert, A.; Skurk, C.; Calabria, E.; Picard, A.; Walsh, K.; Schiaffino, S.; Lecker, S.H.; Goldberg, A.L. FoxO transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004, 117, 399–412. [Google Scholar] [CrossRef] [Green Version]
- Je, J.-Y.; Park, P.-J.; Jung, W.-K.; Kim, S.-K. Amino acid changes in fermented oyster (Crassostrea gigas) sauce with different fermentation periods. Food Chem. 2005, 91, 15–18. [Google Scholar] [CrossRef]
- Veliça, P.; Bunce, C.M. A quick, simple and unbiased method to quantify C2C12 myogenic differentiation. Muscle Nerve 2011, 44, 366–370. [Google Scholar] [CrossRef]
- Kim, H.; Lim, J.-J.; Shin, H.Y.; Suh, H.J.; Choi, H.-S. Lactobacillus plantarum K8-based paraprobiotics suppress lipid accumulation during adipogenesis by the regulation of JAK/STAT and AMPK signaling pathways. J. Funct. Foods 2021, 87, 104824. [Google Scholar] [CrossRef]
mg/g | Spirulina | Spirulina Extract | ||
---|---|---|---|---|
Water Extract | Enzyme Hydrolysis | |||
Crude protein | 671.67 ± 5.76 | 27.12± 1.52 | 578.27 ± 4.68 | |
C-phycocyanin | 0.68 ± 0.002 | 2.09 ± 0.02 | ||
Allophycocyanin | 0.47 ± 0.001 | 2.19 ± 0.01 | ||
Amino acids | Aspartic acid | 71.25 ± 2.98 | 49.73 ± 1.29 | 50.57 ± 2.48 |
Glutamic acid | 115.24 ± 8.98 | 90.69 ± 1.08 | 94.73 ± 2.47 | |
Serine | 35.88 ± 0.58 | 22.40 ± 1.02 | 24.09 ± 1.08 | |
Histidine | 10.81 ± 1.89 | 4.56 ± 0.17 | 6.84 ± 0.36 | |
Glycine | 38.59 ± 0.82 | 24.39 ± 0.31 | 23.14 ± 0.73 | |
Threonine | 36.55 ± 1.34 | 24.21 ± 0.49 | 27.62 ± 0.93 | |
Arginine | 51.39 ± 1.04 | 31.93 ± 1.18 | 30.27 ± 0.87 | |
Alanine | 54.18 ± 1.98 | 42.86 ± 1.07 | 37.54 ± 1.58 | |
Tyrosine | 28.59 ± 1.16 | 19.26 ± 0.87 | 16.09 ± 0.32 | |
Valine | 38.58 ± 0.73 | 24.76 ± 1.19 | 28.61 ± 0.73 | |
Methionine | 17.11 ± 0.33 | 11.32 ± 0.76 | 12.04 ± 0.39 | |
Phenylalanine | 33.61 ± 1.06 | 16.94 ± 0.58 | 20.70 ± 0.80 | |
Isoleucine | 36.45 ± 0.73 | 24.27 ± 0.79 | 25.97 ± 0.78 | |
Leucine | 58.38 ± 1.99 | 31.12 ± 1.03 | 37.71 ± 1.16 | |
Lysine | 32.47 ± 1.25 | 15.93 ± 0.77 | 18.04 ± 0.66 | |
Proline | 14.72 ± 0.37 | 7.755 ± 0.53 | 9.25 ± 0.58 | |
BCAA | 133.41 ± 3.45 | 80.16 ± 3.01 | 92.30 ± 2.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-W.; Chang, Y.B.; Park, C.W.; Han, S.H.; Suh, H.J.; Ahn, Y. Protein Hydrolysate from Spirulina platensis Prevents Dexamethasone-Induced Muscle Atrophy via Akt/Foxo3 Signaling in C2C12 Myotubes. Mar. Drugs 2022, 20, 365. https://doi.org/10.3390/md20060365
Lee C-W, Chang YB, Park CW, Han SH, Suh HJ, Ahn Y. Protein Hydrolysate from Spirulina platensis Prevents Dexamethasone-Induced Muscle Atrophy via Akt/Foxo3 Signaling in C2C12 Myotubes. Marine Drugs. 2022; 20(6):365. https://doi.org/10.3390/md20060365
Chicago/Turabian StyleLee, Chi-Woo, Yeok Boo Chang, Chun Woong Park, Sung Hee Han, Hyung Joo Suh, and Yejin Ahn. 2022. "Protein Hydrolysate from Spirulina platensis Prevents Dexamethasone-Induced Muscle Atrophy via Akt/Foxo3 Signaling in C2C12 Myotubes" Marine Drugs 20, no. 6: 365. https://doi.org/10.3390/md20060365
APA StyleLee, C. -W., Chang, Y. B., Park, C. W., Han, S. H., Suh, H. J., & Ahn, Y. (2022). Protein Hydrolysate from Spirulina platensis Prevents Dexamethasone-Induced Muscle Atrophy via Akt/Foxo3 Signaling in C2C12 Myotubes. Marine Drugs, 20(6), 365. https://doi.org/10.3390/md20060365