Conceptual DFT-Based Computational Peptidology, Pharmacokinetics Study and ADMET Report of the Veraguamides A–G Family of Marine Natural Drugs
Abstract
:1. Introduction
2. Methodology
2.1. Density Functional Theory (DFT) Calculations
2.2. Computational Pharmacokinetics and ADMET Report
3. Results and Discussion
3.1. Conceptual DFT-Based Computational Peptidology
3.2. Computational Pharmacokinetics and ADMET Report
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vasarri, M.; Biasi, A.M.D.; Barletta, E.; Pretti, C.; Degl’Innocenti, D. An Overview of New Insights into the Benefits of the Seagrass Posidonia oceanica for Human Health. Mar. Drugs 2021, 19, 476. [Google Scholar] [CrossRef] [PubMed]
- Catanesi, M.; Caioni, G.; Castelli, V.; Benedetti, E.; d’Angelo, M.; Cimini, A. Benefits under the Sea: The Role of Marine Compounds in Neurodegenerative Disorders. Mar. Drugs 2021, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Müller, W.E.G.; Schröder, H.C.; Wang, X. (Eds.) Blue Biotechnology; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- D’Annessa, I.; Leva, F.S.D.; Teana, A.L.; Novellino, E.; Limongelli, V.; Marino, D.D. Bioinformatics and Biosimulations as Toolbox for Peptides and Peptidomimetics Design: Where Are We? Front. Mol. Biosci. 2020, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Zorzi, A.; Deyle, K.; Heinis, C. Cyclic Peptide Therapeutics: Past, Present and Future. Curr. Opin. Chem. Biol. 2017, 38, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Joo, S.H. Cyclic Peptides as Therapeutic Agents and Biochemical Tools. Biomol. Ther. 2012, 20, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Gang, D.; Kim, D.; Park, H.S. Cyclic Peptides: Promising Scaffolds for Biopharmaceuticals. Genes 2018, 9, 557. [Google Scholar] [CrossRef] [Green Version]
- Sivanathan, S.; Scherkenbeck, J. Cyclodepsipeptides: A Rich Source of Biologically Active Compounds for Drug Research. Molecules 2014, 19, 12368–12420. [Google Scholar] [CrossRef]
- Salvador, L.A.; Biggs, J.S.; Paul, V.J.; Luesch, H. Veraguamides A–G, Cyclic Hexadepsipeptides from a Dolastatin 16-Producing Cyanobacterium Symploca cf. hydnoides from Guam. J. Nat. Prod. 2011, 74, 917–927. [Google Scholar] [CrossRef] [Green Version]
- Qamar, H.; Hussain, K.; Soni, A.; Khan, A.; Hussain, T.; Chénais, B. Cyanobacteria as Natural Therapeutics and Pharmaceutical Potential: Role in Antitumor Activity and as Nanovectors. Molecules 2021, 26, 247. [Google Scholar] [CrossRef]
- Gogineni, V.; Hamann, M.T. Marine Natural Product Peptides with Therapeutic Potential: Chemistry, Biosynthesis, and Pharmacology. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 81–196. [Google Scholar] [CrossRef]
- Kang, H.K.; Choi, M.C.; Seo, C.H.; Park, Y. Therapeutic Properties and Biological Benefits of Marine-Derived Anticancer Peptides. Int. J. Mol. Sci. 2018, 19, 919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mi, Y.; Zhang, J.; He, S.; Yan, X. New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade. Mar. Drugs 2017, 15, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negi, B.; Kumar, D.; Rawat, D.S. Marine Peptides as Anticancer Agents: A Remedy to Mankind by Nature. Curr. Protein Pept. Sci. 2017, 18, 885–904. [Google Scholar] [CrossRef] [PubMed]
