Physicochemical Characterization of Fucoidans from Sargassum henslowianum C.Agardh and Their Antithrombotic Activity In Vitro
Abstract
:1. Introduction
2. Results
2.1. Isolation and Purification of Fucoidans
2.2. Chemical Composition, Mw and Monosaccharide Composition of Fucoidans
2.3. FTIR Spectrum of Fucoidans
2.4. Cell Viability
2.5. F1, FD1 and FDS1 Affected the Levels of Cytokines Secreted by Adr-Induced HUVEC
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Extraction of Fucoidan from Sargassum Henslowianum C.Agardh
4.3. Purification of Fucoidan from Sargassum Henslowianum C.Agardh
4.4. Chemical Composition Analysis
4.5. The Average Molecular Weight (Mw) Determination
4.6. Monosaccharide Composition Analysis
4.7. Fourier Transformed-Infrared (FTIR) Spectrometric Analysis
4.8. Cell Culture
4.9. Cell Viability
4.10. Enzyme-linked Immunosorbent Assay (ELISA)
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wijesinghe, W.A.J.P.; Jeon, Y.-J. Biological activities and potential cosmeceutical applications of bioactive components from brown seaweeds: A review. Phytochem. Rev. 2011, 10, 431–443. [Google Scholar] [CrossRef]
- Heo, S.-J.; Ko, S.-C.; Cha, S.-H.; Kang, D.-H.; Park, H.-S.; Choi, Y.-U.; Kim, D.; Jung, W.-K.; Jeon, Y.-J. Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicol. In Vitro 2009, 23, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Jesumani, V.; Du, H.; Pei, P.; Zheng, C.; Cheong, K.-L.; Huang, N. Unravelling property of polysaccharides from Sargassum sp. as an anti-wrinkle and skin whitening property. Int. J. Biol. Macromol. 2019, 140, 216–224. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, L.; Li, Y.; Jiang, S.; Sun, Q.; Xie, E.; Chen, H.; Zhao, Z.; Qiao, W.; Xu, J.; et al. Structure of a laminarin-type β-(1→3)-glucan from brown algae Sargassum henslowianum and its potential on regulating gut microbiota. Carbohydr. Polym. 2021, 255, 117389. [Google Scholar] [CrossRef] [PubMed]
- Pomin, V.H.; Mourao, P.A.S. Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology 2008, 18, 1016–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, T.; Ehrig, K.; Liewert, I.; Alban, S. Interference with the CXCL12/CXCR4 axis as potential antitumor strategy: Superiority of a sulfated galactofucan from the brown alga Saccharina latissima and Fucoidan over heparins. Glycobiology 2015, 25, 812–824. [Google Scholar] [CrossRef] [Green Version]
- Ponce, N.M.A.; Pujol, C.A.; Damonte, E.B.; Flores, M.L.; Stortz, C.A. Fucoidans from the brown seaweed Adenocystis utricularis: Extraction methods, antiviral activity and structural studies. Carbohydr. Res. 2003, 338, 153–165. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Zhang, Z.; Song, H.; Li, P. Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 2010, 46, 6–12. [Google Scholar] [CrossRef]
- Xie, L.; Chen, M.-H.; Li, J.; Yang, X.-M.; Huang, Q.-J. Antithrombotic effect of a polysaccharide fraction from Laminaria japonica from the South China Sea. Phytother. Res. 2011, 25, 1362–1366. [Google Scholar] [CrossRef]
- Liao, M.; Chen, S.; Wang, W.; Zhong, S.; Yu, S.; Liao, S. Cholesterol-lowering activity of Sargassum zhangii polysaccharide in vitro. J. Guangdong Ocean Univ. 2017, 37, 80–85. [Google Scholar]