- Flores-Holguín, N.; Frau, J.; Glossman-Mitnik, D. A Fast and Simple Evaluation of the Chemical Reactivity Properties of the Pristinamycin Family of Antimicrobial Peptides. Chem. Phys. Lett. 2020, 739, 137021. [Google Scholar] [CrossRef]
- Flores-Holguín, N.; Frau, J.; Glossman-Mitnik, D. Conceptual DFT-Based Computational Peptidology of Marine Natural Compounds: Discodermins A–H. Molecules 2020, 25, 4158. [Google Scholar] [CrossRef]
- Flores-Holguín, N.; Frau, J.; Glossman-Mitnik, D. Virtual Screening of Marine Natural Compounds by Means of Chemoinformatics and CDFT-Based Computational Peptidology. Mar. Drugs 2020, 18, 478. [Google Scholar] [CrossRef]
- Flores-Holguín, N.; Frau, J.; Glossman-Mitnik, D. Conceptual DFT as a Helpful Chemoinformatics Tool for the Study of the Clavanin Family of Antimicrobial Marine Peptides. In Density Functional Theory; Chapter 3; De Lazaro, S.R., Da Silveira Lacerda, L.H., Pontes Ribeiro, R.A., Eds.; IntechOpen: London, UK, 2021; pp. 57–67. [Google Scholar]
- Flores-Holguín, N.; Frau, J.; Glossman-Mitnik, D. A CDFT-Based Computational Peptidology (CDFT-CP) Study of the Chemical Reactivity and Bioactivity of the Marine-Derived Alternaramide Cyclopentadepsipeptide. J. Chem. 2021, 2021, 2989611. [Google Scholar] [CrossRef]
- Janak, J. Proof that ∂E/∂ni = ϵ in Density Functional Theory. Phys. Rev. B 1978, 18, 7165–7168. [Google Scholar] [CrossRef]
- Kar, R.; Song, J.W.; Hirao, K. Long-Range Corrected Functionals Satisfy Koopmans’ Theorem: Calculation of Correlation and Relaxation Energies. J. Comput. Chem. 2013, 34, 958–964. [Google Scholar] [CrossRef]
- Tsuneda, T.; Song, J.W.; Suzuki, S.; Hirao, K. On Koopmans’ Theorem in Density Functional Theory. J. Chem. Phys. 2010, 133, 174101. [Google Scholar] [CrossRef]
- Tsuneda, T.; Hirao, K. Long-Range Correction for Density Functional Theory. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 375–390. [Google Scholar] [CrossRef]
- Kanchanakungwankul, S.; Truhlar, D.G. Examination of How Well Long-Range-Corrected Density Functionals Satisfy the Ionization Energy Theorem. J. Chem. Theory Comput. 2021, 17, 4823–4830. [Google Scholar] [CrossRef] [PubMed]
- Parr, R.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Chermette, H. Chemical Reactivity Indexes in Density Functional Theory. J. Comput. Chem. 1999, 20, 129–154. [Google Scholar] [CrossRef]
- Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793–1873. [Google Scholar] [CrossRef]
- Gázquez, J.; Cedillo, A.; Vela, A. Electrodonating and Electroaccepting Powers. J. Phys. Chem. A 2007, 111, 1966–1970. [Google Scholar] [CrossRef]
- Chattaraj, P.; Chakraborty, A.; Giri, S. Net Electrophilicity. J. Phys. Chem. A 2009, 113, 10068–10074. [Google Scholar] [CrossRef]
- Geerlings, P.; Chamorro, E.; Chattaraj, P.K.; Proft, F.D.; Gázquez, J.L.; Liu, S.; Morell, C.; Toro-Labbé, A.; Vela, A.; Ayers, P. Conceptual Density Functional Theory: Status, Prospects, Issues. Theor. Chem. Accounts 2020, 139, 36. [Google Scholar] [CrossRef]
- Engel, T.; Gasteiger, J. (Eds.) Applied Chemoinformatics: Achievements and Future Opportunities; Wiley-VCH: Weinheim, Germany, 2018. [Google Scholar]
- Engel, T.; Gasteiger, J. (Eds.) Chemoinformatics: Basic Concepts and Methods; Wiley-VCH: Weinheim, Germany, 2018. [Google Scholar]
- Bajorath, J. (Ed.) Chemoinformatics for Drug Discovery; WILEY, A John Wiley & Sons Publication: Hoboken, NJ, USA, 2014. [Google Scholar]
- Varnek, A.; Tropsha, A. (Eds.) Chemoinformatics Approaches to Virtual Screening; Royal Society of Chemistry: Cambridge, UK, 2008. [Google Scholar]
- Guha, R.; Bender, A. (Eds.) Computational Approaches in Cheminformatics and Bioinformatics; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Benjamin, B. Basic Principles of Drug Discovery and Development; Academic Press: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Medina-Franco, J.L.; Saldívar-González, F.I. Cheminformatics to Characterize Pharmacologically Active Natural Products. Biomolecules 2020, 10, 1566. [Google Scholar] [CrossRef]
- Begam, B.F.; Kumar, J.S. A Study on Cheminformatics and its Applications on Modern Drug Discovery. Procedia Eng. 2012, 38, 1264–1275. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Chakraborty, A.; Pan, S.; Chattaraj, P.K. Biological Activity and Toxicity: A Conceptual DFT Approach. In Structure and Bonding; Springer: Berlin/Heidelberg, Germany, 2012; pp. 143–179. [Google Scholar]
- Lewars, E. Computational Chemistry—Introduction to the Theory and Applications of Molecular and Quantum Mechanics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Young, D. Computational Chemistry—A Practical Guide for Applying Techniques to Real-World Problems; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Jensen, F. Introduction to Computational Chemistry, 2nd ed.; John Wiley & Sons: Chichester, UK, 2007. [Google Scholar]
- Cramer, C. Essentials of Computational Chemistry—Theories and Models, 2nd ed.; John Wiley & Sons: Chichester, UK, 2004. [Google Scholar]
- Domingo, L.R.; Chamorro, E.; Perez, P. Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study. J. Org. Chem. 2008, 73, 4615–4624. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, P.; Domingo, L.R.; Chamorro, E.; Pérez, P. A Further Exploration of a Nucleophilicity Index Based on the Gas-Phase Ionization Potentials. J. Mol. Struct. THEOCHEM 2008, 865, 68–72. [Google Scholar] [CrossRef]
- Domingo, L.R.; Sáez, J.A. Understanding the Mechanism of Polar Diels-Alder Reactions. Org. Biomol. Chem. 2009, 7, 3576–3583. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R.; Perez, P. The Nucleophilicity N Index in Organic Chemistry. Org. Biomol. Chem. 2011, 9, 7168–7175. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules 2016, 21, 748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halgren, T.A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck Molecular Force Field. II. MMFF94 van der Waals and Electrostatic Parameters for Intermolecular Interactions. J. Comput. Chem. 1996, 17, 520–552. [Google Scholar] [CrossRef]
- Halgren, T.A. MMFF VI. MMFF94s Option for Energy Minimization Studies. J. Comput. Chem. 1999, 20, 720–729. [Google Scholar] [CrossRef]