- Wijesinghe, W.A.J.P.; Jeon, Y.-J. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydr. Polym. 2012, 88, 13–20. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, W.; Wang, J.; Yao, J.; Xie, E.; Liu, D.; Duan, D.; Zhang, Q. A study of neuroprotective and antioxidant activities of heteropolysaccharides from six Sargassum species. Int. J. Biol. Macromol. 2014, 67, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Fares, A. Winter cardiovascular diseases phenomenon. N. Am. J. Med. Sci. 2013, 5, 266–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitagawa, K.; Sakoda, S. Mechanism underlying thrombus formation in cerebral infarction. Rinsho Shinkeigaku = Clin. Neurol. 2009, 49, 798–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazmi, R.S.; Boyce, S.; Lwaleed, B.A. Homeostasis of hemostasis: The role of endothelium. Semin. Thromb. Hemost. 2015, 41, 549–555. [Google Scholar]
- Wang, J.; Li, H.; He, J.; Li, B.; Bao, Q.; Zhang, X.; Lv, Z.; Zhang, Y.; Han, J.; Ai, D.; et al. 20-Hydroxyeicosatetraenoic acid involved in endothelial activation and thrombosis. Am. J. Physiol.-Heart Circ. Physiol. 2015, 308, 1359–1367. [Google Scholar] [CrossRef] [Green Version]
- Neubauer, K.; Zieger, B. Endothelial cells and coagulation. Cell Tissue Res. 2022, 387, 391–398. [Google Scholar] [CrossRef]
- Atkinson, B.T.; Jasuja, R.; Chen, V.M.; Nandivada, P.; Furie, B.; Furie, B.C. Laser-induced endothelial cell activation supports fibrin formation. Blood 2010, 116, 4675–4683. [Google Scholar] [CrossRef] [Green Version]
- Yau, J.W.; Teoh, H.; Verma, S. Endothelial cell control of thrombosis. BMC Cardiovasc. Disord. 2015, 15, 130. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira Barddal, H.P.; Pereira Gracher, A.H.; Simas-Tosin, F.F.; Iacomini, M.; Cipriani, T.R. Anticoagulant activity of native and partially degraded glycoglucuronomannan after chemical sulfation. Int. J. Biol. Macromol. 2015, 80, 328–333. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; Smyth, T.J.; O’Donnell, C.P. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrason. Sonochemistry 2015, 23, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.-Y.; Nie, S.-P.; Yin, J.-Y.; Xie, M.-Y. Ascorbic acid induced degradation of polysaccharide from natural products: A review. Int. J. Biol. Macromol. 2020, 151, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Yim, E.K.F. Fucoidan for cardiovascular application and the factors mediating its activities. Carbohydr. Polym. 2021, 270, 118347. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, Q.; Wang, J.; Zhang, W. A comparative study of the anticoagulant activities of eleven fucoidans. Carbohydr. Polym. 2013, 91, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Drozd, N.N.; Shevchenko, N.M.; Ermakova, S.P.; Lapikova, E.S.; Makarov, V.A.; Zvyagintseva, T.N. Effects of the structural characteristics of fucoidans from brown seaweeds on anticoagulant activity and the electrophoretic mobility of complexes with protamine sulfate. Pharm. Chem. J. 2011, 45, 56–61. [Google Scholar] [CrossRef]
- Zou, P.; Yang, X.; Yuan, Y.; Jing, C.; Cao, J.; Wang, Y.; Zhang, L.; Zhang, C.; Li, Y. Purification and characterization of a fucoidan from the brown algae Macrocystis pyrifera and the activity of enhancing salt-stress tolerance of wheat seedlings. Int. J. Biol. Macromol. 2021, 180, 547–558. [Google Scholar] [CrossRef]
- Shi, D.; Qi, J.; Zhang, H.; Yang, H.; Yang, Y.; Zhao, X. Comparison of hydrothermal depolymerization and oligosaccharide profile of fucoidan and fucosylated chondroitin sulfate from Holothuria floridana. Int. J. Biol. Macromol. 2019, 132, 738–747. [Google Scholar] [CrossRef]
- Ma, W.-P.; Yin, S.-N.; Chen, J.-P.; Geng, X.-C.; Liu, M.-F.; Li, H.-H.; Liu, M.; Liu, H.-B. Stimulating the hematopoietic effect of simulated digestive product of fucoidan from Sargassum fusiforme on cyclophosphamide-induced hematopoietic damage in mice and its protective mechanisms based on serum lipidomics. Mar. Drugs 2022, 20, 201. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Dias, M.K.H.M.; Madusanka, D.M.D.; Han, E.J.; Kim, M.J.; Heo, S.-J.; Lee, K.; Cheong, S.H.; Ahn, G. Low molecular weight fucoidan fraction ameliorates inflammation and deterioration of skin barrier in fine-dust stimulated keratinocytes. Int. J. Biol. Macromol. 2021, 168, 620–630. [Google Scholar] [CrossRef]
- Lin, P.; Chen, S.; Wang, W.; Liu, H.; Huang, D.; Yang, Z. Structural identification of Sargassum henslowianum C. Agardh fucoidan and its protective effect on HMVEC damage induced by oxidized low density lipoprotein. J. Guangdong Ocean Univ. 2020, 40, 72–80. [Google Scholar]
- Liao, M.; Wang, W.; Chen, S.; Liao, S. Composition analysis and antithrombotic activity of fucoidan from Sargassum henslowianum C. Agardh. Food Sci. 2017, 38, 189–194. [Google Scholar]
- Dmitrieva, N.I.; Burg, M.B. Secretion of von Willebrand factor by endothelial cells links sodium to hypercoagulability and thrombosis. Proc. Natl. Acad. Sci. USA 2014, 111, 6485–6490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denis, C.V.; Lenting, P.J. von Willebrand factor: At the crossroads of bleeding and thrombosis. Int. J. Hematol. 2012, 95, 353–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Chen, Y.; Zhao, D.; Yang, S.; Zhang, S.; Wei, Z.; Wang, Y.; Qian, K.; Zhao, B.; Zhu, Y.; et al. LongShengZhi Capsule reduces carrageenan-induced thrombosis by for reducing activation of platelets and endothelial cells. Pharmacol. Res. 2019, 144, 167–180. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Zhang, C.; Tang, H.; Gu, M.; Li, Y.; Yan, L.; Song, C. Inhibitory effect of sea cucumber enzymatic hydrolysate on carrageenan-induced thrombus formation in mice. J. Guangdong Ocean Univ. 2018, 38, 57–62. [Google Scholar]
- Kumar, A.; Kar, S.; Fay, W.P. Thrombosis, physical activity, and acute coronary syndromes. J. Appl. Physiol. 2011, 111, 599–605. [Google Scholar] [CrossRef]
- Schleef, R.R.; Bevilacqua, M.P.; Sawdey, M.; Gimbrone, M.A., Jr.; Loskutoff, D.J. Cytokine activation of vascular endothelium. Effects on tissue-type plasminogen activator and type 1 plasminogen activator inhibitor. J. Biol. Chem. 1988, 263, 5797–5803. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Liu, H.; Li, C. Study on extracting process of fucoidan from Sargassum henslowianum. Sci. Technol. Food Ind. 2011, 8, 4. [Google Scholar]
- Qu, Y.; Zhou, S.; Zhong, S.; Chen, S.; Su, W.; Wu, X. Extraction and antioxidant activity of mucopolysaccharide of from swim bladder of Aristichthys nobilis. J. Guangdong Ocean Univ. 2018, 38, 47–53. [Google Scholar]
- Chen, X.; Sun-Waterhouse, D.; Yao, W.; Li, X.; Zhao, M.; You, L. Free radical-mediated degradation of polysaccharides: Mechanism of free radical formation and degradation, influence factors and product properties. Food Chem. 2021, 365, 130524. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, Q.; Dang, T.; Gong, G.; Chen, X.; Tang, R.; Sun, J.; Song, S.; Huang, L.; Wang, Z. Preparation, structural characterization and bioactivity of 4-O-Methylglucuronoxylan from Artemisia sphaerocephala Krasch. Carbohydr. Polym. 2019, 222, 115009. [Google Scholar] [CrossRef] [PubMed]