- Halgren, T.A.; Nachbar, R.B. Merck Molecular Force Field. IV. Conformational Energies and Geometries for MMFF94. J. Comput. Chem. 1996, 17, 587–615. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck Molecular Force field. V. Extension of MMFF94 Using Experimental Data, Additional Computational Data, and Empirical Rules. J. Comput. Chem. 1996, 17, 616–641. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Peverati, R.; Truhlar, D.G. Screened-Exchange Density Functionals with Broad Accuracy for Chemistry and Solid-State Physics. Phys. Chem. Chem. Phys. 2012, 14, 16187–16191. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F. Accurate Coulomb-fitting Basis Sets for H to R. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Marenich, A.; Cramer, C.; Truhlar, D. Universal Solvation Model Based on Solute Electron Density and a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated Data and New Features for Efficient Prediction of Protein Targets of Small Molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef] [Green Version]
- Becke, A. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Vosko, S.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef] [Green Version]
- Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. Chem. Phys. 1999, 110, 6158–6169. [Google Scholar] [CrossRef]
- Ernzerhof, M.; Scuseria, G.E. Assessment of the Perdew-Burke-Ernzerhof Exchange-Correlation Functional. J. Chem. Phys. 1999, 110, 5029–5036. [Google Scholar] [CrossRef] [Green Version]
- Becke, A. Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Stephens, P.; Devlin, F.; Frisch, M.; Chabalowski, C. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Perdew, J.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. A Long-Range Correction Scheme for Generalized-Gradient-Approximation Exchange Functionals. J. Chem. Phys. 2001, 115, 3540–3544. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Henderson, T.M.; Izmaylov, A.F.; Scalmani, G.; Scuseria, G.E. Can Short-Range Hybrids Describe Long-Range-Dependent Properties? J. Chem. Phys. 2009, 131, 044108. [Google Scholar] [CrossRef]
- Chai, J.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [Green Version]
- Brémond, É.; Pérez-Jiménez, Á.J.; Sancho-García, J.C.; Adamo, C. Range-Separated Hybrid Density Functionals Made Simple. J. Chem. Phys. 2019, 150, 201102. [Google Scholar] [CrossRef] [Green Version]
- Domingo, L.R.; Aurell, M.; Pérez, P.; Contreras, R. Quantitative Characterization of the Global Electrophilicity Power of Common diene/Dienophile Pairs in Diels-Alder Reactions. Tetrahedron 2002, 58, 4417–4423. [Google Scholar] [CrossRef]
- Pérez, P.; Domingo, L.R.; Aurell, M.J.; Contreras, R. Quantitative Characterization of the Global Electrophilicity Pattern of Some Reagents Involved in 1,3-Dipolar Cycloaddition Reactions. Tetrahedron 2003, 59, 3117–3125. [Google Scholar] [CrossRef]
- Toro-Labbé, A. (Ed.) Theoretical Aspects of Chemical Reactivity; Elsevier Science: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Morell, C.; Grand, A.; Toro-Labbé, A. New Dual Descriptor for Chemical Reactivity. J. Phys. Chem. A 2005, 109, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Morell, C.; Grand, A.; Toro-Labbé, A. Theoretical Support for Using the Δf(r) Descriptor. Chem. Phys. Lett. 2006, 425, 342–346. [Google Scholar] [CrossRef]