- Dodgson, K.S.; Price, R.G. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem. J. 1962, 84, 106–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarano, S.; Pascale, E.; Minunni, M. The early nucleation stage of gold nanoparticles formation in solution as powerful tool for the colorimetric determination of reducing agents: The case of xylitol and total polyols in oral fluid. Anal. Chim. Acta 2017, 993, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Song, Y.; He, Y.; Ren, D.; Kow, F.; Qiao, Z.; Liu, S.; Yu, X. Structural characterisation of algae Costaria costata fucoidan and its effects on CCl4-induced liver injury. Carbohydr. Polym. 2014, 107, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Hu, X.; Zhou, S.; Xiang, H.; Chen, S.; Li, L.; Liu, S.; Yang, X. Optimized degradation and inhibition of alpha-glucosidase activity by Gracilaria lemaneiformis polysaccharide and its production in vitro. Mar. Drugs 2022, 20, 13. [Google Scholar] [CrossRef]
- Cao, X.; Xia, Y.; Liu, D.; He, Y.; Mu, T.; Huo, Y.; Liu, J. Inhibitory effects of Lentinus edodes mycelia polysaccharide on alpha-glucosidase, glycation activity and high glucose-induced cell damage. Carbohydr. Polym. 2020, 246, 116659. [Google Scholar] [CrossRef]
- Pozharitskaya, O.N.; Obluchinskaya, E.D.; Shikov, A.N. Mechanisms of bioactivities of fucoidan from the brown seaweed Fucus vesiculosus L. of the barents sea. Mar. Drugs 2020, 18, 275. [Google Scholar] [CrossRef]
- Ahmad, T.; Eapen, M.S.; Ishaq, M.; Park, A.Y.; Karpiniec, S.S.; Stringer, D.N.; Sohal, S.S.; Fitton, J.H.; Guven, N.; Caruso, V.; et al. Anti-inflammatory activity of fucoidan extracts in vitro. Mar. Drugs 2021, 19, 702. [Google Scholar] [CrossRef]
- Chou, C.-H.; Tsai, M.-S.; Lu, H.-Y.; Chang, C.-K.; Cheng, K.-C.; Jhan, M.-H.; Hsieh, C.-W. Enzymatic hydrolysates obtained from Trametes versicolor polysaccharopeptides protect human skin keratinocyte against AAPH-induced oxidative stress and inflammatory. J. Cosmet. Dermatol. 2019, 18, 2011–2018. [Google Scholar] [CrossRef]
Fucoidan | Total Sugar (%) | Sulfate (%) | Uronic Acid (%) | Mw (Da) |
---|---|---|---|---|
F | 27.97 | 11.45 | 14.47 | 5.677 × 105 |
F1 | 35.14 | 16.35 | 12.54 | 4.393 × 105 |
FD1 | 49.27 | 17.52 | 10.85 | 2.176 × 104 |
FDS1 | - | 9.66 | - | 6.166 × 103 |
vWF (U/L) | t-PA (ng/mL) | PAI-1 (μg/mL) | t-PA/PAI-1 | TF (pg/mL) |
---|---|---|---|---|
1441.97 ± 4.69 | 20.2 ± 0.34 | 65.5 ± 1.02 | 0.31 ± 0.028 | 210.73 ± 12.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, P.; Chen, S.; Liao, M.; Wang, W. Physicochemical Characterization of Fucoidans from Sargassum henslowianum C.Agardh and Their Antithrombotic Activity In Vitro. Mar. Drugs 2022, 20, 300. https://doi.org/10.3390/md20050300
Lin P, Chen S, Liao M, Wang W. Physicochemical Characterization of Fucoidans from Sargassum henslowianum C.Agardh and Their Antithrombotic Activity In Vitro. Marine Drugs. 2022; 20(5):300. https://doi.org/10.3390/md20050300
Chicago/Turabian StyleLin, Peichun, Suhua Chen, Min Liao, and Weimin Wang. 2022. "Physicochemical Characterization of Fucoidans from Sargassum henslowianum C.Agardh and Their Antithrombotic Activity In Vitro" Marine Drugs 20, no. 5: 300. https://doi.org/10.3390/md20050300
APA StyleLin, P., Chen, S., Liao, M., & Wang, W. (2022). Physicochemical Characterization of Fucoidans from Sargassum henslowianum C.Agardh and Their Antithrombotic Activity In Vitro. Marine Drugs, 20(5), 300. https://doi.org/10.3390/md20050300