- Martínez-Araya, J.I. Revisiting Caffeate’s Capabilities as a Complexation Agent to Silver Cation in Mining Processes by means of the Dual Descriptor—A Conceptual DFT Approach. J. Mol. Model. 2012, 18, 4299–4307. [Google Scholar] [CrossRef]
- Martínez-Araya, J.I. Explaining Reaction Mechanisms Using the Dual Descriptor: A Complementary Tool to the Molecular Electrostatic Potential. J. Mol. Model. 2012, 19, 2715–2722. [Google Scholar] [CrossRef]
- Martínez-Araya, J.I. Why is the Dual Descriptor a More Accurate Local Reactivity Descriptor than Fukui Functions? J. Math. Chem. 2015, 53, 451–465. [Google Scholar] [CrossRef]
- Frau, J.; Hernández-Haro, N.; Glossman-Mitnik, D. Computational Prediction of the pKas of Small Peptides through Conceptual DFT Descriptors. Chem. Phys. Lett. 2017, 671, 138–141. [Google Scholar] [CrossRef]
Solvent | 1/ | LC-BLYP | LC-PBE | MN12SX | CAM-B3LYP | LC-HPBE |
---|---|---|---|---|---|---|
NMF | 0.0055 | 4.17 | 4.16 | 0.02 | 2.15 | 3.88 |
Formamide | 0.0092 | 4.18 | 4.17 | 0.02 | 2.16 | 3.89 |
H2O | 0.0128 | 4.16 | 4.16 | 0.01 | 2.15 | 3.87 |
Methanol | 0.0307 | 4.09 | 4.08 | 0.05 | 2.08 | 3.80 |
Ethanol | 0.0402 | 4.00 | 3.99 | 0.11 | 2.00 | 3.81 |
Acetone | 0.0488 | 3.73 | 3.72 | 0.27 | 1.77 | 3.45 |
DCE | 0.0988 | 3.62 | 3.61 | 0.37 | 1.65 | 3.33 |
THF | 0.1347 | 3.45 | 3.44 | 0.48 | 1.50 | 3.16 |
DBE | 0.3282 | 2.95 | 2.94 | 0.85 | 1.03 | 2.67 |
Cyclohexane | 0.4959 | 2.56 | 2.55 | 1.14 | 0.66 | 2.29 |
n-Hexane | 0.5314 | 2.48 | 2.47 | 2.03 | 0.58 | 2.21 |
Gas | 1.0000 | 1.36 | 1.35 | 2.08 | 0.48 | 1.09 |
Solvent | 1/ | B97XD | M11 | RSX-PBE | RSX-PBE0 | RSX-PBE0-1/3 |
NMF | 0.0055 | 2.91 | 3.54 | 4.06 | 4.24 | 4.32 |
Formamide | 0.0092 | 2.92 | 3.55 | 4.08 | 4.25 | 4.33 |
H2O | 0.0128 | 2.90 | 3.53 | 4.06 | 4.23 | 4.32 |
Methanol | 0.0307 | 2.84 | 3.46 | 3.99 | 4.16 | 4.24 |
Ethanol | 0.0402 | 2.76 | 3.38 | 3.38 | 4.07 | 4.16 |
Acetone | 0.0488 | 2.53 | 3.12 | 3.01 | 3.80 | 3.88 |
DCE | 0.0988 | 2.42 | 3.01 | 2.89 | 3.68 | 3.77 |
THF | 0.1347 | 2.26 | 2.84 | 2.72 | 3.51 | 3.59 |
DBE | 0.3282 | 1.80 | 2.36 | 2.60 | 3.02 | 3.10 |
Cyclohexane | 0.4959 | 1.43 | 1.98 | 2.47 | 2.63 | 2.71 |
n-Hexane | 0.5314 | 1.35 | 1.90 | 2.39 | 2.55 | 2.63 |
Gas | 1.0000 | 0.28 | 0.79 | 1.26 | 1.42 | 1.50 |
Molecule | HOMO | LUMO | SOMO | H-L Gap | J(I) | J(A) | J(HL) | SL |
---|---|---|---|---|---|---|---|---|
Veraguamide A | −6.635 | −0.884 | −0.892 | 5.751 | 0.006 | 0.003 | 0.006 | 0.003 |
Veraguamide B | −6.637 | −0.942 | −0.912 | 5.695 | 0.008 | 0.012 | 0.014 | 0.030 |
Veraguamide C | −6.812 | −0.993 | −0.946 | 5.819 | 0.003 | 0.017 | 0.017 | 0.048 |
Veraguamide D | −6.661 | −0.748 | −0.759 | 5.913 | 0.010 | 0.005 | 0.011 | 0.011 |
Veraguamide E | −6.873 | −0.717 | −0.702 | 6.156 | 0.002 | 0.007 | 0.007 | 0.014 |
Veraguamide F | −6.717 | −1.016 | −0.972 | 5.702 | 0.002 | 0.015 | 0.015 | 0.019 |
Veraguamide G | −6.697 | −0.771 | −0.768 | 5.926 | 0.009 | 0.001 | 0.009 | 0.003 |
Molecule | S | N | ||||||
---|---|---|---|---|---|---|---|---|
Veraguamide A | 3.760 | 5.751 | 1.229 | 0.174 | 2.157 | 4.697 | 0.937 | 5.634 |
Veraguamide B | 3.790 | 5.695 | 1.261 | 0.176 | 2.156 | 4.772 | 0.983 | 5.755 |
Veraguamide C | 3.903 | 5.819 | 1.309 | 0.172 | 1.981 | 4.932 | 1.030 | 5.962 |
Veraguamide D | 3.704 | 5.913 | 1.160 | 0.169 | 2.132 | 4.543 | 0.838 | 5.381 |
Veraguamide E | 3.795 | 6.156 | 1.170 | 0.162 | 1.920 | 4.621 | 0.827 | 5.448 |
Veraguamide F | 3.867 | 5.702 | 1.311 | 0.175 | 2.075 | 4.912 | 1.045 | 5.957 |
Veraguamide G | 3.734 | 5.926 | 1.177 | 0.169 | 2.096 | 4.590 | 0.856 | 5.447 |
Molecule | pKa |
---|---|
Veraguamide A | 12.36 |
Veraguamide B | 12.40 |
Veraguamide C | 12.55 |
Veraguamide D | 12.58 |
Veraguamide E | 12.60 |
Veraguamide F | 12.50 |
Veraguamide G | 12.62 |
Molecule | GPCR | Ion Channel | Nuclear Receptor | Kinase | Protease | Enzyme |
---|---|---|---|---|---|---|
Ligand | Modulator | Ligand | Inhibitor | Inhibitor | Inhibitor | |
Veraguamide A | −0.42 | −1.45 | −1.21 | −1.18 | 0.05 | −0.83 |
Veraguamide B | −0.33 | −1.31 | −1.07 | −1.02 | 0.13 | −0.73 |
Veraguamide C | −0.29 | −1.21 | −1.06 | −0.96 | 0.20 | −0.62 |
Veraguamide D | −0.42 | −1.39 | −1.22 | −1.18 | 0.12 | −0.76 |
Veraguamide E | −0.55 | −1.57 | −1.38 | −1.35 | 0.02 | −0.91 |
Veraguamide F | −0.64 | −1.78 | −1.55 | −1.43 | −0.09 | −1.09 |
Veraguamide G | −0.35 | −1.32 | −1.12 | −1.04 | 0.13 | −0.72 |
Property | Veraguamides | ||||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | |
HI Absorption | + | + | + | + | + | + | + |
BBB Permeability | + | + | + | + | + | + | + |
Caco-2 | - | - | - | - | - | - | - |
P-gp Substrate | + | + | + | + | + | + | + |
P-gp Inhibitor | + | + | + | + | + | + | + |
CYP2C9 Substrate | - | - | - | - | - | + | - |
CYP2D6 Substrate | - | - | - | - | - | - | - |
CYP3A4 Substrate | + | + | + | + | + | + | + |
CYP1A2 Inhibitor | - | - | - | - | - | - | - |
CYP2C19 Inhibitor | - | - | - | - | - | - | - |
CYP2C9 Inhibitor | - | - | - | - | - | - | - |
CYP2D6 Inhibitor | - | - | - | - | - | - | - |
CYP3A4 Inhibitor | - | - | - | - | - | - | - |
OCT2 Substrate | - | - | - | - | - | - | - |
AMES Toxicity | - | - | - | - | - | - | - |
hERG Inhibitor | - | - | - | - | - | - | - |
Hepatotoxicity | + | + | + | + | + | + | + |
Skin Sensitization | - | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Holguín, N.; Ortega-Castro, J.; Frau, J.; Glossman-Mitnik, D. Conceptual DFT-Based Computational Peptidology, Pharmacokinetics Study and ADMET Report of the Veraguamides A–G Family of Marine Natural Drugs. Mar. Drugs 2022, 20, 97. https://doi.org/10.3390/md20020097
Flores-Holguín N, Ortega-Castro J, Frau J, Glossman-Mitnik D. Conceptual DFT-Based Computational Peptidology, Pharmacokinetics Study and ADMET Report of the Veraguamides A–G Family of Marine Natural Drugs. Marine Drugs. 2022; 20(2):97. https://doi.org/10.3390/md20020097
Chicago/Turabian StyleFlores-Holguín, Norma, Joaquín Ortega-Castro, Juan Frau, and Daniel Glossman-Mitnik. 2022. "Conceptual DFT-Based Computational Peptidology, Pharmacokinetics Study and ADMET Report of the Veraguamides A–G Family of Marine Natural Drugs" Marine Drugs 20, no. 2: 97. https://doi.org/10.3390/md20020097
APA StyleFlores-Holguín, N., Ortega-Castro, J., Frau, J., & Glossman-Mitnik, D. (2022). Conceptual DFT-Based Computational Peptidology, Pharmacokinetics Study and ADMET Report of the Veraguamides A–G Family of Marine Natural Drugs. Marine Drugs, 20(2), 97. https://doi.org/10.3390/md20020097